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Abstract: Adopting a new paradigm for social development implies a transition to a circular economy.
The above requires the reduction of greenhouse gas emissions, the utilization of wastes, and the use of
renewable energy sources. The most promising way is the use of methanol for industrial and transport
applications. China is experiencing a boom in methanol production and its use in almost every
sector of the economy. The purpose of this study was to reveal economic benefits, carbon dioxide
emissions and the potential production of green methanol. Fuel price history, energy costs and fuel
economy were used for economic assessment. Life cycle analysis to evaluate carbon dioxide emissions
was applied. It was revealed that only the use of green methanol as a fuel results in decreases in
well-to-wheel CO2 emissions compared to fossil fuels. The potential methanol production by using
recycled waste and wind power was determined. Its annual production can range from 6.83 to
32.43 million tones. On this basis, a gradual transition to a circular and methanol economy is possible.
Policymakers are recommended to support green methanol production in China. It can result in
boosting the application of vehicles fueled by methanol and can control CO2 emissions.

Keywords: methanol; biomethanol; vehicle; carbon dioxide; efficiency

1. Introduction

Road transport consumes around 33% of total energy consumption by transport [1]. Petroleum
fuels are the primary fuels of road transportation. Their burning results in harmful emissions including
carbon dioxide emissions. According to the International Energy Agency (IEA) carbon dioxide
emissions are increasing. In 2018, their value exceeded 33 Gt [2]. To mitigate climate change, the United
Nations Intergovernmental Panel on Climate Change recommended reduction of greenhouse gas
emissions by 50–85% by 2050 [3]. The decrease of harmful emissions can be reached by using alternative
vehicle fuels, including methanol [4,5].

Methanol could bring economic and ecological benefits to China. This fuel is environmentally
friendly [6]. Moreover, its application results in reduced fuel costs [7]. China imports around 65% oil
and 31% natural gas. The use of methanol-based fuel can decrease the import of the above energy
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resources [8]. Since 2000, the Chinese government has improved national energy independence and
cut harmful emissions. Therefore, the increase of the methanol vehicle fleet ensures the sustainable
economic growth of the country.

Methanol is mainly converted into the following fuels: neat methanol—M100; methanol and
petrol blend (M5, M10, M15, M30, M50 and M85); methanol based petrol; methyl tertiary butyl ether
(MTBE); dimethyl ether (DME); and biodiesel. Methanol can be converted to different hydrocarbons,
including olefins. Olefins are valuable raw materials for the production of liquid vehicle fuels such as
gasoline, distillate and dimethyl ether [9,10].

In 2018, road transport in China consumed 126 million tons of petrol and 156 million tons of diesel
fuel [11]. Meanwhile, methanol consumption was around 17.4 million tons [12]. The production and use
of methanol is growing mainly due to the use of methanol by transport in China (Figures 1 and 2) [12,13].
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Figure 1. Global and China methanol production.
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Figure 2. Global methanol consumption as fuel.

The largest methanol producer in the world is China (around 70 million tons) [12,13]. Other
countries produced much less methanol. For example, in 2018 the USA produced 5.7 million tons
and Russia produced 4.46 million tons [14,15]. Methanol is an important chemical. It is used mainly
in Asia, and China is the largest methanol consumer. Methanol usage by region of the world is as
follows, in percent: China—58%; the rest of Asia-Pacific—16%; Europe—13%; Latin America—2%;
North America—10% [16].



Energies 2020, 13, 3113 3 of 23

The growth of methanol production in China has had a positive trend despite global methanol
production growth having slowed. There has been an increase in methanol-based fuel consumption
(Figure 2).

Green methanol is very attractive for the energy sector. It makes possible the development of the
methanol economy. This idea has been proposed by Nobel laureate G.A. Olah [17,18]. The transition
to the methanol economy may allow China to reach the following results: strengthening of energy
security; reduction of air pollution and carbon dioxide emissions; and increases in the added value of
the domestic economy [19]. Therefore, the methanol economy gives tangible benefits.

2. Literature Review

2.1. Benefits of Methanol Based Fuels

The use of methanol as fuel (neat or blends) has considerable advantages over traditional uses.
Tian et al. [20] provided a comparative description of the use of methanol in fuel mixtures. The use of
M20 caused an increase in the thermal efficiency of engines and reduction of emissions of CO, CO2 and
NOx. Wang et al. [21] reported that M15 and M25 are more acceptable compared to petrol. They have
better environmental and economic indicators. Sun et al. [22] found that methanol based fuels are an
excellent and inexpensive alternative to petrol and diesel fuel. This alcohol can meet new emissions
standards. Huang et al. [23] analyzed methanol as a feedstock for manufacturing DME, biodiesel,
MTBE and gasoline (MTG). Duraisamy et al. [24], Jia and Denbratt [25] and Prasad et al. [26] studied
the use of methanol in diesel engines. They found that methanol does not impact diesel efficiency;
however, it reduces HC and CO emissions by 30–40%.

However, well-to-wake carbon dioxide emissions factored in fuel economy and engine efficiency
were not studied enough.

Methanol is biodegradable. This fuel degrades faster than petroleum fuels. At high concentrations,
methanol is a poison. However, there was not a single case of accidental methanol poisoning [27].

2.2. Methanol Market Forecasts

The methanol market can be divided into two distinct groups, namely non-renewable and green
methanol. Thus, the forecasting of experts is carried out by the specified groups. However, large
consulting companies take into account the overall methanol market in the long-term forecasting process
without the renewable component selection. According to various forecasts, methanol production is
predicted to be increased [28–35]. Total methanol production may grow from 110 million metric tons
in 2018 to 220 in 2030 [36]. Projections of Council on Energy, Environment and Water (CEEW) and
International Energy Agency (IEA) suggest that the cost of production of renewable methanol will be
gradually reduced by 2030, making it cheaper than coal and natural gas [37].

2.3. Feedstock and Methanol Production

In China the most common types of feedstock for methanol production are currently coal, natural
gas and coke gases. Meanwhile, globally, municipal and industrial waste, biomass and carbon dioxide are
promising feedstock for green methanol. The technology for methanol production strongly depends on the
feedstock type. Thus, synthesis gas can be produced by the reforming of gaseous hydrocarbons and the
gasification of solid and liquid hydrocarbons. In addition, hydrogen and carbon dioxide can be used.

A number of scientists and experts have focused on the use of coal [38–40] and natural gas [41,42] as
feedstocks for methanol production. Another group of scientists emphasized the feasibility of biomass
based methanol [43–46]. Cellulosic biomass [47], sawdust [48], glycerol [49], carbon dioxide [50–52]
and wind [42,53] have also been studied as feedstock for methanol production. Liu [40] proposed use
of combined feedstock such as coal (50%) and biomass (50%).

Scientists have paid much attention to the use of industrial and municipal waste as a feedstock
for methanol production. Yang et al. emphasized the importance of a gradual transition
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from coal-to-methanol technology to biomass-to-methanol. This can reduce CO2 emissions [43].
Roode-Gutzmer et al. considered the combined use of fossil fuels (coal and natural gas) and biomass
for methanol production [45]. Municipal solid wastes are recommended for use for the realization
of the circular economy model [46]. Borgwardt drew the conclusion that cellulosic biomass may be
promising substitution of crude oil [47]. Wood biomass is potentially effective for the use in methanol
production for woodland [48]. The most cost-effective and promising way to produce methanol is
the use of renewable hydrogen and recycled carbon dioxide [49]. Ishaq and Dincer demonstrated the
efficiency of the use of wind energy and hydrogen for the production of methanol [53].

To realize a sustainable and low-carbon economy, renewable energy should be introduced
in the fuel production chain. A key strategic factor of this scenario is the conversion of carbon
dioxide into feedstock for methanol and DME production [54]. Special attention has been paid to the
methanol-to-DME and the one-pot carbon dioxide-to-DME process [55,56].

Thus, the use of certain resources for the production of methanol depends on natural resources
and waste in various sectors of the economy.

The above studies are the driving force behind innovative positive changes in the automotive
industry. The use of methanol as a mixture or clean fuel results in improving engine efficiency, reducing
harmful emissions and increasing economic efficiency. China has experience in the use of neat methanol
or M100 as a vehicle fuel. For example, Geely Auto has produced a methanol version of cars. They are
used in Jinzhong in Shanxi Province [57].

However, there is a lack of studies concerning sustainable methanol production potential from
available feedstocks and related economic and environmental benefits (carbon dioxide emissions).

The purpose of this study is to reveal the advantages of methanol as a sustainable fuel for land
transport and a component of derived fuels, namely (i) fuel cost saving; (ii) well-to-wake carbon dioxide
emissions; (iii) promising green electricity source and volume of renewable methanol production;
and (iv) promising resources and volume of biomethanol production. The third section introduces
methods and data, the fourth section deals with results, and the fifth section concludes the paper.

3. Materials and Methods

3.1. Fuels

Methanol and petroleum fuels were analyzed in this study. Methanol has a low cetane number
and, therefore, it cannot be used for diesel engines. This kind of fuel is suitable for spark ignition
engines, gas turbines and fuel cells. Its lower heating values are less than those of petroleum fuel and it
has a high heat of vaporization. Molecular compositions are the main differences between conventional
fuels and methanol. Diesel fuel or gasoline do not contain oxygen, whereas methanol has 50% oxygen
by mass (Table 1) [58–62].

Table 1. Physical and chemical properties of selected fuels.

Properties Unit Diesel Gasoline Methanol

Density kg/m3 840 740 796
Cetane number - >40 <5
Octane number - - 95 -

Boiling point K 453–643 298–488 338
Lower heating value MJ/kg 42.5 44 19.67

Stoichiometric air–fuel ratio - 14.6 14.7 6.45
Heat of vaporization kJ/kg 243 180–350 1100

Viscosity cSt 4.59 0.57 0.65
Auto-ignition temperature K 503 465–743 736

Carbon content by mass % 85 86 37.5
Hydrogen content by mass % 15 14 12.5

Oxygen content by mass % 0 0 50
Specific carbon dioxide emission g/MJ 73.33 73.95 68.44
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3.2. Carbon Dioxide Emissions Indicator

Carbon dioxide emissions of any fuel depend on the engine efficiency and fuel properties, such as
lower heating value and carbon content. Specific fuel consumption of any engine is

SFC = 3600 ·
(
η · LHV f

)−1
, kg/kWh, (1)

where η is the engine efficiency; LHVf is the lower heating value of the fuel, kJ/kg.
Carbon dioxide emission depends on the carbon content in fuel

CDE =
11
3
· FCC, kg/kg, (2)

where FCC is the carbon content in the fuel in kg/kg.
Then the specific carbon dioxide emission can be calculated by the following formula:

SCDE = SFC ·CDE = 3600 ·
(
η · LHV f

)−1
·

11
3
· FCC = 13200 · FCC ·

(
η · LHV f

)−1
, kg/kWh, (3)

In our study, we took into account the total fuel life cycle and calculated well-to-wake (WTW)
emissions. The well-to-wake carbon dioxide emissions of any engine and any fuel can be calculated by
the following formula [63]:

WTW =
3600
η · LHV

·

(
FCC ·

11
3

+ WTT f

)
, kg/kWh, (4)

where WTTf is the well-to-tank carbon dioxide emissions for a certain fuel in kg CO2-eq/kg.
Therefore, to decrease carbon dioxide emissions in the atmosphere, the engine efficiency must be

augmented, and the carbon content of fuel must be reduced.
The WTW emissions for vehicles can be calculated by using the following expression:

WTW =
n∑

i=1

{
FEi · ρi ·

(11
3
· FCCi + WTTi

)}
, kg/100 km, (5)

where WTTi is the well-to-tank carbon dioxide emissions for ith fuel component in kg CO2-eq/kg; FEi
is the fuel economy of ith fuel component in L/100 km.

3.3. Efficiency Indicators and Economic Assessment

In this study we used the following indicators:

• Engine efficiency;
• Specific fuel consumption;
• Fuel economy.

The above indicators were used for different fuels and engines.
To estimate economic efficiency of different fuels, the fuel energy cost was computed as follows [62]:

ECF = Fpr · LHV f
−1, USD/GJ, (6)

where Fpr is the price of fuel in USD/t; LHVf is the lower heat value of the fuel in GJ/t.
The energy cost for useful work factors in the engine efficiency and is calculated as [51]

ECUW = Fpr ·
(
η · LHV f

)−1
, USD/GJ. (7)
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The same value per MWh is calculated by the following formula [51]:

ECUW = Fpr ·
(
3.6 · η · LHV f

)−1
, USD/MWh. (8)

An acceptable methanol to conventional fuel price ratio, which take into account lower heating
values and densities, is the thermal ratio [62]:

RMCPth =
LHVM · ρM

LHVC · ρC
<

FprM

FprC
, (9)

where ρM is the density of methanol-based fuel in kg/L; ρC is the density of conventional fuel in kg/L.
If the actual methanol to conventional fuel price ratio is less than RMCPth, then the methanol-based

fuel is competitive.

3.4. Information Base

The economic analysis was fulfilled for diesel fuel, petrol and methanol based fuels. The average
fuel prices were taken from official information sources. Official prices of Methanex (the world’s largest
producer of methanol) were applied for this study.

4. Results

This section is divided by the following subsections: pathway for methanol utilization, carbon
dioxide emissions, economic assessment and potential green methanol production.

4.1. Pathway for Methanol Utilization

A fuel application of methanol is a key component of its consumption. In 2018, pure methanol
(M100), and the methanol-petrol blends MTBE and DME totaled around 17.4 million tons or
approximately 25–27% of national application [11]. Methanol may be used in several pathways,
including direct burning (pure methanol or methanol blends), derived fuels (biodiesel or dimethyl
ether (DME) and fuel cells (Figure 3). Low level methanol blends such as M15–M25 can be used in
spark ignition engines. These engines need no change. High level methanol blends (M85–M100) can
be used only in dedicated engines [64].
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Diesel engines can be retrofitted for methanol application. As a rule, these are dual-fuel engines.
This solution results in reduction of harmful emissions [65].

Methanol-based fuels are not yet implemented in transport in the European Union. However, new
alcohol-based fuels have been developed. A new A7 fuel contains 3% methanol and 4% ethanol. It can
substitute E5 [66]. A new A20 fuel contains 20% alcohol (15% methanol, 5% ethanol, 80% petrol) [67].

4.2. Carbon Dioxide Emissions

Specific carbon dioxide emissions of fuels depend on primary factors such as carbon content, lower
heating value and engine efficiency. Carbon dioxide emissions were computed using Equation (1).
Diesel fuel (for diesel engines), petrol and methanol (for spark ignition engines and fuel cells) were
analyzed. The obtained results are shown in Figure 4. However, they do not take into account
well-to-tank (WTT) emissions for different vehicle fuels.
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Figure 4. Specific tank-to-wheel carbon dioxide emissions.

The figures show that the type of fuel has no significant influence on carbon dioxide emissions.
Emissions primarily depend on engine efficiency. This may be explained by the following fact, that the
specific carbon content (by mass) per unit of energy is slightly dependent on the fuel type. The above
value for methanol is equal to 19.065 g/MJ. Conventional fuels have similar values: petrol—19.55 g/MJ
and diesel fuel—20 g/MJ. Therefore, improving efficiency is the main way to reduce greenhouse
gas emissions.

In 2019, the Gumpert Aiways Automobile Company presented a methanol fuel cell. This company
developed an electric car in a methanol fuel cell version. This system has an electric efficiency of 45%
and converts 1 L on methanol into 2 kWh of electricity. The fuel economy is 21 kWh per 100 km or
9.65 L of methanol per 100 km [68].

WTT carbon dioxide emissions from different fuels vary in a wide range. Regarding methanol fuel,
WTT depends on the production technology and the type of feedstock. This indicator has a minimum
value for renewable feedstock (biomass) and green electricity. However, it is worse compared to
bioethanol (Table 2).

Carbon dioxide emissions per 100 km for a Geely methanol car were determined. Tank-to-wheel,
well-to-wake maximum and well-to-wake minimum values were calculated. Actual data about fuel
economy was used [67]. According to our calculations, M100 (neat methanol) had the best values of
carbon dioxide emissions compared to petrol (Figure 5). Biomethanol had four times less emissions
than petrol. However, methanol produced from coal had higher WTW emissions. Methanol fuel cell is
a perspective technology. All kinds of methanol (biomethanol and coal-based methanol) provide the
best environmental performance compared to petrol.
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Table 2. Well-to-tank (WTT) carbon dioxide emissions for selected fuels.

Fuel
WTT Carbon Dioxide Emissions (g CO2-eq/kg)

References
Minimum Maximum

Diesel fuel 284 1020 [57]
Gasoline 294.8 1188 [57]

Natural gas 909.5 1290.9 [57–60]
Biomethanol (biomass and renewable electricity) −898 [61]

Methanol (coal) 2965 [61]
Bioethanol −1493 −352 [62]
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Figure 5. Carbon dioxide emissions per 100 km.

The cetane number of methanol is less than 5. Nevertheless, neat methanol may be used in diesel
engines. To use it in compressed ignition engines, a diesel methanol compound combustion (DMCC)
system has been developed. The DMCC system consists of two injection subsystems: methanol and
diesel fuel. Methanol is injected into the intake port of each cylinder to form an air/methanol mixture.
The mixture is ignited by diesel fuel. The diesel fuel injection system is modified to limit the volume
of injected diesel fuel. At engine start and low load, the diesel engine operates on diesel fuel only.
At medium and high loads, the engine operates on methanol and diesel fuels. Pilot diesel fuel is used
to ignite the air/methanol mixture. DMCC engines have lower smoke opacity and nitrogen oxides
emissions as compared to conventional diesel engines [69]. Carbon dioxide emissions of the above
trucks were analyzed. The use of methanol resulted in slight reduction of TTW emissions. The WTW
emissions for biomethanol depended on methanol origin (Figure 6).
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The use of methanol gives the best results for spark ignition engines (SIE). There is a 21% decrease
in tank-to-wheel emissions for SIE and a 1.5% decrease for diesel engines. WTW emissions are cut by
75% for SIE and 21.2% for DMCC (if biomethanol is used).

4.3. Economic Assessment

A number of researchers have stated that the target markets for methanol as a fuel are land
vehicles; methanol vessels (to improve environmental indicators); the energy supply of recreation
areas; and the energy supply if there is lack of inexpensive fossil fuels such as natural gas, propane,
fuel oil, etc.) [70]. In this study, the economic assessment of methanol as a vehicle fuel was considered.

To compare petrol and diesel fuel with methanol, an economic analysis was carried out. The China
petrol prices [71] and Mathenex methanol prices for Asia markets [72,73] were used (Figure 7).
These fuels have different physical properties such as lower heating value and density; therefore, their
energy costs were calculated (Figure 8). Since October 2018, petrol energy costs have been higher
compared to those of methanol.
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For consumers, a methanol to petroleum fuel price ratio indicator has been recommended for
making decision [62,74]. This ratio should be less than an equilibrium point. The equilibrium point
takes into account principle indicators of fuels and engine efficiency. It can be computed by the
following expression:

PFR0 =
Fprm

Fprp
=

LHVm · ηm

LHVp · ηp
· (10)

where LHVm is the lower heating value of methanol in MJ/kg; LHVp is the lower heating value of petrol
in MJ/kg; ηm is the engine efficiency when methanol is used; ηp is the engine efficiency when petrol
is used.

If the actual methanol to petrol price ratio is less than calculated PFR0, then the application of
methanol is acceptable. If there is information about actual fuel economy, the equilibrium point is
determined by the formula

PFR0 =
Fprm

Fprp
=

FEp

FEm
· (11)

where FEm is the fuel economy of a methanol-fueled vehicle in L/100 km; FEp is the fuel economy of a
petrol-fueled vehicle in L/100 km.

Our calculations were done for a Geely car. Its fuel economy for petrol is 8 L/100 km, and for
neat methanol fuel M100 its fuel economy is 13.5 L/100 km [67]. Methanol and petrol prices have been
investigated since 2017. For that period, methanol demonstrated economic superiority over petrol
(Figure 9). The actual methanol/petrol price ratios were less than the equilibrium point. Therefore,
methanol was a competitive alternative to petrol. The thermal methanol to petrol price ratio was
lower than the actual one. This means that the methanol engine efficiency was higher than the petrol
engine efficiency.
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Figure 9. Methanol/petrol prices ratio.

M15 fuel is widespread in China. An engine fueled by M15 has higher thermal brake efficiency
compared to petrol. The increase of methanol concentration results in increases of the thermal brake
efficiency. China has been successful in commercializing M15 fuel. The existing vehicle fleet does not
need modification, and the price of M15 is also competitive (Figure 10).
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Figure 10. M15/petrol prices ratio.

Some Chinese companies such as Sinotruk Jinan Truck Co., Ltd and Shaanxi Automobile group
Co., Ltd. produce methanol diesel dual fuel dump trucks. For example, Shacman SX3317DR456HM
and ZZ3317N4667D1M are powered by a 245 kW dual fuel engine [75,76]. Chinese companies (Yulin
City of Shannxi Province) have experience in the use of M100 by trucks equipped by DMCC engines.
The energy share of diesel fuel ranges from 0.64 to 0.697 [11].

An acceptable methanol to diesel fuel price ratio may be found by the following formula:

FEd · Fprd + FEm · Fprm

FEd0 · Fprd
< 1, (12)

where FEd is the diesel fuel economy of a vehicle equipped by DMCC engine in L/100 km; FEm is the
methanol fuel economy of a vehicle equipped by DMCC engine in L/100 km; FEd0 is the fuel economy
of a diesel-fueled vehicle equipped by conventional diesel engine in L/100 km.

Hence, the equilibrium point of the acceptable methanol to diesel fuel price ratio is equal to

FPRd0 =
Fprrm

Fprd
<

FEd0 − FEd
FEm

. (13)

The equilibrium point is higher than the actual methanol to diesel fuel price ratio (Figure 11) [77].
The price ratio makes the use of M100 profitable. According to our calculations, the use of methanol
fuel results in fuel cost saving of 6–7%.
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Figure 11. Methanol to diesel fuel price ratio: actual, maximum acceptable.
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4.4. Methanol Production

A conventional methanol plant comprises the following processes: production of syngas and its
cleaning, reforming of higher hydrocarbons, water–gas shift, methanol synthesis and its purification.

Methanol production processes depend on the feedstock. Solid feedstock (such as coal, biomass
and waste) is gasified into syngas (a mixture of carbon monoxide and hydrogen, as well as water and
hydrocarbons). However, if air is used as the oxidant, syngas contains nitrogen. It increases the gas
flow through the gasifier. This results in higher investment costs. The use of pure oxygen decreases
equipment costs. However, this oxidant is rather expensive. If biomass is used as the feedstock,
a pre-treatment is required. It may be chipping, drying, etc. The pre-treatment increases investment
and operational costs.

If gaseous feedstock (such as natural gas or biomethane) is used for methanol production,
it should be reformed to produce syngas. Biomethane is a result of biogas upgrading. Its production
requires anaerobic digestion, biogas cleaning and biogas upgrading. Therefore, biomethane production
needs more investment costs. Moreover, this renewable combustible gas has higher production costs
compared to natural gas.

Renewable methanol is produced from carbon dioxide and renewable hydrogen. Hydrogen can
be obtained from water by electrolysis. This process needs electricity produced by solar photovoltaic,
hydro and wind power plants. As a rule, it is the most expensive methanol, although this process
shows the highest carbon dioxide saving [78–80].

4.4.1. Green Methanol

In this study, we distinguish low-carbon methanol (LCM), biomethanol and renewable
methanol [81]. Biomethanol is produced from organic feedstock. Renewable methanol is produced
from carbon dioxide and renewable electricity. LCM is produced from natural gas or other fossil fuel
by adding carbon dioxide from industrial facilities. According to the Methanol Institute, renewable
methanol is produced from the following feedstocks: biomass, industrial waste, municipal waste and
carbon dioxide plus green electricity [82]. Methanol production and utilization pathways are presented
in Figure 12. Renewable feedstock and electricity meet the circular economy.
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Methanol is currently produced from fossil fuels, mainly natural gas. China is the biggest methanol
producer. This country uses primarily coal (around 64%) [45,83]. Methanol production costs mainly
depend on feedstock and an electricity price. Natural gas-based methanol production costs range
from EUR50/t to EUR400/t. The share of feedstock in production costs varies from 39.6 to 85.7% [84].
Coal-based methanol, as a rule, is more expensive. For example, in 2017 in China, its cost was
EUR235/t [38]. China can produce biomethanol and renewable methanol from the following resources:
biomass, municipal solid and water waste, carbon dioxide and renewable electricity. Biomass-based
methanol cannot compete with fossil fuel based methanol. Its production cost ranges from EUR500/t to
EUR600/t. The production costs of renewable methanol based on wind power and carbon dioxide
depend on electricity cost and vary from EUR610/t to EUR1520/t, but are falling [45,85].

Some kinds of renewable resources may be used to produce biomethanol, such as biomass (forest
residues, agricultural residues and energy crops), municipal waste water and municipal solid waste.
China has a relatively small forested area at less than 23% [86]. Wood and wood residues were not
considered in this study. The use of wood and agricultural residues requires specific approaches
and will be explored in subsequent studies [87,88]. To produce renewable methanol, carbon dioxide
and renewable electricity are needed. Based on economic feasibility and the availability of resources,
we further considered the following feedstocks: municipal waste water, municipal solid waste, carbon
dioxide and renewable electricity.

4.4.2. Renewable Methanol (Carbon Dioxide and Renewable Electricity)

Zhang et al. reported that CO2-to-methanol technology is economically feasible if the electricity
price is less than USD 0.047/kWh [89]. There are different sources of carbon dioxide such as flue gases,
exhaust gases, atmosphere, biogas, pre-combustion, etc. (Figure 13). The largest sources of carbon
dioxide are cement and steel industries [90]. Costs for carbon dioxide capture vary from EUR26/t to
EUR59/t [91–93].

The average global renewable electricity production costs are falling. Among them, onshore
wind and biomass power plants generate electricity with the lowest costs. Some of these projects
can reach competitive costs of electricity [94]. Therefore, the production of renewable methanol may
be competitive.

Wind power plants have high potential to produce sustainable hydrogen and, therefore, methanol.
Due to technological innovations, the generation costs are decreasing. According to the IRENA reports,
in 2018 the global average cost of electricity generated by onshore wind power plants was USD
0.056/kWh. In general, it ranged from USD 0.04/kWh to USD 0.10/kWh. Around 5% of electricity was
cheaper than USD 0.05/kWh. The average levelized cost of electricity of onshore wind power plants
commissioned in 2018 was under USD 0.048/kWh [94]. That fact allows us to look with optimism at
the power-to-methanol technology.

China is a leader of the wind power market. In 2019, its total onshore installations had a rated
power of 229,954 MW [95] and generated 405,700 GWh [96]. This sector of the economy has positive
dynamics (Figure 14).

The potential renewable methanol production using power-to-liquid technology is

TPMPWW = 10−3
·W · SW · ηpl · LHVmw

−1
· million t (14)

where W is the total national electricity production by wind power plants in GWh; SW is the share of
competitive wind power plants, and SW = 5%; ηpl is the conversion efficiency, in percent; LHVm0 is the
lower heating value of methanol, and LHVm0 = 5.464 kWh/kg.

The power-to-methanol conversion efficiency is 48.2% [66]. Therefore, the theoretical feasible
methanol production is 1.789 million tons. These wind power plants may integrate with sources of
carbon dioxide such as alcohol refineries, steel plants, biogas plants, etc.
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4.4.3. Biomethanol

There are several sources of biomass for the production of biomethanol (Figure 15).
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Figure 15. Biomethanol production.

Waste water can be used to produce biogas. Upgraded biogas (biomethane) can be converted
to methanol. This process is like the natural gas to methanol conversion [65]. Nowadays there
are commercial projects producing renewable methanol (biomethanol) from biogas. For example,
BioMethanol Chemie Nederland B.V., doing business as BioMCN (the Netherlands), has replaced natural
gas with biogas in its methanol production process. This company uses upgraded biogas (biomethane)
from different sources. In 2017, BioMCN produced around 60 thousand tons of biomethanol. This form
of renewable methanol production can contribute to the circular green economy [81].

Lu et al. explored possible solutions for optimizing the operation of wastewater treatment plants
in China [97]. They found that sludge anaerobic digestion is a most sustainable pathway to sort out the
sludge disposal problem. This idea was supported by Li and Feng [98]. Biogas production strategies
to reduce the operating costs were supported by Cano et al. [99] and Holaby et al. [100].

In China, annual sewage sludge generation is around 6.25 million tons of dry matter [101].
Its specific value (per inhabitant) is less than in European Union countries, Japan, the USA, etc.
Therefore, its volume is expected to grow. Waste water treatment plants (WWTP) may be integrated
into biogas and biomethane systems [102].

There is a number of large-scale WWTPs, for example, treatment capacity in thousands of cubic
meters per day, as follows: Dalian Malan River—120; Wuxi Lucun Village—200; Tianjin Jizhuangzi—260;
Shanghai Shidongkou—400; Beijing Water Reclamation Plant—1000; Qinghe Wastewater Treatment
Plant—240 [96,103]. They are more suitable for biogas production. The upgraded biogas can be used
as a feedstock for methanol production. Large-scale WWTPs (capacity more than 500 thousand cubic
meters per day) treat around 5.2% of the total waste water. The potential biomethanol production was
computed by the following formula:
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TPMPWW = 10−6
·MWWDM · SLS ·VS · ηBCE ·YB · LHVB · LHVm

−1
· thousand t (15)

where MWWDM is the annual sewage sludge generation in millions of tons; SLS is the share of large
scale WWTPs, in percent; VS is the volatile solid fraction, in percent; ηBCE is the conversion efficiency,
in percent; YB is the biogas yield in m3/t; LHVB is the lower heating value of biogas in MJ/m3; LHVm is
the lower heating value of methanol in MJ/kg.

The energy efficiency of biomethane-to-methanol technology is equal to 69% [66]. We assumed the
following initial data: volatile solids fraction—87% [104]; biogas yield—700 m3/t [104]; share of large
scale WWTPs (more than 200,000 m3/day)—24.57% [105]; lower heating value of biogas—21 MJ/m3.
Our calculations showed that the theoretical potential of biogas-based methanol production is
688.9 thousand tons.

This idea is feasible. For example, in Sweden, WWTPs annually produce 700 GWh or 120 million
cubic meters of biogas. Himmerfjärdsverket WWTP (the capacity is 130,000 m3/day) has annual biogas
production of 7.68 million m3. It produces around 2.7 million m3 of biomethane. Its production cost
was EUR 509/m3 [106].

Municipal Solid Waste:
A prospective biomass source is municipal solid waste (MSW). This kind of feedstock is used

by the Canadian company Enerken. Its methanol production cost was estimated at EUR 110/t [107].
There is an agreement between Enerken Inc. and Sinobioway Group to implement this technology in
China [108].

Therefore, MSW for methanol production is a promising technology. In China, the volume of
MSW is rising [109]. In 2018, the above value exceeded 228 million tons (Figure 16). According to
forecasting, this value may reach 480 million tons by 2030. The combustible fraction of MSW (such as
paper, plastics, textile, wood, etc.) ranges from 19.07 to 56.35%. Its lower heating value varies from
3.572 MJ/kg to 8.322 MJ/kg [110]. This feedstock may be used to produce methanol. The theoretical
potential of MSW-based methanol can be calculated by the following formula:

TPMP = 10−4
·Mmsw ·CS · ηCE · LHVMSW · LHVm

−1
· mln t (16)

where Mmsw is collected MSW in millions of tons; CS is the combustible fraction of MSW in percent;
ηCE is the conversion efficiency in percent; LHVMSW is the lower heating value of MSW in MJ/kg; LHVm

is the lower heating value of methanol in MJ/kg.
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The energy efficiency of waste-to-methanol technology is around 55% [111]. We computed the
theoretical potential for 2018 and 2023 (we used the mass of MSW predicted by the approximation
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of a function). Our calculations showed that in 2018 the theoretical potential was between 4.35 and
29.95 million tons. By 2023 the above potential may increase to values between 5.14 and 35.4 million
tons (Figure 17). Therefore, the potential MSW-based methanol production can be between 6.69% and
54.46% of its current production [12].
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5. Conclusions

Since 2000 there has been an increase in methanol production and application as a vehicle fuel.
China, as a leader in methanol production, has demonstrated the gradual transition to a methanol
economy. The analysis showed that the global methanol economy has an average annual growth rate
of 5.9%. Meanwhile, China showed an increase of about 10%. In 2019, global methanol consumption
as fuel exceeded 30 million tons and is growing.

The thermal efficiency of methanol fueled engines is not less than the efficiency of engines powered
by conventional fuels. Methanol fuel increases the efficiency of spark ignition engines. Methanol fuel
cells have the best results. Since October 2018, methanol has been competitive compared to petroleum
fuels. The fuel cost saving ranged from 6–7% (for diesel engines) to 30% (for SIE).

Specific carbon dioxide emissions do not depend on the type of fuel. They mainly depends on
engine efficiency. Only green methanol can reduce WTW carbon dioxide emissions. Spark ignition
engines and fuel cells are expected to have the best results.

To ensure the sustainable development of the automotive industry, it is necessary to use renewable
fuels, including biomethanol. The use of MSW, wind power and WWTP biogas are promising pathways
for green methanol production. MSW as a feedstock is ranked first.

Improved living standards have resulted in increased volumes of MSW. Its volume exceeded
238 million tons in 2018. MSW is a promising feedstock to produce green methanol. Existing technologies
allow chemical companies to convert MSW into methanol. In 2018, the theoretical annual potential
ranged from 4.35 to 29.95 million tons. Wind power plants (power-to-liquid) and biogas of WWTPs
can currently produce 1.79 and 0.69 million tons, respectively.

Based on the above, policymakers should support the development of green methanol projects
in China.

Agricultural residues and wood as feedstock for methanol production have significant potential.
They are subjects for further study. In order to assess the potential of agricultural residues for
biomethanol production, further research will be focused on the quantity of agricultural crop residues,
the quantity of manure, their geographical locations and cluster analysis. Special attention will be paid
to determine the synergetic effects of biomethanol production.
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