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Abstract: In this paper, a novel two-stage dish concentrator (TSD) with a rotary secondary mirror
(SM) is presented for solar thermal water/CO2 splitting. An in-house code for ray-tracing simulation
of the concentrator was developed and validated. Among all feasible geometries, a hyperboloid
with an upper sheet is the most popular option and is widely used as a secondary reflector, which is
mainly discussed here. All para-hyperboloid geometric combinations can be categorized into three
typical patterns (ϕ1 < π/2, ϕ1 = π/2, ϕ1 > π/2, ϕ1 = field angle of PM). The initial designs of the
TSD, respective to different off-axis levels for each combination, were first designed. Then a new
mathematical model was introduced to reshape the SM to reach optimal truncated designs. Finally,
a new concept of an off-axis primary mirror (PM) combined with the truncated SM was evaluated by
using the in-house ray-tracing code. The results include the optical efficiency, concentration ratio
and intercepted radiant flux. The best solutions with the highest optical efficiency fall in the range
π/2 ≤ ϕ1 ≤ (π − arcsin 0.8) rads and 0.4 ≤ NA2 ≤ 0.6 (NA2 = sin ϕ2, ϕ2 = field angle of SM), which vary
with the concentration ratio and inclination angle.

Keywords: solar thermal; dish concentrator; ray-tracing method; thermochemical redox

1. Introduction

Concentrating solar thermal (CST) energy can be used to produce solar fuels through
thermochemical processes for industrial, agricultural and other uses [1,2]. CST processes can employ
the entire solar spectrum, reaching a higher theoretical solar-to-fuel efficiency. A promising technology
is to produce H2/CO via a solar-driven redox cycle based on metal oxides [3]. To approach this, two
step cycles of reduction and oxidation are considered as shown in Equations (1)–(3) [4,5].
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where, δr and δo represent the nonstoichiometric numbers of reduced and oxidized states, respectively,
and ∆δ = δr − δo > 0 is the change in the oxygen nonstoichiometry in the metal oxide. For the first
step (Equation (1)), the metal oxide is reduced at a relatively high temperature (Thigh), usually above
1473 K, driven by concentrated solar energy. In the second step (Equations (2) and (3)), the reduced
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oxide is cooled down to a low temperature (Tlow) to produce H2/CO [6,7]. Common redox pairs
include metal oxidizes such as Zinc oxide (ZnO) [8–10], Tin oxide (SnO) [11], Ferrite (Fe3O4) [12–14],
Ceria (CeO2) [15–17] and Perovskite [18,19].

Nonstoichiometric cerium oxidize (ceria) is of high interest due to its attractive characteristics
including high melting point [20], crystallographic stability over a wide temperature range [16] and fast
oxidation rate [20,21]. Typically, ceria-based redox is favored at Thigh > 1773 K and Tlow < 1273 K [16,22–24].
A solar dish concentrator with a high concentration ratio C~3000 with a coupled cavity receiver can
achieve a high temperature atmosphere [25]. There are two main reactor concepts for achieving a
temperature swing of Thigh and Tlow: (i) a fluidized-bed reactor concept using particle (or liquid)
flows of reaction media [24] and (ii) a packed-bed reactor concept using a rotary monolithic reaction
material [16]. The first concept requires a robust high temperature pump which is not easy to realize in
real-world conditions. The second concept is more feasible, but still requires a mechanical operation
for shifting reactant between different surroundings (reduction/oxidation zone). Considering that a
reactor should preferably have a minimum number of moving parts to avoid potential machine failures
in such a high-temperature condition [26], a novel concept of TSD with a rotatory SM is proposed here
for achieving successive water/CO2 splitting processes.

Flexible structure and mechanical operation make TSD a good candidate for CST applications,
especially for two step thermochemical water/CO2 splitting [27]. Different types of TSD have been
developed. Rabl et al. [28] tested the performance of CPC as the second stage concentrator for
a conventional parabolic or Fresnel reflector and found significant advantages. A Cassegrainian
two-stage concentrator concept (parabolic & hyperbolic) was investigated by Mauk et al. [29] for a
solar chemical system. Zhang et al. [30] discussed five different types of two-stage reflectors based on
a primary parabolic mirror. Mora and Jaramillo [31] used porous silicon photonic mirrors as secondary
reflectors. Five different types of SMs can be identified: (i) Flat mirrors [32], (ii) ellipsoidal mirrors [33],
(iii) hyperboloidal mirrors with upper sheet [34] and (iv) lower sheet [35], and (v) paraboloidal
mirrors [36]. Based on (iii), a novel TSD with a unique hollow structure was presented to improve
optical performance for CST dish systems [37,38].

The rotating operation concept was initially proven by [27], in which a flat reflector was used as the
SM In this paper, we introduce an improved concept of a TSD prototype with a rotatory hyperboloid SM
and evaluate its optical performance, including optical efficiency and concentration ratio, with respect
to different geometric parameters including rim angle of primary mirror (PM) and SM and inclination
angle of SM. The results can guide research for designing a novel solar dish cavity receiver–reactor
(CRR) system.

2. Optical Model

2.1. Prototype of TSD Concentrator

A TSD concentrator mainly includes a primary paraboloidal mirror and a secondary hyperboloidal
mirror as shown in Figures 1 and 2. Since the present work only focuses on the optical analysis,
mechanical parts such as truss, brace and tracking device are ignored. Figure 1 shows 2D sketches
corresponding to on-axis and off-axis cases, respectively. The PM is laid on the center of an XY plane

in the
→

OZ direction. Incident sunlight is concentrated toward the first focal point, F1, by the PM,
reconcentrated by the SM before approaching F1, and finally reaches the second focal point, F2. Point
C is the origin point of the hyperboloidal function of the PM. Figure 2 shows 3D models of three
representative geometries of the TSD with on/off-axis SMs, which includes all cases. The on-axis
condition has been illustrated in previous studies [37,38]. The relevant results are used here to derive
the general expression of off-axis TSD concentrator models. As shown in Figure 1b, the surface function
of the PM is identical to the on-axis condition (Figure 1a), and the function of the SM can be obtained
by rotating it along F1 from the on-axis position. Similarly, the new function of the receiving plane
could also be obtained. The necessary functions of the concentrator are given by Equations (4)–(6).
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PM’s function:
x2 + y2 = 4 f · z (4)

SM’s function:

((z− 2c− e) · cosθinc + c− x · sinθinc)
2

a2 −
((z− 2c− e) · sinθinc + x · cosθinc)

2 + y2

b2 = 1 (5)

Function of receiving plane:

(z− 2c− e) · cosθinc + 2c− x · sinθinc = 0 (6)

where parameters of focal length, f = 2 c, major axis a, minor axis b, related to the paraboloid and/or
hyperboloid could be calculated by the half field angles (ϕ1 for PM, ϕ2 for SM) and diameter of PM
(D). e represents the distance from flat target to O which sets to 0 in this paper. θinc represents the
inclination of off-axis SM. The dimensions are discussed in the ranges of 4400 mm < D < 10,000 mm,
−arcsin0.6 < ϕ1 < arcsin0.8, and 0 < θinc < 0.25.
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Figure 2. 3D models of three representative geometries correspond to on/off-axis conditions, respectively.
On-axis: (a) ϕ1 < π/2 (b) ϕ1 = π/2 (c) ϕ1 > π/2 Off-axis: (d) ϕ1 < π/2 (e) ϕ1 = π/2 (f) ϕ1 > π/2.

2.2. Prototype of Reactor

Four cylindrical cavity reactors of the same size were fixed on a circle symmetrically as shown
in Figure 3. Reactor A underwent reduction which is marked in blue color, and reactors B, C and
D underwent oxidation and a recuperating process marked in yellow color. The SM was rotated to
shift the concentrated solar spot into different CRRs, in turn, as required. Evaluation of the optical



Energies 2020, 13, 3553 4 of 14

performance of the system with multiple CRRs was not included in this study since it requires detailed
information on the geometry, thermal design, and operation of the reactor array.

The radius and inclination of the CRR determine its off-axis deviation. The CRR’s height,
diameter and inclination, were represented as L, dreactor and θinc, and the minimum of off-axis length,
loff = |O⊥F2|, was calculated by Equation (7). In this condition, the configuration had a compact
structure with four reactors next to each other. On the other side, the CRRs’ body cannot exceed the
boundary of SM’s shadow area (Figure 4), and the maximum of loff was found in the extreme condition
Equation (8). Therefore, the constraint was loff,max > loff > loff,min.

loff,min =

√
2

4
dreactor(1 + cosθinc) (7)

loff,max =
d
2
− [

dreactor

2 cosθinc
+ (L−

dreactor · tanθinc

2
· sinθinc)] (8)
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front view. In (b), the left half side is neglected due to symmetry. (Not to scale).

2.3. Truncated SM

The SM of the TSD is usually designed under the following constraint: the incident sunlight
concentrated by the PM should all be reflected by the SM and finally intercepted by the flat target
at the focal plane. The SM is initially truncated by the PM cone, which is formed by the outer circle
and focal point of the PM. The above constraint is straightforward and can easily be neglected. For a
majority of conditions, the optimal shape of the SM can be obtained based on the constraint. However,
for some special conditions, especially for the off-axis conditions, the SM needs to be further truncated
to improve the optical efficiency.

Figure 4 shows the initial SM, designed under the above constraint, in lateral and front views.
Under the ideal condition, beams which strike into point P at the PM’s edge are reflected along the
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PF1 direction and reach point S at the SM’s edge, as shown in Figure 4a. Figure 4b shows the shadow
area of the initial SM. The hyperboloidal function of the SM is given by Equation (5) and the initial
boundary is determined by the following equations:√

x2 + y2

tanϕ1
+ z− 2c < 0 (9)

r1(ϕ,φ) =
2 f1 · (1− cosϕ)

sinϕ
(0 < ϕ ≤ ϕ1, 0 < φ ≤ 2π) (10)

C1(ϕ,φ) = (
cosθinc
tanϕ

− sinθinc · cosφ)
2
−

a2

b2 [(
sinθinc
tanϕ

+ cosθinc · cosφ)
2
+ sin2 φ] (11)

C2(ϕ,φ) = −2c · (
cosθinc
tanϕ

− sinθinc · cosφ) (12)

C3 = c2
− a2 (13)

C1 · r2
2(ϕ,φ) + C2 · r2(ϕ,φ) + C3 = 0 where : 0 < r2 ≤

D
2

(14)

In Equation (9) indicates that all light from the PM reach the SM’s surface. The distance from the
SM’s edge curve to z-axis (r2m) depends on the field angle (ϕ1) and the azimuthal angle (φ). The shadow
area in Figure 4b, the projection of SM on the OXY plane, is solved by combining Equation (5) and
Equation (9). The edge function of the shadow area can be written as r2(ϕ, φ) where ϕ is the zenithal
angle and C1, C2, C3 are three derived coefficients as in Equations (11)–(14). Similarly, r1(ϕ, φ) represents
the coordinate in the aperture area of the PM and the edge curve corresponds to r1m = r1(ϕ1, φ) as
in Equation (10). The SM is tailored along the value of r2m(φ) which equals r2(ϕ1, φ) in the range of
0 ≤ φ ≤ 2π. The PM is hollowed, with a circle in the middle, and the diameter (d) equals the minimum
of r2m in the whole range of φ. Then, the initial design of SM is modeled.

As mentioned above, the initial SM design may not correspond to the optimal solution in some
conditions. For instance, as shown in Figure 2e,f, the shadow area of the SM has become too large,
which leads to a reduction in optical efficiency. To avoid this detrimental effect, the SM needs to be
further truncated to allow more sunlight to reach the PM. A trade-off between the yield, by reducing
shadows, and the loss, by generating spillages, is considered here.

In the OXZ plane (Figure 4a), the edge point of the PM moves from P to P’ by rotating SF1 about
F1 with a differential dϕ, to S’F1. In the OXY plane (Figure 4b), another differential, dφ, as well as area
elements dA1 and dA2, which correspond to the projections of dS1 and dS2, the interfaces between the
infinitesimal cone and the PM and the SM (Figure 5), are also shown. dA2 represents the differential
increment of the available aperture area of the PM, and dA1 represents the differential decrement of
available projection area of the SM. Therefore, the trade-off is regarded as a quantitative comparison
between dA1 and dA2 in different zenithal and azimuthal angles. κ is defined as the ratio of dA1 to dA2.
Here we use a 3D figure (Figure 5) to illustrate the relationships between different parameters. dr1,
dr2, dA1, dA2 and the interior angle of dA2 (ψ), can be all expressed as functions of ϕ and φ as shown
in Equations (15)–(20). Note that dr is not equal to the differential of r strictly. The differential of r is
defined as ( ∂r

∂ϕ · dϕ+ ∂r
∂φ · dφ ), but here dr only represents the partial differential in the direction of ϕ.

dr1(ϕ,φ) = 2 f1 · [1 +
cosϕ · (1− cosϕ)

sin2 ϕ
] · dϕ (15)

dA1(ϕ,φ) = r1(ϕ,φ) · dφ · dr1(ϕ,φ) (16)

dr2(ϕ,φ) =
∂r2(ϕ,φ)
∂ϕ

· dϕ (17)
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dA2(ϕ,φ) =

√
(
∂r2(ϕ,φ)
∂ϕ

)
2

+ r22(ϕ,φ) · dφ · dr2(ϕ,φ) · sinψ (18)

cos(ψ−φ) =
r2(ϕ,φ) · sinφ · dφ− ∂r2(ϕ,φ)

∂φ · cosφ · dφ√
(
∂r2(ϕ,φ)
∂ϕ )

2
+ r22(ϕ,φ) · dφ

(19)

κ =
dA1

dA2
=

4 f12(1−cosϕ)
sinϕ · [1 + cosϕ·(1−cosϕ)

sin2 ϕ
]√

(
∂r2(ϕ,φ)
∂ϕ )

2
+ r22(ϕ,φ) · ∂r2(ϕ,φ)

∂ϕ · sinψ

(20)

With given φ = φo varying from 0 to 2π, the value of κ calculated by Equation (20) was above 1
initially and then decreased gradually when increasing ϕ. For the majority of cases, κ was over 1 and
the initial SM design corresponded to the optimal solution. But for a few cases of κ < 1, the SM needed
to be further truncated and we focused on a critical point: κ = 1, as ϕ = ϕo (namely r2 = r2o), where the
optimal solution was found.

Numerical solutions were obtained using a Matlab© platform. As shown in Figure 4b, the shadow
area of the SM was meshed into Nφ × Nϕ blocks along ϕ and φ directions. Nφ and Nϕ was set to 1000
here after balancing between computational accuracy and time cost.Energies 2020, 13, x FOR PEER REVIEW  

 

 
Figure 5. 3D sketch of optical projection of TSD combination. 

1 1 2

cos (1 cos )d ( , ) 2 [1 ] d
sin

r f ϕ ϕϕ φ ϕ
ϕ

⋅ −= ⋅ + ⋅  (15) 

1 1 1d ( , ) ( , ) d d ( , )A r rϕ φ ϕ φ φ ϕ φ= ⋅ ⋅  (16) 

2
2

( , )d ( , ) drr ϕ φϕ φ ϕ
ϕ

∂
= ⋅

∂
 (17) 

2 22
2 2 2

( , )d ( , ) ( ) ( , ) d d ( , ) sinrA r rϕ φϕ φ ϕ φ φ ϕ φ ψ
ϕ

∂
= + ⋅ ⋅ ⋅

∂
 (18) 

2
2

2 22
2

( , )( , ) sin d cos d
cos( )

( , )( ) ( , ) d

rr

r r

ϕ φϕ φ φ φ φ φ
φψ φ

ϕ φ ϕ φ φ
ϕ

∂⋅ ⋅ − ⋅ ⋅
∂− =

∂ + ⋅
∂

 (19) 

2
1

2
1

2 2 22 2
2

4 (1 cos ) cos (1 cos )[1 ]
d sin sin
d ( , ) ( , )( ) ( , ) sin

f
A
A r rr

ϕ ϕ ϕ
ϕ ϕκ

ϕ φ ϕ φϕ φ ψ
ϕ ϕ

− ⋅ −⋅ +
= =

∂ ∂+ ⋅ ⋅
∂ ∂

 (20) 

With given ϕ = ϕo varying from 0 to 2π, the value of ߢ calculated by Equation (20) was above 1 
initially and then decreased gradually when increasing φ. For the majority of cases, ߢ was over 1 and 
the initial SM design corresponded to the optimal solution. But for a few cases of 1 > ߢ, the SM needed 
to be further truncated and we focused on a critical point: 1 = ߢ, as φ = φo (namely r2 = r2o), where the 
optimal solution was found. 

Numerical solutions were obtained using a Matlab© platform. As shown in Figure 4b, the 
shadow area of the SM was meshed into Nϕ × Nφ blocks along φ and ϕ directions. Nϕ and Nφ was set 
to 1000 here after balancing between computational accuracy and time cost. 

3. Validation 

The in-house code used in this paper was updated from [38] considering off-axis SM designs. 
Buie’s model was used to describe the sun-shape (circumsolar ratio, CSR = 0.05) [39]. Mirror 
reflectivity was assumed to be 0.935 and the slope error to be 1.3 mrad, according to testing data 
published by the Australian National University [40]. Tracking and specularity errors were neglected 
here. After balancing between accuracy and time requirement, 107-108 beams (2, 3 and 8 × 107 rays for 
D = 4400, 6000, 10,000 mm) were chosen for a Monte-Carlo rays tracing simulation. A flat target with 
100% absorbance was used to intercept the concentrated solar irradiation. Validation of the in-house 
code was conducted against commercial optics software, TracePro®, which is widely used in the area 

Figure 5. 3D sketch of optical projection of TSD combination.

3. Validation

The in-house code used in this paper was updated from [38] considering off-axis SM designs.
Buie’s model was used to describe the sun-shape (circumsolar ratio, CSR = 0.05) [39]. Mirror reflectivity
was assumed to be 0.935 and the slope error to be 1.3 mrad, according to testing data published
by the Australian National University [40]. Tracking and specularity errors were neglected here.
After balancing between accuracy and time requirement, 107–108 beams (2, 3 and 8 × 107 rays for
D = 4400, 6000, 10,000 mm) were chosen for a Monte-Carlo rays tracing simulation. A flat target with
100% absorbance was used to intercept the concentrated solar irradiation. Validation of the in-house
code was conducted against commercial optics software, TracePro®, which is widely used in the area
of optical research and applications [41]. Figure 6 shows that the shapes of the focal spots were very
similar. An excellent agreement of the local radiant density distributions of two spots was also found
in Figure 7. The average relative error was only ~3.73%. Thus, the validity of this in-house code
was proven.
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4. Results and Discussion

Two main cases are of interest in this study. Firstly, the parametric optimization of the TSD is
considered over the whole region. Secondly, main performance parameters including intercepted
radiant flux (Q), concentration ratio (C) and efficiency (η) are discussed in different scales of the TSD
and different off-axis degrees of the SM.

Figure 8a–e illustrates results of optical efficiency (η) vs. independent variable NA2 = sin ϕ2,
with respect to five different ϕ1s when D = 6000 mm, C = 3000. η is defined as the percentage of
intercepted radiant flux on the receiving target over the total incident flux, and C is the ratio of average
intercepted radiation density to the direct normal irradiation (DNI). Solid lines in different colors
represent results regarding the original SM design with respect to different θincs varying from 0 to
0.25 rads, and dotted lines represent results regarding the optimal truncated SM design. There was no
difference between optimal and original cases for ϕ1 < π/2 rad as shown in Figure 8a,b. For ϕ1 ≥ π/2
(Figure 8c–e), differences were found when θinc and NA2 increase to a certain level. The optical
efficiencies of optimal cases (ηopm) were improved compared to the original cases (ηorg) in the range
of arcsin 0.6 ≤ ϕ1 ≤ (π−arcsin 0.6) rads. For different ϕ1s, the peak values of η appeared in the range
of 0.4 ≤ NA2 ≤ 0.6. The maximum η of 73.3% was obtained when ϕ1 = π−arcsin 0.8 rad, NA2 = 0.5,
and θinc = 0. Optimal η in different inclination levels were found at ϕ1 = π/2 rad, NA2 = 0.5 for θinc > 0.1
(Figure 8c) and at ϕ1 = π−arcsin 0.8 rad, NA2 = 0.5 for θinc < 0.1 (Figure 8d). Figure 8f shows the
off-axis length (loff) vs. the field angle of PM (ϕ1) and inclination angle of SM (θinc). loff increased
linearly when increasing ϕ1 or θinc.
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Figure 8. (a–e) Results of optical efficiency vs. the field angle of the PM (=arcsin 0.6, arcsin 0.8,
π/2, π-arcsin 0.8, π-arcsin 0.6 rads) corresponding to original and optimal designs, with C = 3000,
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The concentrating ratio (C), and corresponding optical efficiency (η), are discussed under the
same condition of intercept factor IF = 0.9 with D = 6000 mm, as shown in Figure 9a–c and Figure 9d–f,
respectively. Here IF is defined as the ratio of the rays eventually utilized to those reaching the flat
target. Similar to Figure 8a–e and Figure 9b,c,e,f show that the results of C and η regarding the optimal
design can be above the original design when ϕ1 ≥ π/2 rad and the advantage is also enhanced as θinc

increases. Overall, C increase to a peak value and then dropped down when increasing NA2. For the
original cases, Figure 9a–c shows that the peak values of C = 2645, 3362 and 3376, were obtained at
NA2/θinc = 0.7/0.2 rad, 0.6/0, and 0.6/0, corresponding to three patterns: ϕ1 = arcsin 0.8, π/2, π−arcsin
0.8 rads, respectively. A similar trend was found in the curves of η vs. NA2 (Figure 9d–f) where all
peak values of η were obtained at NA2 = 0.4 and θinc = 0. The maxima for the three patterns were
69.5%, 74.0%, 75.0%. The peak values of C and η both declined when increasing θinc, especially for
ϕ1 ≥ π−arcsin 0.8 rad. By contrast for the optimal cases, they remained at relatively high level as θinc

increased, which were ~3300 and ≥53.9% for ϕ1 = π/2 rad (Figure 9b,e) and 3000–4300 and ≥50.3% for
ϕ1 = π−arcsin 0.8 rad (Figure 9c,f), in the whole range of 0 < θinc < 0.25 rads. The peak values of C
and η were found at NA2 = 0.7 and 0.4, respectively. This is advantageous to achieve a good optical
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performance when a large θinc is required. Parametric settings mainly depended on the requirement
of C and θinc in real conditions. For example, the optimal parameters of ϕ1 and NA2 should be set
to π−arcsin 0.8 rad and 0.7 for a large C (≥3500) and a small θinc (≤0.05 rad). The optimal ϕ1 would
change to π/2 rad if large C and θinc were required at the same time.Energies 2020, 13, x FOR PEER REVIEW  
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Figure 9. Results of concentration ratio (C) (a–c) and optical efficiency (η) (d–f) vs. the field angle of
the primary mirror (PM) (=arcsin 0.8, π/2, π−arcsin 0.8 rads) corresponding to original and optimal
designs, with IF = 0.9, D = 6000 mm.

For different thermochemical applications, different levels of C are required. Figure 10 illustrates
η as function of C when θinc = (a) 0.05, (b) 0.1, (c) 0.15 and (d) 0.2 rads, respectively. According to the
above results, for achieving the largest η the best solutions are found between pattern one: ϕ1 = π/2
rad and pattern two: ϕ1 = π−arcsin 0.8 rad, in the range of 0.4 ≤ NA2 ≤ 0.6. For the same θinc, η drops
gradually down when increasing C, and the pattern of the best solution depends on the range of C.
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For instance, as shown in Figure 10b, the best solutions of θinc = 0.1 were obtained by pattern two at
NA2 = 0.4 when C ≤ 2170 (Region 1), pattern two at NA2 = 0.5 when 2170 < C ≤ 4080 (Region 2) and
pattern one at NA2 = 0.5 when C > 4080 (Region 3), respectively. The whole range of C can, therefore,
be separated into three regions. For different θinc values, the regions are different. For θinc = 0.05 rad
as an example (Figure 10a), the three regions are C ≤ 1900, 1900 < C ≤ 4770, and C > 4770, and the three
best solutions correspond to pattern two at NA2 = 0.4, pattern two at NA2 = 0.5, and pattern one at NA2

= 0.6. As θinc increased to 0.15 rad (Figure 10c), the three best solutions and regions changed to pattern
two at NA2 = 0.4, pattern one at NA2 = 0.5, pattern one at NA2 = 0.6, and C ≤ 1940, 1940 < C ≤ 3690,
C > 3690.
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Figure 10. Results of optimal efficiency (ηopm) vs. variable of average concentration ratio (C) with
respect to optimal patterns: ϕ1 = π−arcsin 0.8 rad and π/2 rad, when 0.4 ≤ NA2 ≤ 0.6. (a–d) show four
cases of different inclination angles (θinc) respective to 0.05, 0.1, 0.15, 0.2 rads. In each figure, (1), (2), (3)
represent the best solutions for region 1, region 2, region 3, respectively.

The scale of the configuration mainly effect spots’ sizes (R) and intercepted radiant fluxes (Q).
For each D, the total amount of irradiation incident is fixed. Thus, maximum Q can be obtained with
the best solutions. Figure 11 shows Q as a function of C for three scales, D = 4400, 6000, 10,000 mms.
Four cases of θinc = 0.05, 0.1, 0.15, 0.2 rads are considered. This can be used to guide design and
scale the up/down processes. For example, to build a full-scale configuration with the conditions
C~2500, Q~55 kW, loff > 120 mm, key parameters such as θinc, D, should be fixed first. According to
the relationship given by Figures 8f and 11, θinc and D are set to 0.1 rad and 10,000 mm, respectively.
Meanwhile, the best solution is found at ϕ1 = π−arcsin 0.8 rad, NA2 = 0.5 (Figure 10b). Finally,
the results were assessed in Figure 11b: C = 2500, Q = 56.8 kW, η = 73.0%.
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on the best solutions in scales of D = 4400, 6000, 10,000 mms when θinc = (a) 0.05, (b) 0.1, (c) 0.15, and
(d) 0.2 rads.

5. Conclusions

A novel concept of a paraboloidal dish combined with an off-axis hyperboloidal reflector was
proposed for two-step thermochemical reactions. It consisted of a fixed primary mirror (PM) and a
rotary secondary mirror (SM). An in-house code based on the Monte Carlo rays tracing method was
developed for simulating the optical system. A mathematical model was developed to find optimal
parameters of the optical configurations for different off-axis conditions. Optimizations of the design
were conducted, and the main results in different conditions were discussed. The key conclusions are
as follows:

(1) A new concept of a two stage dish concentrator is proposed to achieve successive thermochemical
solar fuel production, consisting of a conventional paraboloid dish and a unique off-axis rotary
secondary hyperboloid reflector;

(2) The shape of the SM is optimized by a new mathematical model. Compared to the original design,
the optical performance can further be improved by using an optimal truncated SM in off-axis
conditions. This helps to achieve a good optical performance, when a large inclination angle
is required;

(3) The best solutions corresponding to the largest optical efficiencies fall in the ranges of
π/2 ≤ emphϕ1 ≤ (π − arcsin 0.8) rads, and 0.4 ≤NA2 ≤ 0.6, which may vary with the concentration
ratio and inclination angle. The scale of the configurations had no effect on the results except for
the intercepted radiant flux. This characteristic makes the scale up/down calculation much easier.
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The novelty of the rotatory SM is promising and not limited to the dish system. Using it in
a beam-down system would be worthy for further research. The content of the reactor design not
considered in this paper will be considered in future work.
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