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Abstract: The diffusion of distributed energy resources in distribution networks requires new approaches
to exploit the users’ capabilities of providing ancillary services. Of particular interest will be the
coordination of microgrids operating as an aggregate of demand and supply units. This work reports a
model predictive control (MPC) application in microgrids for the efficient energy management of energy
storage systems and photovoltaic units. The MPC minimizes the economic cost of aggregate prosumers
into a prediction horizon by forecasting generation and absorption profiles. The MPC is compared in
realistic conditions with a heuristic strategy that acts in a instant manner, without taking into account
signals prediction. The work aims at investigating the effect that different types of energy tariffs have in
enhancing the end-users’ flexibility, based on three examples of currently applied tariffs, comparing the
two storage control modes. The MPC always achieves a better solution than the heuristic approach in all
considered scenarios from the cost minimization point of view, with an improvement that is amplified
by increasing the energy price variations between peak and off-peak periods. Furthermore, the MPC
approach provides a cost saving when compared to the case considering a microgrid endowed with
only photovoltaic units, in which no storage is installed. Findings in this work confirm that storage units
better perform when some knowledge of future demand and supply trends is provided, ensuring an
economic cost saving and an important service for the overall community.

Keywords: heuristic approach; energy storage systems; flexible demand; microgrids; model
predictive control; renewable energy resources; retail tariffs

1. Introduction

The climate action policies undertaken worldwide for decarbonisation in the energy sector are
resulting in a continuous growth of renewable energy sources (RES) diffusion. In Europe, the “Clean
Energy for All Europeans” package released in 2016 has set, among others, the objective of increasing
to 32% the share of energy consumption fed by renewables [1]. In Italy, for example, this objective
translates, in the electricity sector, into a target of about 55% of consumption coverage by RES (20%
more compared to the present share), with an expected increase of about 2.5 times of photovoltaic (PV)
annual production [2].

Such an increase, however, brings some challenges from both the technical and economic
standpoints. At the European level, standard bodies are constantly tackling the challenge of improving
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the grid support actions required to RES connected to the grid, especially concerning the connection of
medium and small scale distributed generators and storage units [3,4]. From an economic standpoint,
considering the very low marginal cost of RES, along with the RES support policy, fossil-fuelled thermal
power plants owners are facing financial issues due to the largely reduced operation time during the
year [5]. Nonetheless, the increased uncertainty in power generation has to be faced by keeping in
operation some of the thermal plants that would be phasing out otherwise, with a resulting increase
of costs for ancillary services provision and capacity remuneration mechanisms [6]. A study on GB’s
generation mix shows the impact of renewables on the usage of thermal power plants, with significant
increase of start-up and ramping events in the projections to 2030 scenarios [7].

In order to overcome such issues while improving the efficiency of both market operation and
power system regulation, Demand Response (DR) will play a fundamental role [8]. In this field,
building’s consumption management is recognized as one of the most promising paths towards
implementation of DR. Control of residential and commercial buildings for the provision of ancillary
services can be obtained by managing the thermostatically controlled loads such as HVAC (Heating,
Ventilating and Air Conditioning) systems [9,10] and by controlling the electric vehicles chargers and
storage units, including sharing of storage units among customers [11,12].

With the deployment of smart metering in many countries, demand-side management has
become a business opportunity [13,14]. DR programmes can be divided in (i) incentive-based and
(ii) price-based [15]. In the former group, DR is obtained through special tariffs (incentives) for the
direct control of load shares by the system operator. The latter set of DR measures relies on the retail
price variations leading the load change. Under this approach, two main approaches are commonly
adopted for retail pricing: Time-Of-Use (TOU) and Real-Time-Pricing (RTP) [16]. TOU tariffs introduce
a variation in retail price shaped in accordance with the typical demand shape (higher price in the
peak-load period and lower in others), with the possibility to integrate “critical-peak pricing” rates,
which consist of price increases at pre-determined times. RTP tariffs, instead, foresee a retail price
varying in each time interval (e.g., every hour), following the electricity market price trends. As one of
the goals at European level for the next future is to entitle all users to enter dynamic pricing contracts
with their suppliers, the application of retail rates reflecting the wholesale price of electricity will
be fundamental [17].

The control of RES and, in particular, of Energy Storage Systems (ESSs), is fundamental for the
increase of flexibility provision [18–20] and the optimal management of consumers’ expenditure [21].
Distributed ESSs are important for peak management, consisting in stocking energy when energy
is cheaper for subsequent use during peak periods when energy is more expensive. Furthermore,
batteries are used to compensate the differences between power production and demand, storing energy
when solar power is higher than load and realising it in case of need.

This work exploits an advanced control method called Model Predictive Control (MPC) [22,23]
with the aim of an efficient management of energy storage systems coupled with PV units. MPC is
a method of process control that minimizes a cost function into a prediction horizon by predicting
future system evolution, while satisfying system constraints. Nowadays model predictive control
is largely adopted in power systems applications [24–27]. For example, in [28] the authors design
an advanced control system using MPC for the efficient management of a system provided with
wind-solar energy production, connection to the grid, ESS, and reverse-osmosis water desalination
sub-system. Model predictive control manages the resources in order to guarantee sufficient energy
to the reverse-osmosis subsystem in order to meet the requested water demand. In [27], Parisio et al.
apply model predictive control in order to efficiently optimize a microgrid provided with RESs, storage,
electric generation and connection to the grid. The authors show the improvements of the predictive
solution, in terms of economic cost minimization, with respect to the case in which the battery is not
installed, also taking into considerations prediction errors of production and load. In [21], the authors
propose a two-layer structure for the control of a microgrid including a battery, a microturbine,
PV units, and connection with the grid. At a higher layer, a deterministic MPC is used to schedule the
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use of the resources with a prediction horizon of 24 h using a sampling rate of 15 min. At the lower
layer, a stochastic MPC regulator runs at higher frequency in order to compensate uncertainties of
production and absorption.

The aim of this work is to investigate the performance of different storage control techniques
in relation to different retail tariff structures. Considering an aggregate of end-users, the goal is
to demonstrate the increasing demand flexibility obtainable by adopting variable retail prices and
smarter storage control techniques. In particular, with the knowledge of future generation and demand
profiles, the predictive control manages the energy resources in order to, on the one hand, satisfy power
balance equation and, on the other hand, minimize the overall economic cost. The predictive
solution is compared to a simple method called heuristic approach, which manages the ESS without
exploiting future signals prediction. Despite there are papers that compare the performance of
the predictive approach with the heuristic method, in terms of energy cost minimization [29],
an important observation is not sufficiently highlighted: the time-variability of energy prices influences
the performances of the MPC when compared to the heuristic approach and the advantages of the
predictive solution increase with the rise of the daily price variation. In detail, the previous observation
will be verified by comparing the two control techniques in three different scenarios, based on current
retail tariffs in Italy, Australia and Great Britain, where the resources are in a cluster of low-voltage
prosumers coordinated through the mentioned controlling techniques. Moreover the MPC is proved
to be a smart control solution in the decision of the charging time of the storage, fully or partially,
shifting power demand during night, when the price is low. Economic cost saving is also obtained by
comparing the predictive control with the case in which batteries are not installed in the microgrid,
confirming predictive solutions as desirable control approaches in the future.

The paper structure is as follows. Section 2 describes the aggregate system model. The heuristic
approach and the predictive solution control implementation is explained in Section 3. In Section 4
simple examples are analyzed to compare the heuristic strategy and the MPC. Simulations are given in
Section 5. Numeral results are provided in Section 6. Section 7 reports the conclusions.

2. Aggregate System Model

This work focuses on the provision of ancillary services by low-voltage end-users. In this context,
in order to promote the application of DR programmes, energy communities are created by the
aggregation of a number of users in the same area, allowing to better exploit the flexibility services
provided by the distributed resources.

An aggregate system by the type in Figure 1 is considered, consisting of a microgrid that in this
work has been assumed having the size of an entire LV (Low Voltage) network (i.e., all the users
connected downstream the same secondary substation). The system comprises:

• Connection with the upstream grid, the end-users aggregate in the microgrid exchange with the
upstream grid the power Pg;

• Photovoltaic (PV) sources, generating the maximum aggregate output power Ppv, given by the
sum of local generation units powers;

• Loads, consisting of the aggregate of distributed loads in the microgrid, resulting in an overall
power absorption Pl ;

• Energy storage system (ESS), consisting of the aggregate capacity of smaller distributed storage
units summing up to Est,N , exchanging the total power Pst. Maximum discharging power Pst,max,
and maximum charging power Pst,min are considered as upper and lower bounds. The ESS can be
used in the capacity range [Est,min, Est,max] in order to guarantee practical needs [30].
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Figure 1. Schematic representation of the considered powers.

A dynamic discrete-time model for the aggregate ESS is set with ∆T as sampling interval:

E+
st = Est − ∆T Pst − ∆T c , (1)

where Est is the stored energy, with superscript + indicating to the variable value at the following time,
and c accounts for the distributed ESS converters losses. According to Figure 1, the power balance
equation of the aggregate system model is:

Pl = Pg + Pst + Ppv . (2)

3. Control Formulation

In this section, a simple control technique called heuristic approach is presented at first. Then the
model predictive control implementation is described.

3.1. Heuristic Approach

The heuristic approach considered herein is a basic control mode in which the control signal is
computed in an instant manner, without taking into account any predictions about prices and signals.
By this approach, which is comparable to those used, for example, in [25,31], no available information
on the controlled system is exploited and the battery is driven to immediately achieve Pg = 0, if it
is possible.

For this purpose, if PV production is greater than load, i.e., Ppv > Pl , the excess power is driven
to the battery; in case the storage has not sufficient capacity or it is full the unused power is realised to
the grid. If Ppv ≤ Pl , the heuristic approach discharges the battery, while absorbs the required power
from the grid when the storage has not enough capacity or it is empty.

Figure 2 provides a flow-chart related to the implemented heuristic strategy.

Pst < Pst,min

Pg = Pst − Pst,min

Pst = Pst,min

Pst = Pl − Ppv

Pg = 0

≤Ppv Pl

Est > Est,min

Pst = Pl − Ppv

Pg = 0

Pst > Pst,max

Pg = Pst − Pst,max

Pst = Pst,max

no yes

no

no

yes yesno

noyes yes

Est < Est,max

E+
st = Est −∆T Pst −∆T c

Pst = −cPst = −c
Pg = Pl − Ppv − PstPg = Pl − Ppv − Pst

Figure 2. Flow-chart of the heuristic approach.

3.2. Model Predictive Control

Model predictive control is an advanced control methodology that optimises the future evolution
of a controlled process by computing a optimal sequence of inputs.
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It is a model-based optimal control mode that, at each sampling instant, calculates the control
signal of a plant minimizing a cost function over a prediction horizon, always satisfying system
constraints. The first input of the computed sequence is then applied, the system state is updated and
the optimization procedure rerun, beginning from the updated state, with a receding horizon strategy.

In this work, the MPC approach computes the optimal control inputs that minimize the economic
cost over a prediction horizon Np:

min
{Pst(k)}

J =
Np

∑
k=1

(
1
2

cp(k)(Pg(k) + |Pg(k)|) +
1
2

cs(k)(Pg(k)− |Pg(k)|) + cESS(k)|Pst(k)|
)

,

subject to:

{
Est,min ≤ Est ≤ Est,max

Pst,min ≤ Pst ≤ Pst,max
,

(3)

where:

• The first term takes into account the cost of purchasing energy, cp is the cost coefficient, measured
in e/kWh;

• The second term takes into account the revenue of selling energy, cs is the revenue coefficient,
measured in e/kWh. This term is a negative cost, representing the revenue for the user when Pg

is negative (energy is sold to the upstream grid);
• The third term weights the degradation of the battery with the coefficient cESS, measured in

e/kWh, that will be defined later. This term considers the economic cost given by the wearing of
the storage.

3.2.1. Absorption and Generation Profiles Forecasting

Different prediction techniques, which mainly include Multiple Autoregressive Integrated Moving
Average (ARIMA), Linear Regression (LR), grey-box and black-box identification, data mining
approaches like Artificial Neural Network (ANN), have been largely applied for load and generation
profiles forecasting. While photovoltaic production can be well forecasted, for example, with weather
predictions, load prediction for single users is a non-trivial task, due to the random use of energy by
the end-users, making the profile hardly predictable. It should be noted that the actual power profile
consumption not only depends on the users’ habits, but also on the characteristics of the installed
appliances. However, aggregate loads can be easily predicted if compared to those of single users,
since they present a more regular behaviour, as depicted in Figure 3.
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Figure 3. Examples of load profiles: single consumer load and aggregate absorption of about 100 users.

The work focuses on the application of the predictive control in the context of aggregate users,
working with easily predictable profiles of both production and absorption. Within the research in this
work, this paper considers a particular case, where future generation and load are perfectly known,
with the aim of emphasizing the differences between the predictive solution and the heuristic one in
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the control of ESSs. Future work will be dedicated in the research of how prediction errors affect the
optimization procedure in MPC approach.

3.2.2. Estimating the Economic Cost of ESS Wearing

A battery ESS is considered herein. Providing an estimate of storage lifetime is a difficult task for
ESS realization due to the lack of measured data. For example in [30] the authors present a battery
lifetime estimation methodology, developing a dynamic capacity fading model estimating the wearing
of the storage with its usage, and verify the validity of the approach with an empirical method.

In economic optimization tasks the problem of finite lifetime of the battery is usually tackled
by introducing an additional term in the cost function in order to preserve the life expectancy of the
device. For example in [21] this term weighs the absolute value of the storage power variation. In [27],
the authors add a term in the cost function proportional to the absolute value of the exchanged power
with the storage.

In this paper, the same approach of [27] is adopted: the third term in (3) weighs the absolute
battery power, through the coefficient cESS, that is function of the storage price CESS, the expected cycle
lifetime Ncy, and the capacity Est,N . Taking into account the overall energy throughput tolerable by the
storage in its entire lifetime (i.e., 2NcyEst,N), the coefficient cESS is estimated equal to CESS/(2 Ncy Est,N)

and is measured in e/kWh [32].

4. Model Predictive Control and Heuristic Approach: Application Example

In order to show the advantages of MPC methodology, in this section the predictive controller and
the heuristic procedure are compared considering scenarios with simple generation and load profiles.

The cost function specified in (3) is now analyzed considering a simulation period lasting one day
with the following hypothesis:

• The state of charge of the storage at the beginning and at the end of the day is equal to the lower
bound constraint;

• Storage converters are ideal (c = 0 W);
• The day is divided in two different periods:

– Nighttime, lasting 12 h, with constant cost of energy cp,n > 0, with no generation and
absorption signals;

– Daytime, lasting 12 h, with constant cost of energy cp,d > 0, constant load Pl,d > 0 and
constant production Ppv,d > 0, with Ppv,d < Pl,d.

In Figure 4, examples of consumption and generation signals are shown for the considered
simplified scenario.
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Figure 4. Examples of constant load and photovoltaic power profiles lasting 12 h during daytime; the
nighttime period is characterized by a yellow background.



Energies 2020, 13, 3078 7 of 19

Since the demand and the PV power are constant signals lasting 12 h, a control procedure with a
sample time of 12 h can be applied. The nighttime and daytime storage powers are denoted as Pst,n and
Pst,d, respectively. Since ESS is empty and Pl,d > Ppv,d, the cost function analysis is limited to the case
in which energy is never sold to the grid (considering actual market prices, the eventuality in which it
is convenient to buy energy during nighttime and sell it during daytime is not taken into account).
Denoting as Pg,n and Pg,d the nighttime and daytime grid powers, respectively, from Equation (2),
it results:

Pg,n = −Pst,n ≥ 0 , Pg,d = Pl,d − Ppv,d − Pst,d ≥ 0 . (4)

The optimization problem in Equation (3) becomes:

min
Pst,n ,Pst,d

J = cp,nPg,n + cp,dPg,d + cESS|Pst,n|+ cESS|Pst,d| , (5)

that is equivalent to:

min
Pst,n ,Pst,d

J = −cp,nPst,n − cp,dPst,d + cESS|Pst,n|+ cESS|Pst,d|+ cp,d(Pl,d − Ppv,d) . (6)

Being the state of charge at the beginning and the end of the day the same, the following
Equation holds:

Pst,n + Pst,d = 0 . (7)

Now, considering the constraints in Equation (4), it is possible to assign a value of P̄st to the
daytime storage power:

Pst,d = P̄st , (8)

and, consequently,

Pst,n = −P̄st , (9)

with the constraint:

0 ≤ P̄st ≤ Pl,d − Ppv,d . (10)

The optimization problem in Equation (6) becomes:

min
P̄st

J = (cp,n − cp,d + 2cESS)P̄st + cp,d(Pl,d − Ppv,d) . (11)

J is a line that is function of P̄st with slope (cp,n − cp,d + 2cESS). Three cases are possible:

1. cp,d − cp,n > 2cESS: the value that minimizes the cost function, considering the constraint (10),
is P̄st = Pl,d − Ppv,d, and the minimum of the cost function is (cp,n + 2cESS)(Pl,d − Ppv,d);

2. cp,d − cp,n < 2cESS: the value that minimizes the cost function is P̄st = 0 W and the corresponding
value of the cost function is cp,d(Pl,d − Ppv,d).

3. cp,d − cp,n = 2cESS: J is a constant signal with value cp,d(Pl,d − Ppv,d).

Considering the first case, the optimal solution is charging the storage during nighttime exploiting
the grid when the cost of energy is low and discharging the battery during the following daytime to
satisfy the demand when the cost of energy is high; in this case the nighttime and daytime grid power
values are:

Pg,n = Pl,d − Ppv,d , Pg,d = 0 W . (12)
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In the second case, the daytime demand is satisfied by the grid and the PV production while the
storage is not used. The corresponding nighttime and daytime grid power values are:

Pg,n = 0 W , Pg,d = Pl,d − Ppv,d . (13)

In the third case, any value of P̄st (satisfying the constraint) can be applied by the controller;
from the power balance, the following Equations hold:

Pg,n = P̄st , Pg,d = Pl,d − Ppv,d − P̄st . (14)

The considered simple example shows that the MPC approach with a prediction horizon of
one day provides a lower economic cost with respect to the heuristic approach if cp,d − cp,n > 2cESS.
Indeed, during periods of low energy prices, the MPC achieves the accumulation of the energy
needs that are subsequently required to feed local loads during periods of higher energy prices.
Notably, such control actions based on predictions of future price evolution and energy needs are not
possible by approaches performing on an instantaneous basis, like the considered heuristic one.

A simple scenario is considered above, in order to show how the predictive approaches like the
MPC can provide advantages in scenarios with high energy price variability. Now a more practical
example is presented considering a two-day simulation with constant loads and production during
daytime and a control sample time of 1 h. A battery with ideal converters implements the ESS,
with 13.5-kWh nominal capacity and 4-kW maximum output power, which represents a household-size
installation [33]. Real storage data have been used for this study, consisting of an expected cycle life of
5000 cycles and a cost of EUR 7030, which makes cESS = 5.21 ce/kWh. In this example, a constant
marginal revenue cs is assumed, equal to 8 ce/kWh.

In Figure 5, simulation results given by the MPC controller with a prediction horizon of 24 h are
reported in case cp,n = 9 ce/kWh (during night-time, yellow background) and cp,d = 22 ce/kWh
(during daytime, no coloured background). At the beginning of the simulation the state of charge is
equal to the lower bound value of 2 kWh. During nighttime the grid is exploited to charge the storage
when the cost of energy is low in both the considered days. During daytime there is no exchanged
power with the grid, and the demand is satisfied by storage and generation powers.
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Figure 5. Simulation results given by the predictive controller considering a simple scenario. On the
left power profiles are given, on the right the state of charge is reported: (a) Power Profiles; (b) State
of Charge.

In Figure 6, the results by the heuristic approach are shown. Since absorption is greater than
production during daytime, the storage remains at the lower bound level: the daytime demand is
satisfied by both the grid and generation powers.
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Figure 6. Simulation results given by the heuristic strategy considering a simple scenario. On the
left power profiles are given, on the right the state of charge is reported: (a) Power Profiles; (b) State
of Charge.

The overall economic costs obtained from the simulations for both the MPC and the heuristic
approach (HA) are reported in Table 1, and consist of energy purchase, energy sale and ESS
wearing cost (ESS).

Table 1. Economic costs in a simulation of two days considering a simple scenario.

Control Approach Energy Purchase Energy Sale ESS Wearing Overall Expenditure

MPC (e) 0.86 0 1 1.86
HA (e) 2.11 0 0 2.11

It is worth to note that MPC provides a lower overall cost than the heuristic strategy since the
daily energy cost difference is greater than 2cESS.

If cp,d = 22 ce/kWh and cp,d − cp,n < 2cESS the MPC and the heuristic results coincide with
a resulting overall economic cost of EUR 2.11.

In this Section, simple examples have been presented with constant production and consumption
during daytime, showing how variability of energy cost influences the performance of the predictive
solution with respect to heuristic approach. The authors have verified the validity of the key result
of the section with dynamical signals; the MPC controller charges the storage with the electrical grid
during the low price period in scenarios in which:

• The energy cost difference with the high price time exceeds 2cESS;
• A sufficient long prediction horizon is implemented in the MPC settings;
• The PV production together with the power that can be exploited from ESS are not sufficient to

satisfy the demand during peak period.

In the next section the MPC and the heuristic approaches are compared considering energy tariffs
currently available in representative Countries.

5. Case Study

In order to validate the proposed MPC logic, it has been set up a case study to investigate the
comparison of its performance under different end-user tariff schemes. Three different tariffs will be
applied in order to examine the benefits deriving from the application of the MPC approach. The first
rate is based on the TOU approach but with a low price variation between periods. The second tariff
is still a TOU rate but with a bigger difference in prices between periods. The third one, instead,
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is a dynamic pricing tariff, with a price changing in all time intervals. These tariffs are based on three
real retail rates being currently available in Italy, Australia and Great Britain.

The simulations presented below assume an aggregation of 100 users rated 3 kW connected to
the microgrid, each equipped with a storage unit with the characteristics introduced in the previous
section. Therefore, the aggregate ESS nominal capacity is 1350 kWh, whereas the maximum exchanged
power is±400 kW. The capacity of the storage refers to a typical size for the considered application [33].
Since the aim of this paper is the comparison of MPC and the heuristic approach in the control of
ESSs, the size was considered fixed in the two cases. Efficient distributed static converters have been
assumed, having constant overall losses equal to c = 3613.33 W. The estimated cycle life of the storage
is 5000 cycles and the aggregate price is EUR 703,000, i.e., cESS = 5.21 ce/kWh. The model sample
time is set to 60 s while the control procedure is applied every hour. Lower control sample times
can be taken into account, for example, with a higher variability of signals. The prediction horizon
is set to 36 h in the MPC procedure. It has been verified that a longer prediction horizon would
bring to not significant changes of the results at the cost of a significantly higher computational effort
while the overall economic cost rises with shorter prediction horizons. The prediction horizon set
to 36 h can be considered a good trade-off between reliable signals prediction and economic cost
minimization. For the sake of readability, the reported figures include a time period which lasts
five days (three working days and weekend) with measured generation and load data with a mean
generated PV energy of about 1018 kWh/day while the mean required energy by the users is about
2015 kWh/day.

Numerical comparison among the simulated scenarios is then made in a further section
considering the whole week period.

5.1. Flat Time-of-Use Rate - MPC Simulation

In this scenario, a TOU retail tariff with slightly changing retail price is applied. This price
structure is currently applied in the Italian retail market, and it is based on three time intervals: (i) high
consumption (midday hours), (ii) low consumption (night hours) and (iii) weekend. In this specific
case, as in most of the tariffs offered in Italy, prices in the second and third intervals coincide.

Italy was one of the first European countries to spread on a wide scale TOU tariffs, especially
considering that since 2012 this type of tariff is mandatory for all customers that did not choose
a supplier in the liberalized market (56% of all low voltage residential customers in 2018 are supplied
with these regulated conditions) [34–36]. Since this tariff was introduced by the Italian regulator
(ARERA), it aims at protecting the small consumers from the wholesale market price oscillations by
introducing a narrow price variation between the time intervals (in the range 1–2 ce/kWh).

As far as the supply price is concerned, in Italy is employed a state-run net metering scheme for
power injections of small generators. This means that the energy produced by a small PV plant, at first,
is sold at market price, then, at the end of the year, there is a settlement in favour of the prosumer based
on the injected and absorbed energy [37]. In this work, only the market price has been considered since
the heuristic and the MPC approaches do not take into account the whole injection and consumption
throughout the year.

In Figure 7, energy prices and the MPC simulation results are reported. The energy purchase
price, Figure 7a, is 26.42 ce/kWh from 8 am to 8 pm and 24.24 ce/kWh from 8 pm to 8 am during
working days. The revenue of energy varies on a daily basis and is dynamic with a low variation.
In the simulations the supply price for the upcoming day is updated everyday at 4 pm. In case there is
no information about the future sale price at a certain time in the prediction horizon, a mean value
based on the three previous days at the same time is given to the controller.

Power profiles and the state of charge are reported in Figure 7b,c, respectively. It is worth to
highlight that the storage is charged in case generation exceeds absorption, while during working
days the grid is not exploited during nighttime to charge the storage for daytime demand satisfaction
due to the small variation of the cost of energy between midday and night hours (the difference does
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not exceed 2cESS). In order to save economic costs, MPC exploits the storage during peak price hours
while during low price periods both grid and PV power (if available) are used to satisfy the demand:
the MPC smartly exploits the available stored energy discharging the ESS during the midday hours.
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Figure 7. MPC results with Italian prices in a simulation of five days: (a) Cost and revenue of energy;
(b) Power Profiles; (c) State of Charge.

5.2. Steep Time-of-Use Rate—MPC Simulation

In this scenario, a TOU tariff with larger variability in price is considered. This rate is currently
applied in the Australian electricity market (New South Wales). As in the previous case, three time
intervals are considered: (i) peak (midday hours), (ii) shoulders (morning, late evening and weekend)
and (iii) off-peak (night hours).

Unlike the previous case, significant differences are found between time intervals (up to
24 c$/kWh, [38]). This is due to the very structure of the Australian market. While in the Italian market
the demand at the peak is managed through ancillary services, in the Australian market the spot price
is free to vary with very wide margins (from negative prices up to 14,500 $/MWh, more than double
respect to the Italian market) [39]. Inevitably this reflects on the retail market, especially on the dynamic
tariffs such as the TOU one, since the retailer transfers part of the risk on the customers. Along with this
varying energy component price, Australian offers require a daily charge between 90 and 120 c$/day.
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As far as the supply price is concerned, Australia adopts a Feed-In-Tariff (FIT) policy, where every
retailer must offer a selling price to the prosumer. This price is a flat rate that varies between 9 and
12 c$/kWh. In this scenario, a FIT price equal to 12 c$/kWh and a fixed daily supply charge of
110 c$/day are applied.

In the simulations, an exchange rate of 0.6 e/$ is adopted. Figure 8 shows the simulation results
of MPC approach together with the energy prices. The cost of energy, Figure 8a, during working days,
has three different values:

• Peak: 23.76 ce/kWh (from 3 pm to 9 pm);
• Shoulder: 12.95 ce/kWh (from 7 am to 3 pm, from 9 pm to 10 pm);
• Off-peak: 10.86 ce/kWh (from 10 pm to 7 am),

while on the weekend there are two different periods:

• Shoulder: 12.95 ce/kWh (from 7 am to 10 pm);
• Off-peak: 10.86 ce/kWh (from 10 pm to 7 am).

In Figure 8b,c, simulation results given by the MPC controller are shown. In this case,
on Wednesday, due to the daily tariff difference, the storage is charged during off-peak time exploiting
the grid in order to satisfy the daytime demand during peak price period since the controller forecasts
lack of production in the prediction horizon; the same scenario also happens during the night between
Thursday and Friday with the aim of satisfying demand on Friday afternoon. During the night between
Friday and Saturday the ESS is charged in such a way as to only satisfy lower bound constraint since the
daily price variation does not exceed 2cESS on the weekend; with a daily variation of about 2 ce/day
one storage cycle would increase the overall economic cost.
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Figure 8. Cont.
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Figure 8. MPC results with Australian prices in a simulation of five days: (a) Cost and revenue of
energy; (b) Power Profiles; (c) State of Charge.

5.3. Dynamic Pricing Rate—MPC Simulation

In this scenario, a dynamic pricing rate has been applied taking as a reference the retail offer
proposed by a British retailer. Under this tariff, the price is set differently for each time interval in the
upcoming day, based on the wholesale market results. In particular, a high price in the late afternoon
period can be detected. This interval coincides with the most stressful hours for the grid (load peak)
and the highest prices in the wholesale market. In this way, the retailer shifts part of the risk on the
customer but, at the same time, offers saving opportunities for those users capable of shifting their load
or controlling in a smart way their storage systems. Moreover, the retail price may vary on a daily basis,
being updated everyday at 4 pm, according to the results of the day-ahead market. Such variations aim
at inducing a responsive behaviour in the demand, which could be exploited in presence of a storage
unit operating a load shifting over time. In this way, the tariff results even more dynamic and the
customer has all the information to plan its consumption for the next day. This tariff requires a fixed
daily charge of 21 p/day, while ensuring a price cap of 35 p/kWh.

Regarding the sale price, in April 2019 Great Britain ended the state-run FIT scheme [40].
Since January 2020, suppliers with more than 150,000 domestic customers must offer a rate for
the energy produced by users who installed a generator with a capacity up to 5 MW. In this case,
the retailer offers a flat rate of 5.5 p/kWh for the energy produced.

In Figure 9, energy prices and the MPC simulation results are reported. A rate exchange of
1.19 e/£ is adopted. It is worth to note that from 4 pm to 7 pm the cost of energy exceeds 30 ce/kWh,
with a daily variation that is higher than 20 ce/kWh. In the simulation, the ESS is charged in case of
excess of PV power with respect to the demand, while the MPC exploits the power grid to charge the
storage on Friday morning and during the night between Friday and Saturday, buying energy during
low price hours in such a way as to efficiently exploit only the storage during peak price period (in the
late afternoon).
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Figure 9. MPC results with Great Britain prices in a simulation of five days: (a) Cost and revenue of
energy; (b) Power Profiles; (c) State of Charge.

5.4. Heuristic Approach Simulation

Since the heuristic approach does not exploit future information about energy prices and predicted
signals, the reported simulations are the same ones for the three considered cases and are provided
in Figure 10. When the PV power is higher than the load, the excess power is driven to the storage,
while in case of lack of generation the storage is discharged or even it requires power to the grid if the
state of charge is equal to the lower bound constraint.
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Figure 10. Heuristic approach results in a simulation of five days: (a) Power Profiles; (b) State of Charge.

6. Results Comparison

In this section, based on the results obtained in the simulations shown above, observations are
made on the comparison of the two control approaches performances. Table 2 reports the economic
costs given by the predictive solution, the heuristic approach (HA) and the case in which no ESS
system is installed (No ESS) in the three considered scenarios, considering a time horizon of one week
including the five days discussed in the previous section.

Table 2. Economic costs in a simulation of one week in the three considered scenarios *.

Scenario 1: Flat TOU Rate Scenario 2: Steep TOU Rate Scenario 3: Dynamic Pricing

Approach Purchase Sale ESS Charge Overall Purchase Sale ESS Charge Overall Purchase Sale ESS Charge Overall

MPC (e) 2118.19 0 176.78 0 2294.97 996.11 0 349.44 462 1807.55 1073.46 0 296.18 174.97 1544.61

HA (e) 2132.69 0 227.18 0 2359.87 1272.38 0 227.18 462 1961.56 1405.08 0 227.18 174.97 1807.23

No ESS (e) 2496.53 −157.97 0 0 2338.56 1552.31 −146.91 0 462 1867.40 1774.19 −133.58 0 174.97 1815.58

* Negative cost values correspond to positive revenues.

In the simulations, the mean energy generated by the photovoltaic production is about
843 kWh/day and the mean energy absorbed by consumers is about 1971 kWh/day. The overall
economic costs related to the four columns of each scenario in Table 2 consist of the three terms defined
in Section 3.2 and the charge contribution explained in Section 5:

1. Purchase: economic cost for energy purchase;
2. Sale: revenue from the sale of energy;
3. ESS: storage wearing economic cost;
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4. Charge: charge contribution. The charge contribution values come from a fixed daily aggregate
charge of 66 e/day in Scenario 2 and about 25 e/day in Scenario 3, while in Scenario 1 there is
no charge.

Summing all the aforementioned components, the overall cost can be obtained and it represents
the cost incurred by the energy community to supply its members. Through the employment of a smart
ESS management logic (MPC), the expected reduction in the electricity purchase cost will provide a
clear advantage for the community members, in the form of a lower overall expenditure.

It is worth to note from Table 2 that in the MPC simulations, energy is never sold to the grid,
exploiting all available power from storage and production; this happens also in the heuristic strategy
simulation since the ESS never reaches the upper bound constraint. The economic cost for ESS wearing
is the same for the three scenarios in the heuristic approach case, since its algorithm implementation
does not depend on energy tariff. A great attention has to be given to the ESS wearing cost in the
predictive controller simulations. While in the first scenario the MPC cost results lower than the
heuristic approach value, in both the second and third scenarios the MPC cost is higher. This is justified
since in both cases the daily tariff (energy purchase price) variation results higher than 2cESS: the
predictive solution widely exploits the ESS using in a smart way the available resources in such a way
as to obtain a substantial economic saving from energy purchase; indeed the MPC saving with respect
to heuristic solution is 21.71% and 23.60% in case a steep TOU rate or dynamic pricing are applied,
respectively, while a very small advantage is obtained in the case of a flat TOU rate, 0.68%.

Paying attention on the overall economic costs, the MPC saving with respect to the heuristic
strategy is 2.75% in Scenario 1, 7.85% in Scenario 2 and 14.53% in Scenario 3. The results of the
comparison do not significantly change if the charge contribution is neglected: 2.75% in Scenario 1,
10.27% in Scenario 2 and 16.09% in Scenario 3.

In Scenario 1, where there is a low daily variation of the purchase price, the lowest saving is
obtained; in Scenario 2, introducing a higher variability in the purchase price, a greater saving is
achieved while in Scenario 3 the highest result is obtained, as a consequence of a larger variability in
the purchase price.

When compared to heuristic solution, the predictive approach improves the performances as
much as a higher daily variation of the cost of energy is adopted by the retailer. Moreover the MPC
proves to be doubly smart in optimization; on one hand, it decides when to charge the ESS exploiting
the grid in case the purchase price is sufficiently low, on the other hand, it discharges the storage
during the daytime price peak.

The authors have verified that, when compared to the heuristic approach, the MPC saving
numerical results change with scenarios considering different generation and absorption profiles and
modified parameters; however, simulations confirm that MPC provides a better solution than the
heuristic approach with higher advantages as the daily price variation increases. Of course, the final
extent of the obtained advantages depend on the actual signals and parameters.

Considering the case of a microgrid endowed with only PV units, in which energy is sold to the
grid whenever production exceeds the load, the MPC achieves a saving of 1.86% in Scenario 1, 3.20%
and 14.92% in Scenario 2 and Scenario 3, respectively; it is worth highlighting that the negative cost
values reported in Table 2 in case no storage is installed (No ESS) correspond to positive revenues
(a net positive income is obtained if total revenues are greater than total costs).

It is worth to note that the comparison of the two control modes and the case in which no ESS
system is installed depends on generation and absorption profiles, on the value of cESS and on system’s
losses. In detail, the MPC advantages increase if the ratio between the generated and absorbed
energy rises and when cESS and ESS losses decrease. An analysis of the investment on end-users
side, considering all possible working conditions and different options for the storage installation is
beyond the scope of this work. However, the future trend of diffusion of renewable energy resources,
ESS realization technology improvement and decrease of batteries price will make the use of predictive
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approaches for the control of ESS systems desirable in order to obtain consistent economic cost savings,
offering an important service for the aggregate prosumers.

7. Conclusions

In this paper, an advanced control methodology called model predictive control is used to
minimize the economic cost of an energy community of prosumers by predicting future system’s
dynamics and future aggregate production and load. The predictive approach is compared to a
heuristic strategy that acts in an instant manner, without any information about future, in three
different scenarios considering current retail tariffs available in Italy, Australia and Great Britain
characterized by increasing retail price variability. The MPC always obtains a lower cost than the
heuristic strategy: the cost saving is proved to increase with the rise of price variation during the
day. A key observation regards the MPC smart optimization procedure: on the one hand it decides
the charging time of the storage exploiting the grid in case the purchase price is low enough, on the
other hand it discharges the storage during the daytime price peak. Simulations conducted in this
study confirm that the MPC, compared with the heuristic approach, allows a better exploitation of
existing ESS, taking advantage of the time varying rates that emphasize this effect, indicating that retail
tariffs reflecting the actual market price trend allow enhancing the end-users’ flexibility as an ancillary
service for the system operator. The comparison of MPC numerical results with the case in which the
microgrid is provided only with PV production confirms the validity of predictive approaches for the
control of energy storage systems in a future perspective.
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