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Abstract: District heating-connected waste incineration plants face a serious operating challenge
during the warmer months of the year when the heating load is quite low. The challenge is the
difficulty of managing the extra municipal solid waste to be disposed of, exposing great pressure and
cost on the plant. Conventionally, the solution is either burning the surplus waste and providing the
extra cooling required for the condenser with a summer chiller and paying the tax of the total heat
generation of the plant, or paying other industries to burn the waste for their specific applications.
Both of these solutions are, however, costly. In this study, to address this challenge the utilization
of the extra available resources of waste incineration plants for district cooling supply is proposed.
Then, the proposed solution is analyzed from the thermodynamic and economic points of view.
The feasibility of the proposal is investigated for a real waste incineration plant in Denmark and its
50 neighboring office/service buildings as the case study. The simulations are done based on real
hourly data of the plant and economic parameters. The results show that for the case study for a
plant with a thermal capacity of 73 MW, a district cooling with a peak load of over 20 MW could
be perfectly supplied. The payback period of the proposed solution, including the cost of piping,
absorption chiller, etc., can be as short as five years.
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1. Introduction

The only proven alternative to landfilling for the disposition of post-recycled waste is combustion
(so-called waste incineration). Denmark, for example, achieved the highest waste to energy rates
(54%) in the EU-27, while its landfilling was only 4% in 2010 [1]. In this way, not only are the negative
environmental impacts of waste management reduced by half, but free thermal energy is produced
for heat and/or power generation [2]. Thus, several different applications could be defined for the
generated energy based on local needs and availabilities. For example, Ghouleh and Shao [3] proposed
and investigated the use of MSW incineration units for having a sustainable cement industry and
producing materials for buildings through the use of generated ash, CO2, etc. coming out of the
incineration process. However, the main application of MSW incineration units is in the production
chain of energy distribution networks [4].

The literature of studies on MSW incineration heat/power/CHP plants is extensive. Some of the
most recent works in this framework are reviewed here. Sadi and Arabkoohsar [5–7] combined a
solar-concentrating CHP plant with an MSW incineration unit to remove the need for any thermal
battery and to obtain stable power and heat outputs, and studied this in various technical, economic and
environmental aspects. Bourtsalas et al. [8] investigated the feasibility of an MSW incineration plant
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for district heating supply in South Korea and concluded that about 1.5 MWh/tonne of MSW net
thermal energy could be provided for their case study. Rudra and Tesfagaber [9] analyzed an MSW
gasifier plant for cogenerating heat and hydrogen based on a variety of gasification designs/agents.
It was shown that significant amounts of heat and hydrogen could be produced (4 m3 water at 100 ◦C,
and approximately 200 kg hydrogen) for any tonnes of MSW at optimal conditions. Münster and
Meibom [10] studied the optimal utilization way of MSW incineration plants for the energy systems
(electricity and heat grids) of Northern European countries. Furtenback [11] assessed the role of MSW
plants in the district energy systems of Sweden. Nami and Arabkoohsar [12,13] investigated the
improvement of power efficiency and decreasing heat output of MSW waste-driven CHP plants by
adding a small organic Rankine cycle, and studied this in different technical and economic aspects.

On the other hand, a general understanding of district cooling systems in design, operation and
management could be obtained from some extensive review articles published in this area by Gang
et al. [14], Werner [15], Inayat and Reza [16], Eveloy and Ayou [17], etc. One of the most important
aspects of district cooling systems is examining where and how cooling is provided. Arabkoohsar and
Andresen [18] designed a CCP system for district cooling supply in Denmark. This system comprises
a large-scale absorption chiller and a trigeneration compressed air-based energy storage system.
Nami et al. [19] investigated the trigeneration of heat, power, and cold from a geothermal-driven plant
for supplying the distributed energy systems of a case study in Turkey. Wang et al. [20] proposed an
innovative configuration of a biomass-driven micro-CCHP plant and analyzed the performance of the
system for different seasonal weather conditions. Soltani et al. [21] presented the techno-economic
assessment of a CCHP unit with a gas engine for off-design conditions and optimized its operation
strategy based on the maximum benefit out of electricity sales. Zare and Takleh [22] proposed a new
CCHP design (via the integration of a Rankine cycle and an ejector transcritical CO2 cycle) driven by
geothermal heat. Wu et al. [23] combined a solar thermal system and an organic Rankine cycle to
trigenerate cold, heat, and power.

Besides the aforementioned cooling generation systems, the combination of an MSW incineration
unit/plant with cold generation systems, such as absorption chillers, for trigeneration has also been
addressed in the literature. For example, Hedberg and Danielssen [24] did a feasibility study on
a waste-driven chiller for cooling supply in a case study in Thailand. Or, as another example,
Nami et al. [25] investigated the performance of waste-driven CCHP systems for supplying heat,
cold and electricity grids based on the Turkish energy system’s regulations, availabilities and needs.
MSW plants are mainly used for the base-load supply of electricity and heat grids; thus, they work at
very high load levels close to their nominal capacity throughout the year. For heat-only and CHP waste
plants, however, this can be challenging because these are mainly designed for major heat grid supply,
while in the summer there is not much heat demand. Thus, the plant cannot operate at a high-load
capacity, and this causes several technical and economic challenges, mainly because of the difficult
management of the massive amount of waste remaining unburnt at the plant. For addressing this
challenge, the current study proposes the utilization of the excess MSW of these plants for providing
the required thermal energy for district cooling supply. As mentioned, this is not the first time
that a waste-fired cooling system has been proposed and studied. However, any of the previous
proposals/studies in this framework come in specific configurations or are designed for particular
purposes. The solution given in this article is inspired by the technical summer-operation challenge of
district heating-connected MSW CHP plants and requires its specific and precise design. Besides this,
the proposed solution is in strong compatibility with the increased cooling need of buildings (even in
the Northern European countries due to climate change) and the abundant availability of MSW CHP
plants in these energy systems. For investigating the feasibility of the proposed solution and its
effectiveness, the proposal is analyzed for a real MSW CHP plant in Denmark and a number of office
buildings nearby. The developed cold production system utilizing the excess MSW of the plant, the
buildings and the pipeline of the district cooling network are simulated for a number of consecutive
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years (2017–2019) with fluctuating operating conditions. Finally, a detailed techno-economic analysis
of the obtained results is presented.

2. Problem Description and Solution

2.1. Problem Description

An MSW incineration plant should be mainly sized by considering the available amount of MSW
for its area of installation. An MSW incineration CHP plant, if allocated for district heating supply,
is so designed that the district heating system provides the required cold for the condenser of the
power plant (and also for the flue gas condensation unit of the plant, in many cases). These plants need
to pay taxes based on their amount of heat generation as they are using MSW, which is not a 100%
clean source. As mentioned before, such plants experience a serious challenge during the low-demand
period of district heating systems, i.e., in the warmer months of the year when there is no demand for
the produced heat from the district heating side.

For addressing this operation management challenge, there are two potential solutions, both of
which impose a great economical cost to the plant. These two solutions and their side effects are:

The power plant needs to have significantly lower operation loads to reduce the required cooling
for its condenser part. However, one should note that the amount of produced MSW that the plant
commits to burn is approximately the same as in the cold months. Thus, there will be a massive amount
of MSW that must be incinerated, but there is no demand for it. In such conditions, the plant needs
to pay other industrial enterprises to burn the excess MSW for their specific applications, which is a
costly method.

The CHP plant burns all the available MSW and employs a particular summer chiller to provide
the extra cooling needed for the condenser. In this case, not only is the excess cooling process costly for
the plant, but it also needs to pay heat generation taxes as well, even though its generated heat is not
sold and is wasted to the ambient. Thus, this solution is also too costly. It is noteworthy that in this case
the flue gas cannot be condensed either and its heat supply potential is simply wasted to the ambient.

Explaining this, one could understand that the challenge is to find a cheaper and wiser method of
MSW disposal so that such CHP plants are not exposed to any extra costs.

2.2. Proposed Solution

The proposed solution of this work is to utilize the excess heat production capacity of MSW
incineration plants for cold production and district cooling supply. This will make for great compatibility
between the available MSW and the demand for energy from the incineration plant, which is extremely
important for the MSW management system. Apart from that, this solution will not only prevent
a huge cost for the disposal of the excess MSW to be burnt, but also make a considerable economic
profit via supplying cooling to the end-users. Figure 1 presents a simplified schematic of an MSW
incineration CHP plant which is connected to both district heating and cooling systems (via an
absorption chiller for the latter). Note that a regular waste incinerator is like a vertical boiler. At the
bottom of the incinerator, the MSW is supplied into the chamber and is combusted/incinerated there.
Then, the released high-temperature combustion products move towards the exhaust and heat the
water pipes in a number of stages along the way to generate superheated steam. The pipings carrying
water/steam are positioned at the upper parts of the incineration chamber.

Considering the temperature of available heat at the condenser of the power plant, a single-effect
LiBr-water absorption chiller is most appropriate to be connected to the MSW incineration plant for
cooling generation. Figure 2 presents the schematic of the absorption chiller, its components and how
it utilizes the recovered heat via the condenser of the MSW CHP plant to generate cold for the district
cooling network. The figure also presents the values of the temperature and the solution concentration
at the most important points of the cycle. A detailed explanation and operation characteristics of
single-effect absorption chillers can be found in Florides et al. [26].
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Figure 2. The schematic of the LiBr-water chiller and its operating characteristics; T: temperature,
X: concentration of the solution (the mixture of absorber-refrigerant).

2.3. Case Study

The waste incinerator CHP plant of Esbjerg city in Denmark, i.e., the Energnist plant as the case
study of this work, has a capacity of 215,000 tons/year and produces heat and electricity to a network
of about 25,500 homes [27]. The network of pipes delivering this heat to the homes has been under
renovation in the last couple of years (and still is). The purpose of the renovation is to reduce the heat
and pressure loss in the system, which in turn reduces the heat production needed to cover the heat
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demand, coupled with the fluctuation of heat demand over the year, resulting in a substantial decrease
in heat demand in the summer months. This decrease in heat demand has a downside since the heat is
created by burning MSW.

The output from the plant at full load is approximately 60 MW heat from the condenser, 13 MW
heat from the flue gas recovery unit and 20 MW electricity. The summer chiller (providing the required
condensation cooling by the power cycle) has a maximum capacity of approximately 17 MW dependent
on the ambient temperature. At night when the temperature is relatively low, the capacity is close
to 20 MW, and in the day with temperatures above 30 ◦C, the capacity drops to around 14 MW.
The way the Energnist plant handles the decrease in heat demand is that they stop their flue gas
condensation, decrease the load on the incinerator and cool the excess heat by an auxiliary summer
chiller. The amount of energy not produced from the condensation part is approximately 13 MW during
the summer. This is calculated from production data supplied from the Energnist plant, which varies
between 10 MW and 17.7 MW, with an average of 13 MW and most values between 12 MW and 14 MW.
This has two drawbacks: they cannot keep up with burning the MSW that is being produced in their
area, and they, therefore, have to pay for the transport and the incineration of excess MSW in another
incinerator with enough capacity, which is 300 km away from the plant’s site. This increases the price
of heat for district heating supply, as they have to pay approximately 1000 DKK (~135 EUR) per tonne
of MSW plus the transportation cost. Figure 3 presents information about the rate of MSW burnt in the
case study plant and the rate of potential heat supply wasted due to the lack of heat demand in the
district heating system in this plant during an entire year [27].
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for a year.

Having this information, one could size the required absorption chiller for the utilization of all
the excess MSW of the CHP plant. A maximum of about 30 MW excess heat shows the potential
for a reasonably extensive district cooling network. However, in this work, the aim is to develop a
smaller district cooling network by taking advantage of a portion of the available surplus heat to
show the feasibility of the proposal. Once the viability of the proposed solution is approved, a more
extensive district cooling system may be constructed in practice by utilizing all the available heat of
the power plant. The case study district cooling network is assumed to be a neighboring area with
several office buildings. The office buildings are located at the Esbjerg harbor, where the district
heating accumulation tank is also placed. The setup for this case study is represented in Figure 4.
This case study considers 50 office buildings to be cooled down by the district cooling system, each with
400 people in them where 350 of them have a personal computer, and there is one server room per
office building [28].

This district cooling system consists of two streets in opposite directions, and each street contains
25 office buildings. It’s assumed that the distance of the transmission line is 657 m and that there is an
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80 m distribution line to the first building. Between the distribution lines to each office building there
is 110 m distance, and each office building has 1800 m2 area per floor and has seven floors in total with
a wall height of 3.5 m each. The buildings are based on a rectangular field of 60 m × 30 m. Figure 5
shows the simplified schematic of the district cooling network.
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The calculation of the cooling demand for the office buildings in this case study is based on the
temperature gain/loss factors of the buildings’ materials and interior. The values for the temperature
gain/loss through the building materials for Denmark are stated in the Danish building regulations [29].
The heat loss/gain factors, according to the Danish building regulations [29], are 0.3 W/m2K for the
walls (which consists of 30% of the office buildings total shell surface), 0.2 W/m2K for the roof and floor
(20% of the shell surface each), and 1.8 W/m2K for windows (30% of the shell surface). The percentage of
the shell surface is based on regular office buildings, which tend to have more windows than residential
houses. This comes to an overall heat loss/gain factor of 0.71 W/m2K. The Danish indoor comfort
temperature is 22 ◦C, according to the Danish Working Environment Service [30]. The regulations for
the ventilation are stated in reference [29], which states a minimum of 5.0 L/s per adult and 0.35 L/s per
square meter of the floor area for office buildings.

Having this information and calculating the rate of the demand of the buildings based on
the local ambient temperature and solar energy availability in the case study throughout a year,
one could indicate the chiller operation details for the district cooling network, including the rate of
heating/cooling dissipated/generated from/by the chiller, operating temperature levels, etc. Figure 6
presents the ambient temperature of Esbjerg and the available solar irradiation over an entire year,
and Figure 7 presents a black box of the chiller operation temperature/energy ranges.Energies 2020, 13, x FOR PEER REVIEW 8 of 21 
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Figure 6. Hourly averaged ambient temperature and solar irradiation in Esbjerg throughout 2018.

According to Figure 7, the supply and return temperatures of district cooling are 8 ◦C and 15 ◦C,
respectively, and the supply and return lines of the heat source of the chiller are set at 95 ◦C and 72
◦C [31]. The method of sizing of the chiller for a nominal cold production rate of 6.7 MW will be
discussed in the results section.
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3. Techno-Economic Model

3.1. Thermodynamic Model

To model the district cooling, cooling demand, pipe sizing, heat loss and pressure loss rates have
to be taken into consideration.

The cooling demand of buildings is dependent on various parameters, such as the building
materials and the gain/loss factors that were presented earlier, together with the indoor and outdoor
ambient temperatures, the temperature gain through the people in the office buildings and their
computers, the dimensions of the office buildings, etc. The demand for cooling, according to
Reference [32], can be calculated as:

.
Qc =

.
Qlost︷                                                ︸︸                                                ︷

ρa
.

Vvencp,a(Tin − Tout) + UAl,b(Tout − Tin) +

.
Qgained︷                              ︸︸                              ︷

M∑
n=1

(
AnIT(τα)avg

)
+ Qinterior −

.
Qstored︷                ︸︸                ︷

ρbmVbmcp,bm
dTbm

dt
(1)

in which r is the density, V is the volume, and T is the temperature. The subscriptions a, in, out,
b and bm refer to the air within the building, the indoor condition, the outdoor/ambient condition,
the building and the building material, respectively. In addition, all the different independent variables
each represent an energy flow either flowing into the building or flowing out from the building.

.
Qlost is

the sum of two total rates of cooling losses of the building due to the ventilation and losses through the
building material because of the differences in ambient and indoor temperatures. Here,

.
Vven is the

volume flow rate of air exchanged for ventilation, cp,a is the specific heat capacity for air and U is the
total heat loss/gain coefficient through the walls, windows, etc., and Al,b is the total shell surface area.
.

Qstored represents the stored rate of energy in the building stuck (this is zero when the steady-state
conditions are met).

.
Qgained represents the heat gain due to solar irradiation, where An is the area of

each window, IT is the solar irradiation through the windows and (τα)avg is the average transmission
absorption coefficient of the windows and the interior elements of the office building when exposed to
solar irradiation.
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The internal gain because of the office workers’ metabolism, the heat from computers, etc. can be
found using:

.
Qinterior =

Electrical Devices︷   ︸︸   ︷
N∑

j=1

.
Qel, j +

Metabolism Heat︷            ︸︸            ︷
M

(
MR×Aavg

)
(2)

In this equation,
.

Qel is the rate of heat produced by each of the electrical devices in the buildings
(N devices in total). Here, the majority of electrical heat comes from computers; 350 computers in total
were considered for the buildings, each of which generates 200 W as a normal desktop computer. m is
the number of people in one office building, which is 400 for the case study. MR is the metabolic rate,
and according to the ANSI ASHRAE standard for 2017 [33], it is about 71.66 W/m2. Aavg is the average
surface area of a male, which according to Reference [34] is estimated to be about 1.7139 m2.

Regarding the pipeline, some assumptions are made for calculating the pressure and thermal
loss rates. It is assumed that minor losses (e.g., reductions, valves, etc.) account for 20% of major
losses made by friction in the pipe [35]. According to DIN Forsyning [36], the maximum pressure in
the district energy systems of this area should be 10 bar, and there must be an available differential
pressure between 0.2 and 4 bar at the consumer. For calculating the heat gain/loss to the surroundings,
when underground it is assumed that the surrounding soil is at ambient temperature since its close to
the surface. Heat losses can be calculated by:

.
Qloss =

J∑
j=1


 1

hπdinx j
+

ln
(

rout
rin

)
j

2kpπx j
+

ln
( rins,out

rins.in

)
j

2kinsπx j


−1

(Tin − Ts) j

 ; (3)

where: h =
0.023Re0.8

D Pr0.4k
din

, in which j refers to different pipe sections (with J numbers in total). In addition,
r is radius and the subscripts in, out, and ins represent the terms internal, external and insulation,
respectively. k is the thermal conductivity factor, h is the convection factor, and the subscripts p is for
the pipe material [37]:

Pressure losses are calculated by [35]:

Ploss =

120%


∑J

j=1 0.316Re−0.25
D x jρu2 i f ReD ≤ 20000∑J

j=1 0.184Re−0.2
D x jρu j

2 i f ReD > 20000

2din
(4)

Besides, in the supply line, an added pressure loss rate due to the height difference from the inlet
of the pipe to where the pipe is divided into the two branches is considered. The approximated height
difference is 12.5 m according to the Board of Data Supply and Efficiency Improvement [38].

Having these, one can then calculate the required booster pump energy consumption for pressure
loss compensation through the network of pipes [39]:

.
Wpump =

∑J
j=1

.
m jvPloss, j

ηpump
(5)

ηpump is the pump energy conversion efficiency here. The internal diameter of the pipes in each
section is calculated based on the maximum allowed velocity of the pipe (2 m/s [40]) and the maximum
mass flow rate of the medium through the pipe in the given section over the year. Thus:

d j =

√√√
4max

( .
mc

)
j

ρumaxπ
(6)
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As mentioned, a detailed model of absorption chillers could be found in [26]. Here, the general
thermodynamic correlations of the main components of the chiller are presented. According to the
mass balance on the evaporator,

.
m9 =

.
m10, the energy balance is:

.
Qe =

.
m10h10 −

.
m9h9 =

.
mdcwcw(Tdcs − Tdcr) (7)

where
.

mdcw is the flow rate of district cooling water to be cooled through the chiller, cw is the thermal
capacity of the pressurized water, Tdcs is the supply temperature of district cooling water (8 ◦C) and
Tdcr is its return temperature (15 ◦C).

Based on the mass balance on the absorber,
.

m1 =
.

m10 +
.

m6 and
.

m1x1 =
.

m6x6, the energy balance
could be written as: .

Qa =
.

m10h10 +
.

m6h6 −
.

m1h1 (8)

Having
.

m8 =
.

m7, the energy balance of the condenser could be written as:

.
Qc =

.
m7(h7 − h8) (9)

Finally, the energy balance on the generator of the chiller is as (where,
.

m3 =
.

m4 +
.

m7):

.
Qg =

.
m4h4 +

.
m7h7 −

.
m3h3 (10)

Naturally,
.

Qg is the amount of heat recovered from the CHP plant, supplied by excess MSW.
To obtain the value of this parameter, the mode of the MSW CHP plant should be written. The following
correlations present the energy models of the main components of the plant. For the incinerator,
which is the boiler of the steam cycle, one has:

.
Qinc = ηinc

.
mmswLHVmsw =

.
ms

[
(hout − hin)main + (hout − hin)regen

]
(11)

In this equation, ηinc is the incinerator energy efficiency (0.85), LHV is the lower heating value of
the MSW and

.
ms and

.
ms are the mass flow rates of required MSW and steam (or pressurized water

as the working fluid of the Rankine cycle). The subscripts “main” and “regen” refer to the main and
regeneration lines of steam passing through the incinerator.

For the steam turbine, one has [41]:

.
Wtur =

.
ms

[
(hin − hout)hpt + (hin − hout)lpt

]
(12)

where “hpt” and “lpt” are the high-pressure and low-pressure turbines of the cycle.
For the condenser, one has: .

Qcond =
.

ms h f g
]
Tsat

(13)

in which hfg is the latent heat of steam from vapor to liquid at the phase change temperature in the
condenser (Tsat).

The heat recoverable from the flue gas, in ordinary operation conditions (not during the summertime),
is calculated by:

.
Q f g =

.
m f g

(
h f g,1 − h f g,2

)
+

.
mw h f g

]
Tsat, f g

(14)

The first term on the right side of the equation presents the rate of heat released from the flue gas,
decreasing its temperature from what it is at the incinerator outlet to the due point of its water content,
and h f g

]
Tsat, f g

is the amount of energy released due to flue gas condensation.
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3.2. Economic Model

The economic assessment method of this study is based on the net present value (NPV) approach.
This method is one of the most reliable economic analysis approaches for financial investments in
projects, including the energy industry. The NPV method considers the critical parameters on the
economy of the project, including the local interest rate, the initial investment, the annual running
expenses, the annual benefits of the project, the useful lifetime of the project, etc. The NPV of the
proposed cold supply project of this work is calculated by [42]:

NPV =
25∑

t=0

(Total Annual Bene f its− Total Annual Costs)t

(1 + Interest Rate)t (15)

In this equation, t is the number of operating years of the system and starts from 0 because the
year of investment for establishing the system and its fundamentals is all costs, and there is no benefit
out of the system. From the first year (t = 1), the system starts generating profits, and of course there
are still operating and maintenance costs, too. This will continue for 25 years (t = 25) as the useful
lifetime of the system, though the system components can still be working and generating a profit for a
longer period. Table 1 gives information about the economic parameters considered for calculating the
NPV of the project.

Table 1. Input parameters for the economic assessment algorithm.

Parameter Value and Unit

Chiller Capital Exenditure (CAPEX) 430 USD/TR [43]

Storage Tank CAPEX 290 USD/m3 [44]

Average Pipeline CAPEX (including installation costs and possible discounts) 160 USD/m * [45]

Interest rate 10%

Annual maintenance costs 3% of the total CAPEX

Cold production price 30.5 USD/MWh * [18]

Electricity production price 32.7 USD/MWh * [18]

* Converted from EUR to USD.

Note that in this project:

• The waste heat of the plant is utilized for running the chiller; thus, the costs associated with the
heat used for driving the cold system is zero. Instead, the taxes to be paid for extra heat generation
are taken into account based on different taxation scenarios. The lowest heat generation tax is said
to be 75 DKK/MWh, but it can also be higher [27]. These all have been taken into account in the
economic calculations.

• Electricity consumption in the system (for running the pumps, etc.) is supplied by the plant itself;
therefore, the electricity production price is considered for calculating the running expenses of
the system.

• The cooling supplied to the office buildings is the main source of profit for the system.
• Preventing the extra costs for waste disposal and its transportation due to the added cold supply

unit are considered as the secondary source of profit for the system.

4. Results and Discussions

In this section, the results of the simulations on the proposed system in the case study are presented
and discussed.

As mentioned, one of the critical parameters for calculating the cooling demand of the buildings
is the effect of solar irradiation. Figure 8 shows the impact of solar irradiation level, apart from the
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ambient temperature effects, on the increased cooling demand of the buildings in an hourly averaged
format. As seen, July has the highest weight factor of solar irradiation effect on the increased cooling
demand of the buildings with a mean peak value of 2 ◦C at noon. The lowest values are of course related
to winter months, which are out of consideration due to lack of demand for cooling in these months.
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Figure 9 shows the rate of cold demand of one of the office buildings in the case study during
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days of the year. The demand appears in the middle of April at a low rate and continues until early
October, ending at a very low rate again.Energies 2020, 13, x FOR PEER REVIEW 13 of 21 

 
Figure 9. The rate of instantaneous cold demand of each of the buildings throughout the year. 

Having 50 similar buildings, one finds out that the whole system capacity (including all the 
buildings and the rate of cold losses while transporting) should be about 14.8 MW. Thus, the 
absorption chiller is sized for this capacity. However, this method of sizing will result in oversizing 
the chiller with a high CAPEX, which is only working at high-load levels during a short period of the 
year. This sizing is accomplished based on the data of 2018. To prove the consequences of this method 
of sizing, Table 2 presents information about the details of the absorption chiller operation during 
2017, 2018 and 2019. According to the table, the chiller will be operating at high loads during a very 
limited number of hours during the year. Thus, the sizing strategy should be changed. The alternative 
solution is providing the system with a cold storage unit in which surplus production of the chiller 
during the off-peak periods is stored for peak shaving. In this case, the absorption chiller capacity 
could be reduced to 6.7 MW, which is coupled with a storage tank with 8623 m3 (70.4 MWh) capacity. 
Note that for sizing the chiller, the largest total daily cooling demand of the year was calculated and 
the chiller was sized to the average hourly capacity of the chiller required for the given day. 

Table 2. The absorption chiller operating statistics when sizing based on the maximum annual cold 
demand of the case study. 

Parameter 2017 2018 2019 
Number of in-service hours 1470 1494 1505 

Average capacity (%) 23.2% 32.9% 26.4% 
Maximum used capacity (%) 61.0% 100% 94.4% 

Times with a higher operating capacity than 50% 2.9% 23% 11% 
Times with a higher operating capacity than 70% 0% 5% 4% 

Having a storage tank for peak shaving could be significantly helpful for increasing the annual 
average cooling duty of the chiller and the number of operating hours at the nominal load, which is 
very important for getting better technical and economic outcomes. Figure 10 illustrates the operating 
load of the chiller during the year 2018 when coupled with the storage tank. As seen, the operating 
load of the system would increase significantly, and the chiller would be working at its full load 
capacity most of the time. Besides the economic benefits from the need for smaller capital investment 
for a smaller chiller, working at the nominal load levels is very important for energy systems because 
partial load operation strongly affects their performance and efficiency negatively. 

0

50

100

150

200

250

300

C
oo

lin
g 

D
em

an
d 

(k
W

)

Time (hours of the year)

Figure 9. The rate of instantaneous cold demand of each of the buildings throughout the year.

Having 50 similar buildings, one finds out that the whole system capacity (including all the
buildings and the rate of cold losses while transporting) should be about 14.8 MW. Thus, the absorption
chiller is sized for this capacity. However, this method of sizing will result in oversizing the chiller with
a high CAPEX, which is only working at high-load levels during a short period of the year. This sizing
is accomplished based on the data of 2018. To prove the consequences of this method of sizing, Table 2
presents information about the details of the absorption chiller operation during 2017, 2018 and 2019.
According to the table, the chiller will be operating at high loads during a very limited number of hours
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during the year. Thus, the sizing strategy should be changed. The alternative solution is providing
the system with a cold storage unit in which surplus production of the chiller during the off-peak
periods is stored for peak shaving. In this case, the absorption chiller capacity could be reduced to
6.7 MW, which is coupled with a storage tank with 8623 m3 (70.4 MWh) capacity. Note that for sizing
the chiller, the largest total daily cooling demand of the year was calculated and the chiller was sized
to the average hourly capacity of the chiller required for the given day.

Table 2. The absorption chiller operating statistics when sizing based on the maximum annual cold
demand of the case study.

Parameter 2017 2018 2019

Number of in-service hours 1470 1494 1505

Average capacity (%) 23.2% 32.9% 26.4%

Maximum used capacity (%) 61.0% 100% 94.4%

Times with a higher operating capacity than 50% 2.9% 23% 11%

Times with a higher operating capacity than 70% 0% 5% 4%

Having a storage tank for peak shaving could be significantly helpful for increasing the annual
average cooling duty of the chiller and the number of operating hours at the nominal load, which is
very important for getting better technical and economic outcomes. Figure 10 illustrates the operating
load of the chiller during the year 2018 when coupled with the storage tank. As seen, the operating load
of the system would increase significantly, and the chiller would be working at its full load capacity
most of the time. Besides the economic benefits from the need for smaller capital investment for a
smaller chiller, working at the nominal load levels is very important for energy systems because partial
load operation strongly affects their performance and efficiency negatively.Energies 2020, 13, x FOR PEER REVIEW 14 of 21 
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Figure 10. The operating rate of the chiller after adding a storage tank during 2018 (1 means 100%).

Figure 11 presents information about the variation of the charging status of the storage tank
during the year. As seen, the storage tank can simply be charged to 100% capacity at the beginning
of the warm season when the cold demand is still low. Then, the storage tank will come into active
interaction with the chiller for the cold supply of the office buildings. As seen, in the middle of the
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hot season the energy level of the storage drops to almost zero. This means that the storage tank
has to be sized properly. This would prevent selecting a smaller storage unit leading to the district
cooling system failing to reach a perfect supply of the network’s demand, or a bigger one leading to
unnecessary capital investment.
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Figure 11. Charging level of the storage tank during the warm months of the year.

Table 3 presents the updated statistics of the data reported in Table 2 for the cooling system
operating characteristics when using a cold storage tank and based on the new sizing strategy.
According to the table, by using this method of sizing and adding the storage tank, not only could a big
savings be achieved in the capital cost of the system, but there would also be a significant improvement
in the utilization factor of the system capacity over the different years.

Table 3. The cooling system operating statistics when sized based on the new sizing strategy and
adding a cold storage unit.

Parameters
2017 2018 2019

Chiller Storage Tank Chiller Storage Tank Chiller Storage Tank

Number of in-service hours 1470 146 1494 486 1505 388

Average capacity used (%) 53.5% 95.8% 66.2% 83.7% 56.0% 83.3%

Maximum used capacity (%) 100% 18.7% 100% 96.6% 100% 80.6%

Times with a higher operating
capacity than 60% 43.4% 0% 59.7% 4.7% 46.4% 5.1%

Table 4 presents information about the sizing of the pipeline of the case study district cooling
system in different pipe sections, as well as the maximum mass flow rate and maximum pressure loss
rate in each part of the pipeline.

Figure 12 presents the rates of electricity consumption in the system for the booster pumps
allocated for pressure drop compensation and the pumps in the absorption cooler. Expectedly, the level
of electricity consumption is not comparable with the level of cold supply as pumps consume so little
power to operate. The peak electricity consumption in the system is about 340 kW, which takes place
somewhere in the middle of August. The average electricity consumption of the system during the
cooling season is just about 60 kW.

Figure 13 presents the rate of thermal energy losses from the pipeline during the year.
Naturally, the data is only relevant as long as it is above zero, which means during the cooling
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seasons only. The negative values are for the months that the surrounding temperature of the pipes is
below the district cooling medium in the supply and return pipes. Thus, during these times district
heating systems are mainly operating at high-load levels. According to the figure, the rate of thermal
losses from the system is also very low due to the very efficient pipes manufactured for district energy
systems. The thermal losses will be up to 28 kW in the entire pipeline at the hottest time of the year.
Previous experiences and observations of this study show that the rate of thermal losses are not greatly
affected by the demand of the network, rather a function of the ambient temperature variations.

Table 4. The calculated dimensions of the pipeline of the district cooling system.

Pipeline Section Length
(m)

Diameter
(m)

Pressure Loss in
Supply/Return Lines (Pa/m)

Max Mass Flow
Rate (kg/s)

Transportation Line 657 0.508 276/−98 502.1

Distribution-Section 1 300 0.406 75/73 251.1

Distribution-Section 2 330 0.356 88/86 190.8

Distribution-Section 3 330 0.324 69/67 130.5

Distribution-Section 4 330 0.273 51/49 70.3

Distribution-Section 5 50 0.114 111/108 10

Total 1997 m 373.3 kPa
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Figure 12. Rate of electricity consumption of the system over the year.

Table 5 summarizes the annual energy performance statistics of the system for an entire year
of operation. As can be seen, although the total excess heat (due to 5026 tonnes of excess MSW) of
the case study is about 17 GWh over the cooling season, the proposed district cooling system with
50 office buildings and over 20,000 working people takes advantage of only 10.4 GWh of that for
cooling purposes. This is a strong indication of the high potential of such plants for the energy supply
of large-scale district cooling networks. The proposed solution for such a small case study not only
results in the efficient, purposive disposal of over 5000 tonnes of MSW but also leads to the supply of
a total annual of about 7.3 GWh of cooling to end-users, as well as approximately 2.9 GWh of extra
electricity production. All of these three parameters are actually direct economic benefits of the plant.
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Table 5. The total annual statistics of the system key parameters.

Parameter Value and Unit

Total excess heat of the CHP plant 16,689 MWh

Total excess MSW of the CHP plant 5026 tonne *

Total recovered heat by the chiller 10,401 MWh

Total cooling supplied 7281 MWh

Total extra electricity production as a result of the
proposed system utilization 2871 MWh

Total thermal losses 67.7 MWh

Total electricity consumption 107.4 MWh

* Higher heating value 12500 MJ/kg [25].

Having the information presented by the above table, one could accomplish the economic analysis
of the proposed solution in the waste-driven CHP plant. Figure 14 shows the trend of the variation of
the NPV of the project over 25 years of the useful lifetime of the system for three cases. These three
cases are for heat production taxation rates of 75 DKK/MWh, 150 DKK/MWh and 225 DKK/MWh
as there is not a unique value for such taxations and also not a specific method for calculating that.
According to the figure, the payback period of the proposed solution (when the NPV turns positive
for the first time) is as short as five years, which is strongly impressive from an industrial investment
point of view. In addition, the NPV of the system for this taxation fee case, at the end of the 25th
operating year, is 4.7 million USD, which is almost 1.3 times larger than its initial investment, which is
again strongly encouraging. For the taxation fees of 150 DKK/MWh and 225 DKK/MWh, the payback
periods will be a bit longer but still at very reasonable levels of 6.3 and 8.2 years.

Naturally, there are some uncertainties in the considered costs for the economic analyses of the
project. Indeed, although the numbers come from authentic references, many unexpected parameters
can affect the total cost or benefits of the system. Therefore, for accomplishing a sensitivity analysis
on the economic outcomes of the proposed solution, Figure 15 shows the NPV of the project at the
end of the 25th year of its operation (as its useful life span) for various CAPEX rates, OPEX rates
(including excess heat production tax) and interest rates. The considered range for these rates is
from 50% to 150% of the values considered in the NPV analysis of Figure 14 (i.e., those reported in
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Table 1). According to the table, the highest sensitivity of the economic outcomes is to the interest rate,
where consideration of an interest rate half of that used for primary calculations (10%, half of which
will be 5%) will result in a huge NPV of $9.2 million at the end of the system’s lifetime. Clearly, a higher
interest rate will result in lower NPV so that an interest rate of 15% would drop the NPV to $2.3 million.
It should be noted that the current inflation rate in Denmark is just about 0.5%, and the interest rate of
10% is a very conservative rate usually taken for long-term investments with strict considerations in
the industry. This clearly shows how the proposed solution is economically feasible. The variation of
CAPEX of the system (including the cost of pipeline, chiller, the storage tanks, etc.) has the second most
significant impact on the feasibility of the system among the considered parameters, though this impact
is much milder than that of the interest rate effects. The changes in the OPEX costs (including the heat
production taxes) have the least effect on the NPV value among all parameters.
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5. Conclusions

In this study, an innovative yet effective solution was proposed for a techno-economic challenge of
MSW-driven CHP plants that are connected to district heating systems. These plants are not exposed
to enough heating loads and thus not only waste a massive amount of heating potential during the
summer but also have the challenge of managing their excess MSW. Inspired by the increasing cold
demand of the Northern European countries (where so many of such CHP plants are operating) over
the last years due to climate change, this study proposed the utilization of the excess heat/MSW of such
plants for driving a large-scale absorption machine to supply the energy demand of district cooling
systems. To do the analysis based on real figures, an MSW CHP plant in Western Denmark and a
number of office buildings in the neighborhood of the power plant were considered as the case study
of this work. Considering the hourly averaged solar irradiation, ambient temperature, etc. of the
case study area as well as real numbers of excess heat and excess MSW during the year, the proposed
solution was modeled for three consecutive years. The modeling was aimed at presenting the details of
the thermodynamic performance of the system and how things could be synchronized for the ultimate
goal of the project, and also to do an economic analysis of the proposed solution to check its feasibility
for real-life implementation.

It was shown that a combination of an absorption chiller with a large cold storage tank is the best
arrangement for the system techno-economically. This combined energy supply system integrated
with the district cooling pipeline can prevent approximately 10.4 GWh of thermal energy of the CHP
plant being wasted, 5000 tonnes of MSW being effectively incinerated (which was a serious challenge
to manage in the conventional system) and 7300 MWh of cooling being supplied to the end-users.
This solution not only solves the challenge of the techno-economic power plant and makes a substantial
economic profit, but also solves the cooling problem of the office buildings which has been a seriously
unmet need over the last years. The economic analysis shows that the payback period of the system is
as short as five years. The NPV of the system at the end of the 25th year of operation of the system was
found to be 4.7 million USD. This short period of retuning the initial investment and the considerable
NPV of the system at the end of its useful lifetime (based on a conservative number) can be, indeed,
a strong incentive for implementing this solution in any waste-driven CHP plant with the same
techno-economic challenge during the warm months of the year.
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