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Abstract: Grid operators are now considering using distributed energy resources (DERs) to provide
distribution voltage regulation rather than installing costly voltage regulation hardware. DER devices
include multiple adjustable reactive power control functions, so grid operators have the difficult
decision of selecting the best operating mode and settings for the DER. In this work, we develop a
novel state estimation-based particle swarm optimization (PSO) for distribution voltage regulation
using DER-reactive power setpoints and establish a methodology to validate and compare it against
alternative DER control technologies (volt–VAR (VV), extremum seeking control (ESC)) in increasingly
higher fidelity environments. Distribution system real-time simulations with virtualized and power
hardware-in-the-loop (PHIL)-interfaced DER equipment were run to evaluate the implementations
and select the best voltage regulation technique. Each method improved the distribution system
voltage profile; VV did not reach the global optimum but the PSO and ESC methods optimized the
reactive power contributions of multiple DER devices to approach the optimal solution.

Keywords: voltage regulation; distribution system; power hardware-in-the-loop; distributed energy
resources; extremum seeking control; particle swarm optimization; state estimation; reactive power
support; volt–VAR

1. Introduction

Installed variable distributed renewable energy is continuing to grow, with much of this growth
being related to distribution systems [1]. In the past, utilities could assume unidirectional power
flow and regulation of grid voltage within ANSI Standard C84.1 [2] limits. The penetration of
distributed energy resources (DER) presents challenges for distribution circuit voltage regulation [3]
because fluctuating DER current injection on the feeder from renewable energy resources leads to
voltage perturbations [4]. The voltage swings are currently corrected by load tap changing (LTC)
transformers, capacitor banks, and other voltage regulation equipment—often designed or placed
prior to the addition of the DER systems. Many distribution system operators (DSOs) are concerned
about increasing DER deployments, and often create screening criteria to limit the deployments [5–7],
because they cannot guarantee power quality in high DER penetration scenarios [8].

New grid code requirements in Hawaii, California, and at the national level (i.e., IEEE 1547-2018 [9])
are requiring newly installed DER grid support functions, including volt–watt, fixed power factor,
and volt–VAR. When these functions are configured correctly, distribution hosting capacity can be
drastically increased by mitigating thermal and voltage excursions, minimizing losses, and maintaining
ANSI limits [10,11].
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Extensive research has been conducted to mitigate voltage deviations on distribution systems
and can be categorized into three broad areas. The first area uses standardized DER grid support
functions and can be further separated into supervised or unsupervised methods. The second area
uses machine learning algorithms to mitigate the voltage deviations. The third area uses OLTCs and
other distribution equipment to solve the voltage deviation problem, however, this is out of the scope
of this paper.

Unsupervised functionality relies on the autonomous functionality in DER equipment and
is characterized by speed and simplicity. Many of the original unsupervised voltage regulation
studies were conducted by EPRI, Sandia National Laboratories (Sandia), National Renewable Energy
Laboratory (NREL), and Georgia Institute of Technology in the 2010s, and typically focused on the
autonomous voltage-reactive power (volt–VAR) function which adjusts DER-reactive power based on
local grid measurements [12–15]. There has also been extensive research into the optimal placement of
DER assets to avoid reaching voltage and thermal constraints [16,17].

Unfortunately, unsupervised voltage regulation algorithms rarely achieve the global optimal
operation for a DER fleet because each DER does not have visibility into the rest of the circuit.
Supervised control algorithms pull in data from multiple sources of telemetry in order to achieve
greater control accuracy, accounting for the voltages at multiple points on the distribution circuit.
These optimal DER setpoints are achieved with more sophisticated techniques combining distribution
state estimation [18,19], and centralized or decentralized controls [20,21]. Other researchers have
investigated the coordination of on-load tap changing (OLTC) transformers and wind systems reactive
power control [22] and DER active power curtailment for voltage regulation [23]; while others have
studied control of demand response loads [24] and community energy management systems on
voltage regulation [25]. These supervised methods depend on bidirectional communications and novel
optimization algorithms which require knowledge of the feeder states, topology of the circuit, and
DER locations. Unfortunately, these approaches are currently infeasible because DSOs often do not
have in-depth knowledge of their distribution system designs, locations where customer-owned DER
equipment is interconnected, or the communications to end devices.

The two primary contributions of this work are (a) the development of a novel DER management
system (DERMS), called the Programmable Distribution Resource Open Management Optimization
System (ProDROMOS) [26], and (b) developing a standardized methodology to tune, evaluate,
and compare different distribution voltage regulation approaches in increasing levels of fidelity.
ProDROMOS was designed to ingest real-time feeder data to provide extensive visibility into
distribution circuits using the Georgia Tech-developed Integrated Grounding System Analysis program
for Windows (WinIGS) distribution system state estimation tool [27] and then optimize the DER-reactive
power settings to meet voltage regulation and economic objectives. In the case of supervised voltage
regulation methods, there are varying degrees of visibility into the power system. In some of the
approaches (e.g., [28,29]), the DER are only aware of the other DER interconnection voltages and they
adjust their reactive power to improve the visible voltage levels. In more sophisticated control methods,
like that developed in ProDROMOS, distribution system state estimation [26,30–32] is used to expand
the visibility into the distribution system, and therefore improve the ability of the DER to optimize
their reactive power contributions to optimize the voltage profile across the entire feeder.

The second contribution is a standardized evaluation methodology comparing three DER-reactive
power technologies using two different levels of fidelity: real-time (RT) power simulations and RT
power hardware-in-the-loop (PHIL) simulations. For this project, the following voltage regulation
methods were compared:

1. an unsupervised, volt–VAR (VV) function, defined by the IEEE 1547-2018 standard;
2. a real-time communication-based optimization technique called extremum seeking control

(ESC) [33–36];
3. the ProDROMOS particle swarm optimization optimal power flow (PSO OPF) method.
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In each of the fidelity levels, timing, control, and communication parameters were adjusted to
enact the desired voltage regulation controls. A comparative analysis of the three methods was then
performed to evaluate the effectiveness of each voltage regulation method for two reduced-order
utility distribution circuits from Albuquerque, NM and Grafton, MA. The results showed that ESC
and ProDROMOS provided the best voltage regulation and maintained ANSI C84.1-2011 Range A
limits and reached near-optimal reactive power setpoints when controlling multiple DER. While not
presented here, the results in this paper provided sufficient confidence in the control techniques that
they were then executed on a live feeder in Grafton, MA—the results of the field demo are included
in [26].

The reminder of the paper is organized as follows: Section 2 describes the voltage regulation
problem, the DER control methods and the RT simulation platform; Section 3 describes the simulation
tests and results; Section 4 provides a discussion of the results; Section 5 provides a conclusion to the
study. The Supplementary Materials section provide access to portions of the non-proprietary models
and code used for these experiments.

2. Voltage Regulation Methods

In a distribution circuit without generation, power flows from a substation to customers and
the voltage generally drops from source to load. As previously stated, the utility will regulate the
voltage with LTC transformers, capacitor banks, and other voltage regulation equipment. However,
a distribution circuit with DER may create bidirectional power flows and increase voltages at the
point of common coupling (PCC). The increasing voltage operating envelope and variable power
output of the DER create voltage perturbations and may violate ANSI C84.1 Range A limits. The
voltage perturbations increase the mechanical operations of the utility-owned voltage regulation
equipment [8,35]. This equipment was not designed for such rapid switching, which increase
operations and maintenance (O&M) costs and decreases the DSOs ability to provide safe and reliably
power [8]. An alternative solution is to use the equipment that is causing the voltage rise to mitigate
the problem by using the DER grid support functions with reactive power capabilities. In this paper,
we investigate volt–VAR, ESC, and ProDROMOS controls. Volt-var is a common function required
by many European and North American grid codes and interconnection standards [37–39] included
in most DER devices. ESC and ProDROMOS are more sophisticated controllers which calculate the
target reactive power of DER and then set a power factor function to produce the reactive power level.
It should be noted that in new DER interconnection standards, such as IEEE Std 1547-2018, there are
constant reactive power modes—but these functions were not available in the equipment at the time of
these experiments.

2.1. Autonomous Volt–VAR Control

The volt–VAR (VV) function adjusts the reactive power of the DER based on the PCC voltage
measurements according to an adjustable curve of (voltage and reactive power) points. This distributed
autonomous control function was the first reactive power factor evaluated. In this project, the VV
curve for the RT experiments was defined with non-aggressive voltage points = {95%, 99%, 101%,
105%} and Var points = {25%, 0%, 0%, −25%} because there were oscillations between the simulated
DER device and the power simulation.

2.2. Extremum Seeking Control

Extremum seeking control (ESC) is a real-time optimization technique for multi-agent, nonlinear,
and infinite-dimensional systems [33–36]. The decentralized, model free control algorithm operates by
adjusting the reactive power to optimize measured outputs, in this case, feeder voltage. The system
adjusts inputs; (u); via a sinusoidal injection, demodulates system outputs; (J(u)); to extract approximate
gradients, and finally performs a gradient descent. A block diagram of this approach is shown in
Figure 1. The designer sets the parameters k, l, h, a andω. Additionally, unique probing frequencies for
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each controllable DER are chosen, but one must ensure that l and h <<ω, ensuring proper operation of
the high and low pass filters in each ESC loop. The reader is referred to [36] for more details.
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The optimization function for the simulations is given in Equation (1):

J =
1
n

n∑
i=1

3∑
ph=1

(
Vi,ph −Vnom,i,ph

)2
(1)

where Vi, is the voltage measurement at Bus i and Vnon is the nominal voltage. This is a proposed new
grid support function that can achieve the global optimum. We assume that each bus in the circuit
feeder, can provide measurements in these experiments and more details will be provided in the RT
simulation platform section.

Extremum Seeking Control Parameter Selection

These parameters were chosen based on prior experience with ESC simulations and laboratory
demonstrations [33–36], and a systematic debugging process that considered communication latencies,
DER power factor (PF) accuracies, and prior lessons learned. The sequence to implement ESC
control follows:

1. The ProDROMOS manager constructs the objective function, J.
2. The ProDROMOS manager configures the DER with uniqueωs to avoid controller conflict while

producing 10 or more data points per cycle.
3. The parameters l and h are set significantly less than ω, such that the perturbation is passed

through the washout filter s/(s + h) but is removed by the lowpass filter l/(s + l).
4. Parameter a is selected to produce the smallest reactive power oscillation that is observable in the

objective function, J.
5. Parameter k is set based on designer experience, the stability of ESC simulation, and desired time

to reach local minimum of J.
6. The ProDROMOS monitors the objective function and makes PF changes to each DER to improve

the performance of the system.

The optimization of ESC parameters is a future research interest due to the time requirements
necessary to tune the parameters for the application. The use of the ProDROMOS platform and the RT
simulator allowed the ESC designer confidence in the parameters before real world deployment.
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2.3. ProDROMOS

The ProDROMOS system completed the DER-reactive power setpoint optimization in multiple
stages. Initially, intelligent electronic devices (IEDs) from the power system would collect data from
the RT, PHIL, or live feeder and send those to the WinIGS state estimation system tool. For the RT
and PHIL experiments, these data were collected from virtualized micro-phasor measurement units
(µPMUs) and formatted in IEEE C37.118 format using a physical SEL-3373 Phasor Data Concentrator
(PDC) in the Distributed Energy Technologies Laboratory (DETL) at Sandia National Laboratories.
These data were then parsed into different sections of the WinIGS feeder. By segmenting the state
estimation problem into smaller feeder pieces, WinIGS was able to solve the state estimation at 30 Hz.
Details of the construction of the WinIGS models for the Public Service Company of New Mexico
(PNM) and National Grid (NG) feeders in NM and MA are presented in [26]. The solution to the state
estimation included active and reactive power values for different loads in the model. These values
were passed to the optimization routine as another IEEE C37.118 data stream.

The Particle Swarm Optimization (PSO) was used to determine the Optimal Power Factor (OPF)
settings for the DER devices because of the nonconvex fitness landscape [26]. PSO OPF uses a
time-series OpenDSS simulation wrapped in a PSO loop to calculate the OPF values. The load data
for OpenDSS were populated with state estimation solutions before each run of the optimization
routine, which occurred every 1 or 2 min. A solar production persistence forecast was created to
estimate the solar energy over the next time horizon (5 min). This forecast was used as the photovoltaic
(PV) power profile in the OpenDSS simulation. The WinIGS software and the python-based PSO
code were implemented in a portable Connected Energy cloud-based Windows virtual machine (VM)
that allowed geographically distributed developers to access the environment. Figure 2 provides a
simplified approach of the PSO OPF method.
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Figure 2. The particle swarm optimization optimal power flow (PSO OPF) optimization method and
information flows.

Once populated with the anticipated PV production and the current—and assumed static—active
and reactive power levels for the loads in the OpenDSS simulations, the PSO ran the OpenDSS
model with different DER PF setpoints to calculate the optimal setpoints for each of the DER
devices. The optimization formulation was designed to capture the voltage regulation and economic
considerations of operating PV systems with a non-unity power factor (PF):

Minimize
PF

[w0δviolation(V) + w1σ(V−Vbase) + w2C(PF)] (2)
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where
δviolation(V) = 1 (3)

if any
|V| > Vlim (4)

σ(V−Vbase) (5)

is the standard deviation of V−Vbase

C(PF) =
∑

1− |PF| (6)

V is a vector of bus voltages, Vbase is a vector of the nominal voltages for each bus, and PF is a
vector of the DER PFs. The objective function is minimized when the bus voltages are at Vbase and
PF = 1. Vlim was selected to be the ANSI C84.1 Range A limits of ±0.05 per unit (pu), so any solutions
outside the limits would be highly penalized. The third term was a simplified method to discourage
solutions that moved away from unity power factor, because these solutions would curtail active power
(and expense the PV owner through net metering, power purchase agreements, etc.) at high irradiance
times. More sophisticated methods for determining the curtailment magnitude were considered, but
the simple approach shown here was implemented. For the experiments conducted in this project,
w0 = 1.0, w1 = 2.0, and w2 = 0.05. The optimization was configured so that if all the bus voltages were
within an acceptance threshold (set to 0.2% of nominal voltage) the PSO would not run. If any of the
voltages were outside ANSI Range A the PSO would run. Furthermore, if the new PF values did not
change the objective function by an objective threshold (set to 1 × 10−7), the new PFs would not be sent
to the DER devices to minimize communications and DER memory writes.

3. Evaluation Environments

3.1. Distribution Systems of Study

Several distribution systems models were acquired from PNM and NG for evaluation. The PNM
models were in the SynerGEE software format and NG models were in the CYME software format.
To run the power hardware-in-the-loop (PHIL) experiments, a series of conversions were needed
to convert the models to OPAL RT-Lab-compliant formats (MATLAB/Simulink). The CYME and
SynerGEE models were first converted to OpenDSS. The objective of the project was to show voltage
regulation with 50% PV penetration level (defined by feeder PV nameplate/peak feeder load). For
those feeders that did not meet this threshold, additional residential PV systems were randomly added
to the buses in the model to meet this goal. Time-domain RT-Lab simulations are not possible with
feeder models with thousands of buses, so the full OpenDSS models were reduced in complexity to
be incorporated in the RT-Lab and WinIGS platform. The circuit reduction algorithms reduced the
number of buses in a model while maintaining an equivalent voltage profile throughout the model at
feeder locations of interest [40,41]. Ultimately, a commercial 12.47-kV PNM feeder and a suburban
13.80 kV NG feeder were used for the evaluation of the different voltage regulation algorithms. The
PNM reduced order feeder that was used in these experiments is shown in Figure 3 and the NG feeder
is shown in Figure 4.
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3.2. Real-Time Evaluation Platform

The evaluation platform could be run in a software-in-the-loop (SIL), a power-hardware-in-the-loop
(PHIL), or a combination of SIL and PHIL setup. The SIL and PHIL simulations were conducted with
an Opal-RT OP5600 real-time digital simulator running distribution feeder models in RT-LAB with a
100 us timestep. To complete the PHIL experiments, a physical 3.0-kW inverter was interfaced to the
power simulation via a 180 kVA Ametek RS180 grid simulator. The current waveform was measured
by a Person CT110 and returned to the power simulation via an analog input channel. The DC side of
the inverter was connected to an Ametek TerraSAS PV simulator configured to represent a 3.0-kWp
silicon PV system.

In the RT simulations, the EPRI-developed DER Simulator [42] software, emulated smart solar
inverters with several grid support functionalities and communication interfaces. Any number of
DER devices, with different nameplate capacities and phasing configurations, were instantiated with
independent irradiance profiles. The EPRI-developed TCP/IP protocol called Data Bus (DBus) was
used as the co-simulation interface to exchange data between the OPAL-RT simulator and the DER
simulator. The DER simulator determined the active and reactive power of the DER devices based on
irradiance profiles, voltage, frequency, and DER settings. The active and reactive power outputs are
exchanged via DBus with the RT simulation. The RT simulation passed the voltage and frequency of
the points of common coupling (PCCs) where the DER were interconnected to the feeder.
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The PHIL simulations used the RT simulation environment but replaced one of the EPRI PV
systems with a 3.0-kW residential inverter that was then scaled to a device in the PNM model (inverter
3, 258 kW) and NG feeder (inverter 1, 658 kW). The 258-kW and 684-kW inverters were three-phase
balanced output inverters where each phase produced the same current magnitude and phase angle.
The 3-kW inverter was scaled to match its per phase output to the 684-kW inverter for the NG
experiments and the 258-kW inverter for the PNM experiments. The advantage of incorporating
a physical inverter into the simulations was twofold: the control algorithms had to be built with
communication interfaces to interact with real equipment over the public internet networks and the
abnormal operations of physical equipment (e.g., startup times, ramp rates, non-optimal maximum
power point tracking, converter losses, etc.) were represented in the power simulation and needed to
be managed by the control algorithms. Scaling a residential PV system to represent a utility-owned site
likely produced higher reactive power errors because of the lower-cost control and power electronics
components in the 3-kW inverter, but this helped approximate inverter interoperability and control
functionality, with the expectation that the fielded system would perform better.

4. Results for PNM Model

4.1. Simulations with the PNM Model

The PNM model included two scenarios. In the first scenario, there were three simulated EPRI
PV inverters, and in the second scenario, the 258-kW inverter at bus 15 was replaced with a physical
single phase 3.0 kW that was then scaled to the 258-kW rating in the simulation. The EPRI simulator
provided three correlated, highly variable irradiance profiles from a PV site on the US east coast to
feed the simulated inverters. These profiles were generated from a single Global Horizontal Irradiance
(GHI) measurement and then shifted and scaled to account for geographical separation of the PV sites.
The PV irradiance profiles were then smoothed based on the plant sizes using the Wavelet Variability
Model [43–46] to account for spatial averaging with large PV systems. To understand the impact of
spatial averaging on the irradiance profiles the reader is invited to review [47,48]. The final PV profiles
are shown in Figure 5. The smoothed irradiance profiles are used because clouds do not instantaneously
shade larger PV systems and it takes time for them to pass over the entire array. Additionally, variable
load profiles were used on loads connected to bus 6 and bus 13 to create transient voltage variability.
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4.2. Baseline Simulation

The PNM model was simulated using P/Q data passed from the EPRI DER simulator to the RT
power simulation using the Data Bus (DBus) exchange. The hardware PV inverter was interfaced
using the Ideal Transformer Method (ITM) [48]. The simulated PV inverters connected to bus 12
and bus 14 were simulated using a P/Q controlled PV inverter model [49]. In this feeder model,
controllable capacitor banks were removed. At each PV site, irradiance is converted to AC power
using pvlib-python [50]; an example of the power simulation is shown in Figure 6. The voltage profile
for each of the 15 buses is shown in Figure 7. As can be seen from these results, there is relatively little
voltage rise when the PV systems inject power at their points of common coupling (PCCs). Overall,
the feeder maximum voltage is driven by the 10-MW PV system on this feeder.
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4.3. Volt–VAR Simulation

The volt–VAR function was implemented by programming the VV function in the EPRI DER
devices using a DNP3 command. The deadband was set to ±0.01 pu so the DER would support the
feeder voltage. Aggressive VV parameters produced reactive power oscillations because the EPRI
simulator-to-Opal-RT communication rates were limited to once/second—e.g., DBus read the DER bus
voltage once a second and then DBus updated the Opal-RT DER-reactive power set point on the next
DBus write. As a result, a stable VV curve defined as V = {92, 99, 101, 108} pu, Q = {25, 0, 0, −25}%
nameplate VA capacity were used for the simulations. The reactive power contribution from the
10-MW plant was modest, but it reduced the maximum and average feeder voltages, as shown in
Figure 8—where the minimum, maximum, and average voltages were plotted using for all buses and
all phases. The line represents the average voltage for all the buses and the colored patch represents
the range of voltages over time for the feeder. Notice from the simulation results that the VV function
can bring the average bus voltage closer to the desired nominal value. These effects can also be
observed from the maximum voltage, reducing the voltage band created from the maximum and
minimum values.
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4.4. Extremum Seeking Control Simulation

ESC was implemented with a RT model of the PNM feeder using multiple parameter sets. When
selecting ESC parameters, there are multiple tradeoffs that make it challenging. For instance, large
probing magnitudes help the objective function signal stand out from feeder noise, but it causes larger
voltage deviations once a solution is reached. The normalized voltage deviation objective function
was used with probing signal frequencies that could be independently demodulated. Ultimately, the
parameters shown in Table 1 were used. As shown in Figure 9, the reactive power from the DER
devices to move the average bus voltage toward the nominal set point, i.e., 1 pu as compared to the
baseline simulation. The maximum and minimum bus voltage values were adjusted closer to nominal
as well. The reactive power probing signal’s impact on the feeder voltage is clearly seen in the results.
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Table 1. ESC Parameters.

J Function l h rcomm
Inverter 1 (258 kW) Inverter 2 (10 MW) Inverter 3 (1 MW)

P f a k P f a k P f a k

1
n

n∑
i=1

(
Vi−Vn

Vn

)2 √
5

800

√
5

800
2 s 258

kW

√
2

40
51.6 kVar −2.58 × 107 10 MW

√
3

40
50 kVar −1 ×

109 1 MW
√

5
40

50 kVar −1 ×
108
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4.5. State-Estimation-Based Particle Swarm Optimization

The setup for the PSO simulations is shown in Figure 2. In this case, the state estimation was used
to update the load data in the OpenDSS time series simulation and forecasts of three-minute average
DER power were used to update the OpenDSS power levels. Figure 10 illustrates the average power
forecasts. The forecasts track the average irradiance reasonably well with some lag as is common for
persistence forecasts. Note that it takes 1 h for the forecast to begin because it uses prior production
data and the clear sky index to generate the power prediction.

The OpenDSS time series simulation was run multiple times using PSO to determine the optimal
PF set points for each of the DER devices. It was found that absolute care must be taken to use the
same component and settings for the Simulink/RT-Lab and OpenDSS models; otherwise erroneous
solutions were found. Binary variables (e.g., capacitor banks) and discrete variables (e.g., tap changes)
must also be re-initialized (i.e., reset) with each new run of the OpenDSS time series simulation to
prevent initial conditions from being set by the prior simulation—an unfortunate byproduct of using
the OpenDSS communication interface implementation. As shown in Figure 11, the reactive power
from the DER devices to move the average bus voltage toward the nominal set point, i.e., 1 pu as
compared to the baseline simulation. Interestingly, with the constraints placed on updating a new PF
level (e.g., the solution must be a certain amount better than the previous one), there are only 3 times
the DER devices had their PF setting updated as shown in Figure 12. This threshold can be tuned, but
it is desirable because it reduces the number of PF write commands and shows the solution is robust
to changing PV irradiance. As seen in Figure 12, the initial PF setpoints for DER 1 and 2 absorbed
reactive power while DER 3 injected reactive power. For this feeder topology and DER locations, the
global optimum required reactive power absorption or injection to minimize the voltage deviation
from nominal at all buses in the feeder.
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5. Results for National Grid Model

5.1. Simulations with the National Grid Model

Like the PNM model, VV, ESC, and PSO voltage regulation approaches were compared on the NG
feeder model. In this model, there is a 684-kW utility-owned three-phase PV site and 30 single phase
PV systems. The NG system was unbalanced, with phase B above nominal voltage, phase C below
nominal voltage, and phase A operating approximately at nominal voltage. This prevented many of
the voltage regulation methods from making significant improvements to the feeder voltage profile
when only the three-phase utility-owned inverter was controlled. Therefore, we proposed controlling
all 31 DER on the NG model for further testing.

5.2. Baseline Simulation with National Grid Model

Four-hour irradiance profiles, at one second resolution were created for the 31 DER devices in this
model. Figure 13 shows the voltage profiles for each of the phases.
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5.3. Volt–VAR

There were negligible reactive power contributions from the utility-owned 684-kW PV site because
the average voltage at the PCC was within the VV dead band. However, the single-phase inverters
were able to shrink the feeder voltage envelope, as shown in Figure 14.
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5.4. Extremum Seeking Control

ESC was conducted on the NG feeder model. In this feeder, there was significant phase imbalance
and at the PV system: phase A voltages are close to nominal (~0.99–1.01 pu), phase B voltages are
significantly above nominal (at times >1.05 pu), and phase C voltages are <0.95 pu—as shown in
Figure 15. This presented a challenge for the ESC approach (like all the other voltage regulation
methods) because the DER can only inject symmetric (positive sequence) reactive power. This means all
the phase voltages are shifted in the same direction with a change in the DER power factor. Grouping
the DER based on what phase they were interconnected was a good method of limiting the number
of probing frequencies but allowed each of the phases to adjust their reactive power contributions
independently. Unfortunately, this also produced a sizable voltage ripple on the power system because
all the inverters on each phase had the same probing frequency. Ultimately, the parameters shown
in Table 2 were used for ESC testing on the NG model, and the feeder voltage profile is shown in
Figure 16.
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5.5. State-Estimation-Based Particle Swarm Optimization

The DER PF PSO optimization technique wrapped NG OpenDSS time-series simulations. The code
was configured to execute once a minute to determine the optimal set point for all the DER devices.
Using the same swarm size of 60, the solution often took 10 iterations, where it was capped. In those
cases, it took longer than 60 s, so the optimization was configured to run every two minutes. As
shown in Figure 17, optimizing 31 DER devices were difficult with a swarm size of 60 because the first
two solutions produced results that pushed the minimum or maximum voltages outside the baseline
envelope. However, after a few more solutions, the PSO significantly improved the voltage profile of
the feeder for the remainder of the simulation. It should be noted that we did not attempt to optimize
the PSO code to minimize run time.
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6. PHIL Results

To further validate the operational effectiveness of the PSO voltage regulation method, realistic
DER power hardware-in-the-loop (PHIL) simulations were conducted with both the PNM and NG
feeder models. These simulations provide better fidelity because they show ProDROMOS can work
with real PV communications systems and ramp rates.

6.1. PNM Baseline

To validate the PHIL setup for the PNM feeder model, a comparison was made between active
power, reactive power, and bus voltage for the RT and PHIL simulations. Figure 18 shows the voltage
profile for the RT and PHIL simulations. The positive and negative reactive power changes around
1000 s in the baseline case were due to setting the PF setpoint on the 10-MW system to +0.85 and −0.85
to verify communications and that the PHIL simulation was closed-loop. Overall, the RT and PHIL
simulations are closely matched.
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6.2. PNM Particle Swarm Optimixation PHIL

The only change from the RT simulations was that commands were communicated with the
physical device to change the power factor and the DER was connected to the power simulation using a
PHIL interface, as opposed to DBUS. The 258-kW system was recreated by scaling a 3-kW DER device.
It was found that the physical equipment recreated the power profile reasonably well. Slight differences
in the active power are due to efficiencies of the devices and slightly oversizing the simulated PV
system in the Ametek PV simulator. The PSO solutions were repeatable for multiple runs. There were
some deviations in the reactive power contributions from the PSO solutions, but overall, they matched
well, as shown in Figure 19. Do note the PHIL PSO simulation was not started for approximately 10
min at the beginning of the RT-Lab simulation, which is why it takes some time for the reactive power
on the physical DER to change. Similar results for the NG RT and PHIL simulations are described
in [26].
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7. Discussion

Each of the voltage regulation methods have their advantages and disadvantages in terms of
communications and computational overhead, implementation complexity, and availability in DER
equipment. Overall, each of them can reduce the voltage deviation from nominal and maintain the
feeder well within ANSI Range A voltage limits. For the PNM model, the DER PCC voltages are
barely outside the dead-band, so the DER does not absorb much reactive power. The ESC method
produces a DER-reactive power probing signal that causes a voltage ripple on the feeder, but it allows
the DER to track the optimal reactive power setpoint well. The PSO method is the most complicated
to implement, but issues optimal set points to each DER every minute. A comparison of each of the
voltage regulation methods is shown in Figure 20. The simulation results indicate ESC and PSO can
regulate the voltage closer to nominal, compared to VV.

To better understand the differences in these approaches, an analytical score was developed to
summarize the effectiveness of each voltage regulation method, and a best score was calculated where
the voltage regulation approach drove the solution to 1 pu:

score =
1
T

tend∫
t=0

1
N

N∑
b=1

(∣∣∣vbl(t) − vnom
∣∣∣− ∣∣∣vreg(t) − vnom

∣∣∣)dt (7)

best score =
1
T

tend∫
t=0

1
N

N∑
b=1

(∣∣∣vbl(t) − vnom
∣∣∣)dt (8)

where vbl is the baseline voltage, vnom is the nominal voltage (1 pu), vreg is the voltage from the voltage
regulation method, T is the time period of the simulation, b is the bus, and t is the simulation time.
The scores representing the average voltage improvement for all buses averaged over a four-hour
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simulation period in units of pu. Table 3 summarizes the effectiveness for the PNM model of each
approach per phase as well as the average of each phase, calculated with:

Impact =
score

best score
(9)

VV slightly improved the average bus voltage, with an impact percentage of 12.3%. Implementing
ESC and PSO demonstrated a larger impact on the feeder, with an average impact percentage of 74.5%
and 73.7% respectively. A more detailed look at the impact of this regulation approaches per phase,
shows that, since the system is relatively balanced, each phase is affected equally.
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Table 3. PNM voltage regulation scores.

PNM Feeder Score

Phase A (×1000) Phase B (×1000) Phase C (×1000) Average (×1000) Average Impact (%)

VV 0.467 0.468 0.466 1.401 12.9%

ESC 2.745 2.748 2.591 8.084 74.5%

PSO 2.727 2.731 2.541 7.999 73.7%

Best Score 3.650 3.681 3.519 10.850

A comparison of the bus voltages for the NG model is illustrated in Figure 21 for each of the
control methods. VV, ESC, and PSO all collapse the voltage envelope toward nominal voltage. In this
case, ESC slightly outperforms the other two methods, shown in Figure 21. Table 4 summarizes the
effectiveness for the NG model of each method. Interestingly, all the methods caused phase A (that was
close to nominal to start) to deviate from the nominal voltage. The phases of the distribution system are
coupled; in order to reach the global minimum for the system, and substantially improve the voltages
on phases B and C, there is an adverse impact on phase A. This results in phase A deviating further
from the nominal voltage.
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Table 4. NG feeder score results controlling all PV inverters.

NG Feeder Score Controlling All PV

Phase A (×1000) Phase B (×1000) Phase C (×1000) Average (×1000) Average Impact (%)

VV −0.058 1.855 1.281 3.078 15.2%

ESC −0.345 4.971 3.068 7.694 38.0%

PSO −0.345 1.878 2.079 3.612 17.8%

Best Score 2.937 9.624 7.678 20.238

8. Conclusions

The novel RT and PHIL platform and scoring criterion introduced in this paper allow for the
development of a standardized methodology to tune, evaluate, and compare different inverter-based
distribution voltage regulation approaches on different feeder models. Utilities and distribution system
operators generally do not have the sensor infrastructure or DERMS communication network to execute
centralized control of DER. However, as the number of measurement devices and interoperable DER
increases, it will become possible to calculate power system states and calculate optimal DER setpoints
to provide voltage regulation and provide protection assurance on the system. These capabilities were
demonstrated in this project with both SIL and PHIL simulations.

This project investigated and compared three voltage regulation approaches: volt–VAR, extremum
seeking control, and particle swarm optimization. Each of the approaches were shown to help provide
voltage support on a feeder with symmetrically elevated phase voltages. In the case of the imbalanced
NG feeder voltages, the approaches were ineffective when employed with only the three-phase inverter,
but an aggregate of single-phase devices were shown to improve the NG feeder voltage profiles. This
was demonstrated using RT simulations with simulated PV devices and power hardware-in-the-loop
simulations with a 3-kW PV inverter. The extremum seeking control voltage regulation technique was
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shown to be effective at controlling groups of DER devices to improve feeder voltages, even in cases of
phase imbalance. This is the first reported demonstration of this ESC application. The particle swarm
optimization approach worked well when the OpenDSS feeder matched the RT/PHIL simulation
environment. The technique incorporated live telemetry and PV forecast data to generate the optimal
PF setpoints for a collection of PV systems over a fixed time horizon.

9. Patents

A U.S. Provisional Patent titled “Digital Twin Advanced Distribution Management System (ADMS)
and Methods” was filed on 9 March 2020 based on this work.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/14/3562/s1,
The anonymized, reduced-order OpenDSS and Opal-RT feeder models, and all portions of the non-proprietary
ProDROMOS and ESC codebases are included in the project GitHub repository: https://github.com/sunspec/
prodromos.
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Acronyms and Definitions

Abbreviation Definition
AC Alternating Current
ANSI American National Standards Institute
Dbus Data Bus
DER Distributed Energy Resource(s)
DERMS Distributed Energy Resource Management System
DETL Distributed Energy Technology Laboratory
DNP3 Distributed Network Protocol 3
DSO Distribution System Operator
EPRI Electric Power Research Institute
ESC Extremum Seeking Control
GHI Global Horizontal Irradiance
IED Intelligent Electronic Device
IEEE Institute of Electrical and Electronics Engineers
ITM Ideal Transformer Method
LTC Load Tap Changer
MA Maine
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NG National Grid
NM New Mexico
NREL National Renewable Energy Laboratories
O&M Operations and Maintenance
OLTC On-Load Tap Changer
OPF Optimal Power Flow
PCC Point of Common Coupling
PF Power Factor
PHIL Power Hardware-in-the-Loop
PNM Public Service Company of New Mexico
PRoDROMOS Programmable Distribution Resource Open Management
PSO Particle Swarm Optimization
PSO PF Particle Swarm Optimization Optimal Power Factor
pu Per unit
PV Photovoltaic
RT Real-Time
SANDIA Sandia National Laboratories
SIL Software in-the Loop
VV Volt–VAR
WinIGS Integrated Grounding System Analysis program for Windows
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