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Abstract: The evolution of electric power systems involves several aspects, dealing with policy and
economics as well as security issues. Moreover, due to the high variability of operating conditions,
evolution scenarios have to be carefully defined. The aim of this paper is to propose a flow-based
procedure for the preliminary security analysis of yearly network evolution scenarios at the real scale
level. This procedure is based on hourly load and generation conditions given by market solutions,
and exploits Power Transfer Distribution Factors and Line Outage Distribution Factors to determine
N and N−1 conditions, properly accounting for possible islanding in the latter case. The analysis of
overloads is carried out by dealing with big data analysis through statistic indicators, based on power
system background, to draw out critical operating conditions and outages. The procedure is applied
to a provisional model of a European high voltage network.

Keywords: transmission network; flow-based procedure; distribution factors; N−1 security analysis;
big data

1. Introduction

The provisional evolution process of power transmission network is driven by different factors.
The studies are based on the definition of generation and demand scenarios [1–3], and of transmission
expansion plans, involving different kinds of decisions and approaches [4,5]. Possible strategies
for generator operation should account for present and future market platforms [6–8]. Moreover,
the impact of operation patterns on the network has to be assessed, usually through steady-state
network analysis accounting for a range of different load/generation outlines [9,10]. Network operation
security should be evaluated, highlighting possible violations of operating ranges (voltage values,
power ratings) with the whole network in service (N condition) as well as in the presence of single
independent outages of network elements (N−1 condition) [11–13].

The handling of a huge number of operating conditions and a remarkable number of outages could
imply a long simulation time to draw exact results. Sensitivity factors can be employed to determine
quick and affordable indications of line flows due to changes in generation/load patterns and in network
configurations [14]. In particular, power transfer distribution factors (PTDFs) represent the sensitivity
of a line flow to a variation of power injection at a couple of nodes, whereas line outage distribution
factors (LODFs) represent the variation of a line flow due to the outage of another line. Methods for the
calculation of PTDF and LODF matrices from network data, even with generalized matrix formulation
in the presence of islanding, are presented in [15,16], whereas a technique is synthesized in [17] to
reduce the computational burden of the matrix formulation, according to topological analysis.
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Sensitivity factors can be exploited for security issues in network planning studies. In [18],
N−1 constraints for a selected contingency list are included in a transmission planning problem
with a relaxation technique, in network models of up to 500 buses. In [19] generation expansion
planning, including a set of N−1 and N−2 contingencies, is applied to networks of different extensions,
from test system to nation-scale. In [20], a co-optimization of a generation schedule and network
topology was carried out, including loss linearization and nodal allocation, applied to stochastic
cases selected by heuristics. Reference network model accounting for contingencies through LODF
is proposed in [21] to optimize transmission line capacities, applied to the IEEE 118-bus test system
and a real network. Mathematical formulations of transmission expansion planning with incremental
contingency constraints by sensitivity factors are proposed in [22,23] for a set of test networks. Moreover,
contingency analysis based on sensitivity factor matrices in a zonal environment is proposed in [24],
with application to a provisional central-western European power network. However, a specific model
for the analysis of N−1 islanding in a long-term horizon, involving varying operating conditions,
with matrix formulation, has not been considered.

In the operation programming stage, an optimal topology problem in day-ahead network operation
scheduling is faced in [25] through uncertainty models of loads and renewables, and applied to an
IEEE 118-bus test system. A security constrained optimal power flow exploiting DC-based sensitivities
with corrective and preventive formulations is adopted in [26]. In [27], a security constrained unit
commitment problem with linear sensitivity factors is proposed, considering filtering techniques for
contingencies, with applications to the daily operating conditions of an IEEE 118-bus and simplified
high-voltage ENTSO-E networks of up to 700 nodes. A single operating condition is analyzed in [28],
where load model influence on contingency analysis with non-linear sensitivity factors is applied to an
IEEE 118-bus test system.

Concerning PTDF and LODF use in the electricity market, in [29], a day-ahead market clearing
model including network security constraints is proposed, first exploiting the DC model, and then with
the AC network model and contingency analysis. The method is applied to a year of operation of a Balkan
power system, with a 591-node high voltage network and 11 market zones. In [30], the determination of
total transmission capacity among zones in the presence of flexible AC transmission systems (FACTS)
is carried out by linear sensitivity factors and applied to simple test networks.

Furthermore, the determination of sensitivity factors in trans-national power systems, characterized
by a remarkable number of components, implies, even in the planning stage, the application of big
data analysis techniques in the power system [31–33], which are of increasing importance for field data
treatment and for numerical simulations. For this aim, synthetic indices are adopted in the literature.
In particular, [34] provides indicators for the identification of network bottlenecks for grid reinforcement
analysis and redispatching, whereas the synthesis of grid vulnerability coefficients based on sensitivity
factors is provided in [35], and the proposition of overload contribution rate is illustrated in [36]. In the
described references, however, the time horizon is lacking.

In this paper, a flow-based procedure for the preliminary security analysis of yearly network
evolution scenarios at a real scale level is proposed. Considering the transmission network planning
viewpoint, the procedure exploits linear PTDFs and LODFs to evaluate N and N−1 conditions according
to electricity market output. An extended matrix formulation, with a specific model to account for
N−1 islanding, provides the opportunity to consider the variability of loading conditions and the effect
of outages over the whole network. The performance indices of the power system are determined by
means of big data techniques, ascribable to data processing and statistics, tailored to electric power
system backgrounds. The procedure is applied to a model of provisional European transmission
network with thousands of nodes and lines, testing the effectiveness of the application to a realistic
high-voltage system. The main contributions of the paper consist of the following parts:

- A proper matrix formulation for the sensitivity factor calculation process is adopted, accounting
for the analysis of operating conditions over a set of time intervals.

- A specific model for the analysis of network islanding in N−1 conditions is carried out.
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- The treatment of big data in realistic transmission network planning is faced by means of
threshold-based sampling and parameter correlation.

- Proper indices and metrics are defined, to individuate in a readable and synthetic way the relation
of N and N−1 overloads with specific factors, and to individuate critical cases and conditions.

The proposed methodology is described in Section 2. The case study and test results are reported
in Section 3. Section 4 concludes the paper.

2. Materials and Methods

2.1. Determination of Distribution Factors

Network sensitivity factors are nonlinear, due to the interdependence of active and reactive power
levels on nodal voltage amplitude and phase angles. However, in high voltage networks with normal
loading, linear DC power flow equations can be exploited involving only phase angles, and sensitivity
factors can be obtained by matrix formulation [14].

In a transmission network composed of Ni nodes and Nb branches, the Nb × 1 vector of active
power flow on branches F in a defined operating condition, represented by time interval t, can be
determined as follows:

F(t) = Bb·B−1
dc ·P(t) = H·P(t) (1)

where P(t) is the vector of Ni − 1 nodal power injections in time interval t, excepting the slack bus.
Moreover, H represents the Nb × (Ni − 1) branch-node matrix of PTDFs, and it is determined from Bdc,
the (Ni − 1) × (Ni − 1) reduced nodal admittance matrix, and from Bb, the Nb × (Ni − 1) branch-node
admittance matrix.

In the case of the outage of the branch k, from node i to node j, with initial flow f (k, t), the post-
outage flow on the branch b f̂ (b, k, t) can be determined through PTDFs [14]:

f̂ (b, k, t) = f (b, t) +
h(b, i)

1− h(k, i)
· f (k, t) = f (b) + l(b, k)· f (k, t) (2)

where f (b, t) is the pre-outage flow in branch b, h(b, i) and h(k, i) are the elements of PTDF matrix for
branches b and k, respectively, at node i, whereas l(b, k) is the LODF giving the flow variation in branch
b after the outage of branch k.

2.2. Analysis of Islanding Conditions

The matrix calculation of sensitivity factors can be applied as far as Bdc is invertible to obtain the
PTDFs from Equation (1), and each PTDF value is not equal to 1, to obtain LODFs from Equation (2).
These conditions are not satisfied in the presence of network islands in N and N−1 conditions,
respectively. In order to deal with the N−1 islanding cases, a specific method is carried out. If electric
islands are present in the N condition (e.g., non-synchronous areas), a specific determination of PTDFs
of the isolated portion of the network is required, by choosing a further slack bus within it.

The set Ωis of branches whose outage causes an islanding is determined by carrying out a network
connection analysis based on a branch-node incidence matrix, and for each branch k in the set Ωis,
the same analysis is exploited to determine the set of nodes in the island Ωk [37,38].

In order to determine the post-outage steady-state flow in branch b, within the non-islanded
part of the network Ωp, a set of methods can be considered, involving the contribution of primary
frequency response [39,40] or individuating the necessary increasing/decreasing generation reserve [41,42].
These methods necessarily involve the knowledge of system operation strategies and of generation plant
characteristics, which are usually not known in the planning stage. Hence, the adopted approach aims at
simulating the outage, i.e., nullifying the power flow on the branch k, by subtracting the contribution of the
net power injection at the nodes of the island Ωk. This implies the exploitation of a slack generator, usually
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giving low contribution in order to have room for compensating losses in AC formulation. Therefore,
the power flow in branch b after branch k outage is determined by means of PTDFs:

f̂ (b, k, t) = f (b, t) −
∑
i∈Ωk

h(b, i)·P(i, t) k ∈ Ωis, b ∈ Ωp (3)

Hence, for post-outage analysis, a modified LODF matrix L̃ and an extended PTDF matrix H̃
(dimensions Nb ×Nb × (Ni − 1)) are defined. Their elements are determined as:

l̃(b, k) =


0 k ∈ Ωis
l(b, k) k < Ωis b , k
−1 k < Ωis b = k

(4)

h̃(b, k, i) =


0 k < Ωis
h(b, i) k ∈ Ωis i ∈ Ωk
0 k ∈ Ωis i < Ωk

(5)

With these assumptions, and defining O as the Nb × 1 vector of ones, the Nb ×Nb matrix F̂ of
post-outage flows in all branches after the disconnection of any other branch in a single operating
condition is formulated as:

F̂(t) = F(t)·O + L̃·diag(F(t)) − H̃·P(t) (6)

where diag(F(t)) has Nb ×Nb dimensions.

2.3. Security Analysis in Varying Operating Conditions

For long-term development planning scopes, a set of different conditions should be studied in
order to evaluate system performances with varying inputs, such as load demand and generator
availability, analyzing yearly horizon instead of a single point in time [24,43]. Even if some studies,
aimed at overloading estimation, define loading samples to reduce the computational burden [44],
in this paper the yearly horizon is divided into Nt consecutive time intervals to take into account
the dependence on the period. Moreover, the perspective of this paper is to study network behavior
under a defined network configuration resulting from an evolution plan which is valid for the full
yearly horizon under consideration; therefore, the sensitivity factor matrices do not vary for each time
interval. The outcomes of preliminary security analysis would be useful to develop specific network
management strategies for operational planning, varying over the time horizon and involving further
technical details, to analyze the risk of failure and to reduce the detected overloads.

From this perspective, let P and F be the (Ni − 1)×Nt matrix of yearly nodal power injections and
the Nb ×Nt matrix of yearly branch flows, respectively. The PTDF matrix can be used in a single stage
to relate the two quantities:

F = H·P (7)

Moreover, by extending Equation (6) in the dimension of time intervals, the post-outage flow
matrix F̂, having Nb ×Nb ×Nt dimensions, is determined as follows:

F̂ = F·Γ + L̃·Φ − H̃·P (8)

where the elements of the Nh ×Nb ×Nh matrix Γ and of the Nb ×Nb ×Nh matrix Φ are defined as
follows (τ is a further time index for the sake of notation):

γ(τ, b, t) =

0 τ , t

1 τ = t
(9)
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ϕ(b, k, t) =

0 b , k

f (b, t) b = k
(10)

From pre- and post-contingency flows, the loading indices λ(b, h) and λ̂(b, k, h) for the b-th branch
in each time interval t, in N and N−1 conditions, respectively, are obtained by the following matrix
formulation:

Λ = diag(M)·|F| (11)

Λ̂ = diag(M)·
∣∣∣F̂∣∣∣ (12)

where the symbol | | stands for the matrix where each element is the absolute value of the corresponding
element of the matrix in the argument, and the Nb × 1 vector M includes the reciprocal of the steady-state
rating of the Nb branches r(b).

Once the Nb × Nh matrix Λ and the Nb × Nb × Nh matrix Λ̂ are evaluated, proper big data
management techniques are employed to analyze network behavior and to point out specific features,
with particular care given to overloads. Therefore, data processing based on threshold-based sampling,
averaging, peaking and parameter correlation are exploited according to power system operation.
In N conditions, the following indices can be determined; a relevant, detailed formulation is provided
in Appendix A for sake of readability:

- Number of intervals with the branch b in overload n j(b);
- Average overload in the branch b over the year λ j(b), according to the formulation given in

Equation (A1) in Appendix A;
- Number of overloads in the time interval t nq(t);
- Average overload in the time interval λq(t), as reported in Equation (A2) in Appendix A.

The global network loading analysis is carried out through two hourly indices uR(t) and u+
R (t)

relating power flows and overloads to line rating r(b), respectively, whose determination is detailed in
Equations (A3) and (A4) of Appendix A.

Moreover, network analysis can aim at highlighting different behaviors according to voltage
levels, since the overload of a branch at a higher nominal voltage, linked to higher transfer capacities,
can imply more concerns with respect to shorter branches at lower levels. Therefore, defining for each
voltage range v the relevant set Ω(v) of branches, the number of overloaded lines a(v) can be obtained,
along with average number of hours in overload n(v) and average overload amount λ(v), defined as
in Equations (A5) and (A6) of Appendix A.

On the other hand, the treatment of Λ̂ in order to highlight different implications of the study is
synthetically depicted in Figure 1.
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The analysis can be focused at the influence of outages, as described by the green arrow in the left
part of Figure 1, calculating the cumulative indices on the green plane:

- Number of N−1 overloads of branch b in time interval t n̂s(b, t).
- Average N−1 overload of branch b in time interval λ̂s(b, t), according to Equation (A7) in

Appendix A.

The number of time intervals where the branch b is interested by at least an N−1 overload n̂ j(b)
can be deduced from n̂s(b, t), whereas the average N−1 overload of branch b is obtained as detailed in
Equation (A8) in Appendix A.

Similarly to N conditions, further indices can be evaluated:

- The number of intervals with at least one N−1 overload on the branch b n̂t(b);
- The average yearly N−1 overload of the branch b λ̂t(b), as reported in Equation (A9) in Appendix A;
- The number of branches with at least one N−1 overload in the time interval t n̂q(t);
- The average N−1 overload in the time interval h λ̂q(t), as reported in Equation (A10) in Appendix A;
- The global N−1 network loading index ûR(t), as reported in Equation (A11) in Appendix A;
- The global N−1 network overloading index û+

R (t), as reported in Equation (A12) in Appendix A.

Moreover, with the aim of knowing the consequences of outages, lines in service are scanned,
as reported in blue in the central part of Figure 1, drawing out the following indices:

- The number of overloads for branch k outage in time interval t n̂c(k, t);
- The average overload in time interval t for branch k outage λ̂c(k, t), based on the expression of

Equation (A13) in Appendix A.

Finally, from the analysis of the matrix over the time intervals, taking values from the orange
plane indicated in the right part of Figure 1, the following indices can be calculated:

- The number of time intervals in which branch b is in overload after branch k outage n̂h(b, k);
- The average N−1 overload of branch b due to the outage of branch λ̂h(b, k), according to the

formulation reported in Equation (A14) in Appendix A.

For the v-th voltage range, once the average number â(v) of intervals with an N−1 overload is
determined, indices representing the number of N−1 overloaded branches n̂(v) and average N−1
overload λ̂(v) can be defined, as detailed in Equations (A15) and (A16) in Appendix A.

The analysis of lines in service and of outage implications can also be carried out for a single
operating condition, with a bi-dimensional analysis, following the blue and green directions depicted
in Figure 1 over a slice of the matrix Λ̂ representing a single time interval t (analogous to the orange
plane in Figure 1). Thus, the following indices can be obtained:

- The number of overloads after branch k outage, n̂c(k, t);
- The average overload due to the outage of branch k, λ̂c(k, t);
- The number of N−1 overloads of branch b, n̂s(b, t);
- The average N−1 overload of branch b, λ̂s(b, t).

In this way, a generalized procedure for network analysis can be carried out by comparing the
obtained indices with standard thresholds. Further case-specific classes and indices can be defined
according to the network peculiarities.

3. Test System and Results

The analysis is carried out on a provisional model of ENTSO-E country perimeter at year 2030,
coupled with a provisional model of the transmission network focused on Italian border regions.
In particular, generation spreading per technology and per country is taken from evolution scenarios,
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whereas network development is determined according to cross border interest projects and internal
projects with a forecast entry in service before 2030 [45].

A synthetic scheme of the test system is reported in Figure 2, involving 6 countries and 11 market
zones, with 16 internal exchanges (light blue) and 24 exchanges with external zones (dark blue).
The network includes 9045 nodes, 8817 lines—detailed in ranges of voltage level in Table 1—and
4306 transformers (a total of 13,123 electric branches), tens of internal HVDC connections, and 9793
generators. The yearly scenario involves hourly analysis in 8760 intervals.
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Table 1. Number of lines by nominal voltage in the test network.

Voltage Range Nominal Voltage (kV) Number of Lines

A 380, 400, 500 2795
B 220, 225, 230 3504
C ≤150 2518

The method is implemented in a MSExcel®-MatLab® environment, exploiting Matpower [46]
for network analysis. The operating condition of the test system is determined according to a nodal
shifting of electricity market results, in order to obtain power production levels for each generator
according to technology and zone, and to obtain load level at each node, finally determining nodal power
injections [47]. In particular, HVDC links are represented by coupled active power injection-withdrawal
at extreme nodes, whereas phase shift transformers (PSTs) are modelled by equivalent power injections
at extreme nodes, depending on shift angle [48].

The whole procedure, running on a 64-bit workstation with 3.50 GHz processor and 16 GB RAM,
and exploiting virtual parallel calculus, takes roughly 50 h from yearly market input data to outputs
of N and N−1 network analysis. To carry out the preliminary security analysis, more than 1.5 × 1012

cases are analyzed (13,123 × 13,123 × 8760). In the following, results refer to line loading, neglecting
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the representation of transformer loading levels for sake of readability; therefore, 681 × 109 cases
(8817 × 8817 × 8760) are handled.

3.1. Yearly Operation—N Conditions

The graphical representation of the Nb ×Nt matrix Λ of yearly loading conditions in the absence of
contingencies, obtained by means of PDTFs, and with 77.2 × 106 cases (8817 lines × 8760 h), is reported
in Figure 3, where overload cases are represented by markers whose different colors represent overload
intensity levels. It can be deduced that the network is interested by slight N overloads affecting a
limited set of lines, although no overload is detected in 68 h only.
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A synthesis of performance indices is reported in Table 2. It can be seen that the total number of
overloads corresponds to the 0.25% of the total combinations line-hour, affecting only 1.5% of lines.
A particular focus should be given to extreme conditions, registered at hours 849–852 for maximum
nq(t) and for lines 2992–2993, pertaining to Voltage Range C, for maximum nt(b). Maximum λq(t) is
observed at hour 5773 for 23 lines.

Table 2. Characterization of yearly network performances in the N condition.

Index Value

Total overload occurrences 192.5 × 103

Total number of lines affected by overload 132
Maximum nq(t) 74
Maximum λq(t) 2.25
Maximum nt(b) 5888

Values of the indices by voltage range are reported in Table 3, where the number of branches in
overload for less than 15% of the year a1(v) and the number of branches with average overload higher
than 1.2 p.u. a2(v) are reported as well. It can be observed that overloaded lines in Range A are 2.2%
of the total number, but they show sporadic overloads, since only 5 of them are in overload for more
than 15% of the year. Lines in Range A have low overloads as well; considering a 1.2 p.u. overload as
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acceptable in planning standards [49,50], only 4 lines are troubling. On the other hand, the 9 focused
lines in Range C are subject to overloads for more than 40% of hours on average, and with a mean
loading value higher than 2. Lines in Range B show an intermediate behavior in each aspect.

Table 3. Characterization of overloaded lines in the N condition by voltage range.

Voltage Range v a(v) n(v) λ(v) a1(v) a2(v)

A 63 605 1.14 58 4
B 60 2017 1.62 26 3
C 9 3702 2.12 0 7

For global network analysis, given that the sum of the ratings of all lines
∑
b

r(b) is equal to 26.2 GW,

trends of indices are reported in Figure 4. It can be noted that uR(t) ranges between 3.1% and 9.6%
(maximum at hour 849), with an average of 5.4%, resulting in a weakly charged network. This conforms
to the assumptions of the method, based on DC power flow equations. On the other hand, u+

R (t)
reaches a maximum of 0.097% at hour 848, although the mean value is 0.0190%, the median value is
0.0133% and the 90-percentile is 0.0491%, highlighting good performances.
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3.2. Yearly Operation–N−1 Conditions

The N−1 analysis is therefore carried out by means of the LODF matrix, and the Nb ×Nb ×Nt

loading matrix Λ̂ is obtained. It is worthwhile to mention that 1583 cases of N−1 islanding are detected,
i.e., 18% of total outages, and they are efficiently dealt with through the developed procedure.

According to the definition of indices in Section 2.3, for the sake of representation, the values of
n̂s(b, h) and λ̂s(b, h) are depicted in Figures 5 and 6, respectively, representing the values assumed
by the indices in 77.2 × 106 cases. It can be derived that at least one N−1 overload in each hour is
registered for 9 lines (rows full of markers in Figures 5 and 6).
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The summary of indices is reported in Table 4. It can be noted that N−1 overloads are seen in 0.8%
of branch-hour combinations (the total number of markers reported in Figures 5 and 6), and affect
3.8% of branches. Moreover, the cases with overload for the maximum number of outages—i.e., when
n̂s(b, t) reaches the maximum value of 8817 (red markers in Figure 5)—are detected in 5.9% of total
overload cases, affecting 12 lines, mostly in Voltage Range B. The maximum level of n̂q(t) is registered
at hour 851, and the maximum level of λ̂t(b) is observed for lines 2992–2993. Regarding overload
intensity, λ̂s(b, h) ≥ 2 is registered for 7.3% of total overloads, affecting 31 lines, whereas the maximum
levels of λ̂ j(b) have analogous features of maximum λ j(b).
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Table 4. Yearly network performances in N−1 condition (lines in service–hours).

Index Value

Total overload occurrences 669 × 103

Total number of lines affected by overload 340
Maximum n̂q(t) 195
Maximum λ̂q(t) 1.57
Maximum λ̂ j(b) 2.41

Number of cases with n̂s(b, t) = 8817 40.0·103

Number of cases with λ̂s(b, t) ≥ 2 48.7 × 103

Regarding time distribution, from Figure 6 it stems that, for lines with identifier 2500–3000 and
6500–7000, in Ranges B and C, higher overloads are registered in December, January and February,
whereas the critical period for lines with identifier 7500–7800, in Range B, is between May and June.

In Table 5, the analysis of the 340 lines in N−1 overload by voltage range is reported. Further to
indices analogous to the ones proposed in the N condition (see Table 3), the average number of N−1
events causing and overload ê1(v) is estimated, whereas ê2(v) represents the number of lines of the vth
voltage range with average n̂s(b, t) lower than 10% of total N−1 events.

Table 5. Characterization of overloaded lines in the N−1 condition.

Voltage Range v â(v) n̂(v) λ̂(v) â1(v) â2(v) ê1(v) ê2(v)

A 174 1400 1.11 94 8 1381 145
B 135 2284 1.38 66 43 3462 90
C 31 3792 1.68 12 18 2500 22

It can be seen that the increase of overloaded lines is most evident in Range A, where more than
6% of lines are affected. However, it is confirmed that higher voltage levels experience less frequent
and less intense overloads, seldom reaching remarkable peaks, as compared to Range C.

For N−1 global network indices, no remarkable difference is seen between uR(t) and ûR(t).
Moreover, û+

R (t) has an average of 0.106%, and a maximum of 0.338% at hour 849, its median is
0.0849%, and its 90-percentile is 0.2165%. These values can be acceptable in N−1 planning, considering
the probability of events [51]. Distributions of u+

R (t) and û+
R (t), with respect to total network demand

(between 107.7 MW at hour 8107 and 272.4 MW at hour 3846), are shown in Figure 7. As expected,
it can be seen that N−1 events make overloads increase, although severe conditions are not linked
to maximum demand (values higher than the 90-percentile are also seen for half of the peak load).
This can be ascribed to the load distribution among zones.Energies 2020, 13, x FOR PEER REVIEW 12 of 19 
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In Table 6, the analysis of indices by outage-hour, n̂c(k, t) and λ̂c(k, t), is synthesized. Overloads are
seen in the majority of outage cases. The maximum number of N−1 overloads n̂c(k, t) is 84, observed at
hour 849 for the outage of line 1036, in Voltage Range A, whereas the maximum λ̂c(k, t) of 2.43 is seen
for the outage of line 2924 at hour 2842, and values of λ̂c(k, t) ≥ 2 are reached in 2.9% of total overloads.

Table 6. Yearly network performances in the N−1 condition (lines in outage–hours).

Index Value

Total overload occurrences 76.6 × 106

Maximum n̂c(k, t) 84
Maximum λ̂c(k, t) 2.43

Number of cases with λ̂c(k, t) ≥ 2 2.25 × 106

Hourly analysis by means of indices n̂h(b, k) and λ̂h(b, k) is carried out on 77.7 × 106 cases
(8817 lines × 8817 lines), and reported in Table 7. It can be deduced that N−1 overloads are observed
in 1.5% of total cases. The 132 lines in overload in the N condition experience N−1 overload for
more than 8600 outages. Moreover, N−1 overload is present in 191 lines for less than 10 outages, in
11 lines for a range of 10 to 100 events and in 6 lines for 100 to 600 outages. As regards the values
of indices, 31 lines in service have n̂h(b, k) > 3000 for almost all outages, whereas other 68 lines are
interested by n̂h(b, k) > 3000 in less than 20 N−1 events. Only in 13 cases, each affecting a single line in
service, is n̂h(b, k) > 8000 is observed. Values of λ̂h(b, k) ≥ 2 are present in 3% of overloads, affecting 4
branches in any N−1 event, and another 16 branches in less than 5 outages, but only in 7 cases is a
λ̂h(b, k) ≥ 3 observed.

Table 7. Yearly network performances in N−1 condition (lines in service–lines in outage).

Index Value

Total overload occurrences 1.165 × 106

Total number of lines affected by overload 340
Number of cases with n̂h(b, k) ≥ 8000 13

Number of cases with λ̂h(b, k) ≥ 2 35.3 × 103

In order to individuate the most troubling conditions, for each couple line in service–line in outage
(i.e., b, k), the hour with the maximum λ+(b, k, t), defined as critical overload, is found. The occurrences
of critical overloads in each hour n̂cr(t) are reported in Figure 8, where the bullet color represents
the number of lines affected by critical overloads in that hour âcr(t). Critical overloads are detected
in 144 h (total number of markers in Figure 8), mostly in winter. The highest number is 124.4 × 103

for hour 848 (10.7% of the total), whereas the maximum number of 48 lines with critical overload is
registered in hour 849. This last hour is the most critical condition for different aspects, deserving a
detailed analysis in the next subsection.
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3.3. Analysis of Specific Loading Condition

The line loading levels in the N condition at hour 849 show that 74 lines are in overload in the N
condition, and 22 of them, in Ranges B and C, have (b, 849) > 2. The global network performance is
described by uR(849) = 9.63% and u+

R (849) = 0.095%.
As regards N−1 analysis, involving 77.7 × 106 cases, synthetic indices are reported in Table 8.

Overloads are observed in 0.8% of combinations, affecting 193 lines. Peak overloads, with λ̂(b, h, 849) ≥ 5,
are detected only in 6 lines due to outages close to lines already overloaded in the N condition. In 28.6%
of the overloads, the amount of N−1 overload is higher than the overload in the N condition, affecting in
particular lines 8432 and 8433, in Voltage Range B. Moreover, global N−1 performances are described
through the index û+R (849) = 0.338%.

Table 8. Network performances in N−1 at hour 849 (lines in service–outages).

Index Value

Total overload occurrences 653.7 × 103

Total number of lines affected by overload 193
Number of cases with λ̂(b, k, 849) ≥ 5 6

Number of cases with λ̂(b, k, 849) ≥ λ(b, 849) 187.3 × 103

In Table 9, average N−1 overloads λ̂s(b, 849) are divided into classes. More than half of overloaded
lines have λ̂s(b) ≤ 1.2, considered acceptable in N−1 network planning as described in the above,
whereas 23 lines, mostly in overload in the N condition, show values higher than 2.

Table 9. Distribution of average N−1 overloads at hour 849.

Class of λ̂s(b,849) Number of Lines

(1.0, 1.2] 106
(1.2, 1.8] 64
(2.0, 2.8] 19
(3.6, 4.2] 4

The number of lines in overload due to the outage of line k, n̂c(k, 849), is detailed in Table 10.
In 91.7% of outages, the number of overloaded lines is the same as in the N condition. The maximum of
84 overloads is observed for the outage of lines 1035 and 1036, in Voltage Range A, arising as the most
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critical lines for N−1 analysis in this hour. Moreover, 9 lines are in overload for any outage, whereas
for 44 lines, only 1 outage induces an overload.

Table 10. Distribution of the number of overloaded lines in N−1 condition at hour 849.

Class of n̂c(k,849) Number of Occurrences

70 ÷ 73 69
74 8082

75 ÷ 79 642
80 ÷ 84 24

The performed investigation allows an early detection of critical lines, which could represent the
target of a specific security analysis during operational planning, along with risk measures depending
on device failure rates and further technical details.

4. Conclusions

A flow-based procedure for the preliminary security analysis of a yearly network evolution scenario
has been proposed. Starting from hourly load and generation by market solution, linear PTDFs and
LODFs have been exploited to assess N and N−1 power flows and loading levels. In particular,
an extended matrix formulation has been carried out to efficiently handle N−1 islanding. Statistic
indices have been defined to inspect network behavior in the big data framework. The procedure has
been tested on a model of provisional European high voltage network involving thousands of nodes
and lines. Simulations have proved the effectiveness of the tool to handle a real-sized network with
a plain formulation, and to point out the security effects of varying loading conditions and events,
suiting multiple post-elaborations. The proposed method has proved to be a powerful and flexible tool
for TSO long-term and secure operation analysis, even in the presence of a remarkable amount of data,
leading to point out critical conditions to be further inspected during system operation, and critical
branches to evaluate grid developments. The tool could be useful for other entities involved in power
systems as well, such as generation companies, traders and regulators, in order to draw, by means of
the defined indicators, useful technical-based signals to evaluate new initiatives or strategies in energy
and service markets. Future work could aim at regulation strategies for reducing overloads, and at
their application to network expansions.
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Nomenclature

Sets, dimensions and indices
i index of node
b index of branch in service
k index of branch in outage
t index of time interval
v index of voltage level
Ni number of nodes
Nb number of branches
Nt number of time intervals
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Ωn(k) set of nodes islanded by and N−1 outage of the k-th branch
Ωp(k) set of branches within the non-islanded part of the network due to N−1 outage of the k-th

branch
Ωis set of branches causing an N−1 islanding
Ωb(v) set of branches within the v-th voltage range
Network features
r(b) active power rating of the b-th branch
Bb branch-node admittance matrix
Bdc reduced nodal admittance matrix
H PTDF matrix
h(b, i) PTDF of i-th nodal injection on the power flow through the b-th branch
L LODF matrix
l(b, k) LODF of k-th branch outage on the power flow through the b-th branch
Network analysis in N conditions
P vector of nodal active power injections
P(i, t) net injection of active power at the i-th node in the t-th time interval
F vector of active power flows on branches
f (b, t) active power flow through the b-th branch in the t-th time interval
Λ vector of branch loading indices
λ(b, t) loading index of the b-th branch in the t-th time interval
λ+(b, t) overloading index of the b-th branch in the t-th time interval
n j(b) number of intervals with the b-th branch in overload
λ j(b) average overload of the b-th branch over time intervals
nq(t) number of overloads detected in the t-th time interval
λq(t) average overload in the t-th time interval for all overloaded branches
uR(t) global network loading index in the t-th time interval
u+R (t) global network overloading index in the t-th time interval
n(v) number of overloaded branches in the v-th voltage range
a(v) average number of time intervals with branch overload in the v-th voltage range
λ(v) average overload of branches in the v-th voltage range over time intervals
Network analysis in N−1 conditions
H̃ extended PTDF matrix
h̃(b, k, i) extended PTDF of i-th nodal injection on the power flow through the b-th branch in the

case of k-th branch outage causing an islanding
L̃ modified LODF matrix
l̃(b, k) modified LODF of k-th branch outage causing a network island on the power flow through

the b-th branch in the non-islanded part of the network
F̂ matrix of N−1 active power flows on branches
f̂ (b, k, t) active power flow through the b-th branch in the t-th time interval after the outage of the

k-th branch
Λ̂ matrix of N−1 branch loading indices
λ̂(b, k, t) loading index of the b-th branch in the t-th time interval after the outage of the k-th branch
λ̂+(b, k, t) overloading index of the b-th branch in the t-th time interval after the outage of the k-th

branch
n̂s(b, t) number of N−1 overloads of b-th branch in the t-th time interval
λ̂s(b, t) average N−1 overload of the b-th branch in the t-th time interval
n̂c(k, t) number of N−1 overloads of b-th branch in the t-th time interval
λ̂c(k, t) average N−1 overload of the b-th branch in the t-th time interval
n̂h(b, k) number of time intervals in which the b-th branch is in N−1 overload due to the outage of

the k-th branch
λ̂h(b, k) average N−1 overload of the b-th branch due to the outage of the k-th branch
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n̂ j(b) number of time intervals with at least one N−1 overload on the b-th branch
λ̂ j(b) average N−1 overload of the b-th branch over time intervals
n̂q(t) number of branches with at least one N−1 overload in the t-th time interval
λ̂q(t) average N−1 overload in the t-th time interval for all overloaded branches
ûR(t) global N−1 network loading index in the t-th time interval
û+R (t) global N−1 network overloading index in the t-th time interval
n̂(v) number of N−1 overloaded branches in the v-th voltage range
â(v) average number of time intervals with N−1 branch overload in the v-th voltage range
λ̂(v) average N−1 overload of branches in the v-th voltage range over time intervals
n̂cr(t) number of occurrences of critical N−1 overloads in the t-th time interval
âcr(t) number of branches affected by critical N−1 overloads in the t-th time interval

Appendix A. Formulation of Network Operation Indices

Indices for operation in N conditions:

λ j(b) =
1

n j(b)
·

Nt∑
t=1

λ+(b, t) (A1)

λq(t) =
1

nq(t)
·

Nt∑
t=1

λ+(b, t) (A2)

uR(t) =
∑

b f (b, t)∑
b r(b)

(A3)

u+R (t) =
∑

b[(λ
+(b, t) − 1)·r(b)]∑

b r(b)
(A4)

n(v) =
1

a(v)

∑
b∈Ω(v)

n j(b) (A5)

λ(v) =

∑
b∈Ω(v)

[
λ j(b)·n j(b)

]∑
b∈Ω(v) n j(b)

(A6)

Indices for operation in N−1 conditions:

λ̂s(b, t) =
1

n̂s(b, t)
·

Nb∑
k=1

λ+(b, k, t) (A7)

λ̂ j(b) =

∑
b∈Ω(v)

[
λ̂s(b, t)·n̂s(b, t)

]∑
b∈Ω(v) n̂s(b, t)

(A8)

λ̂t(b) =
1

n̂t(b)
·

Nt∑
t=1

λ̂s(b, t) (A9)

λ̂q(t) =
1

n̂q(t)
·

Nt∑
t=1

λ̂s(b, t) (A10)

ûR(t) =

∑
b

[∑
k f̂ (b,k,t)

Nb

]
∑

b r(b)
(A11)

û+R (t) =

∑
b

[(
λ̂s(b, t) − 1

)
·r(b)

]∑
b r(b)

(A12)

λ̂c(k, t) =
1

n̂c(k, t)
·

Nb∑
b=1

λ+(b, k, t) (A13)
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λ̂h(b, t) =
1

n̂h(b, k)
·

Nt∑
t=1

λ+(b, k, t) (A14)

n̂(v) =
1

â(v)

∑
b∈Ω(v)

n̂ j(b) (A15)

λ̂(v) =

∑
b∈Ω(v)

[
λ̂t(b)·n̂ j(b)

]∑
b∈Ω(v) n̂ j(b)

(A16)
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