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Abstract: This paper proposes an approach to develop building dynamic thermal models that are
of paramount importance for controller application. In this context, controller requires a low-order,
computationally efficient, and accurate models to achieve higher performance. An efficient building
model is developed by having proper structural knowledge of low-order model and identifying its
parameter values. Simplified low-order systems can be developed using thermal network models
using thermal resistances and capacitances. In order to determine the low-order model parameter
values, a specific approach is proposed using a stochastic particle swarm optimization. This method
provides a significant approximation of the parameters when compared to the reference model whilst
allowing low-order model to achieve 40% to 50% computational efficiency than the reference one.
Additionally, extensive simulations are carried to evaluate the proposed simplified model with solar
radiation and identified model parameters. The developed simplified model is afterward validated
with real data from a case study building where the achieved results clearly show a high degree of
accuracy compared to the actual data.

Keywords: building model; 3R2C model; parameters identification; Crank-Nicolson finite difference
method; dynamic building simulation; particle swarm optimization; thermal network model

1. Introduction

In the current situation, buildings in EU countries consume more primary energy than other
sectors such as: transportation and industry [1]. Rapid increase in the need of new buildings due
to the growth on population growth and mass migration to the urban areas accounts for increased
energy demand in the buildings. Making all new buildings as nearly zero-energy buildings (NZEB),
and retrofitting them structurally and operationally will have a greater impact on the reduction of
primary energy consumption [2–4].

There has been growing interest in the development of multi-objective controllers [5,6] to improve
the overall performance of buildings. A Building Automation System (BAS), or a Building Automation
Control System (BACS), is a intelligent controller aiming to obtain comfort, and energy efficiency in the
building [7]. Indoor comforts and energy consumption are affected by various parameters, particularly
occupants behavior [8], construction type [9], and weather conditions [10]. The occupants behavior and
environmental conditions are volatile in nature. They cause unexpected changes in indoor comfort and
could result in excessive energy consumption [11,12]. Hence, an intelligent controller should be able to
consider occupancy behavior along with weather conditions to predict and control indoor comfort
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while optimizing energy consumption. A promising controller for BACS is Model Predictive Control
(MPC). MPC applied to Heating, Ventilation, and Air-Conditioning (HVAC) has shown excellent
performance abilities to achieve comfort and energy optimization in buildings. MPC has the ability
to make a better trade-off between indoor comfort and energy consumption of buildings [13] while
considering constraints (occupants behavior and weather conditions).

The performance efficiency of MPC applied for HVAC mainly depends on accuracy and
computational efficiency of the building model [14–16]. The building model (zone model) should
replicate dynamics of the heat transfer in building, able to predict zone heat loads/air temperatures as
a function of controllable (HVAC systems) and uncontrollable measurable inputs (weather, internal
heat gains, solar gains, etc.), and simplified enough to connect to optimization techniques.

Three fundamental solutions to develop simplified models are data-driven method,
software-based model and resistor-capacitor (RC) thermal networks. MPC developed based on
thermal RC network models have been successful in controlling the HVAC systems in building [16].
This study focuses on development of building model using thermal RC networks and its
parameters identification.

Purpose of developing a thermal RC network method is to realize a reduced order model to
represent the building thermal behavior [15]. Here, the idea is to represent a thermal system as a
linear electrical circuit using the thermal-electrical analogy principle. Then the thermal network model
represented as electrical circuit can be solved using state-space equations. Thermal - Electrical system
analogy is given in Table 1.

Table 1. Thermal to Electrical system analogy.

Thermal System Electrical System

Source Temperature (T) Voltage (V)
Heat flux (φ) Current (I)

Element
Thermal conductivity (k) Conductivity (σ)
Thermal resistance (R) Electrical resistance (R)
Thermal capacity (C) Electrical capacitance (C)

The equivalent thermal network circuit of a zone is determined by incorporating models of
building envelope such as: walls, windows, and internal mass, etc. In thermal RC network model,
the building is split into a network of nodes with interconnecting paths, through which the energy
flows [17,18]. The application of this method differs primarily based on the choice of nodes on which
energy balance is applied. These model can be developed for two categories:

• Model for a building envelope (walls, floors, roofs, etc.). These models are then used to develop
complete zone model.

• Model for a complete zone.

Whilst, there is not huge difference between two methods, the model for a complete zone is
developed by aggregating the individual envelope models into a single model. Whereas, the specific
model for building envelope are significant in knowing surface temperatures, analysis of individual
envelope dynamics, etc. The building envelop thermal network models are normally represented by
2R1C or 3R2C or 4R2C networks [19]. Furthermore, the parameter (resistors and capacitors) values of
the thermal network model has significant impact on accuracy of the model performance.

These parameters identification can be achieved by two ways: analytical [19,20] and numerical
approach. In analytical method, parameter values is obtained by solving set of algebraic equations and
approximation of parameters’ value by optimization techniques in numerical methods. Advantage
of the numerical approaches is that they have higher accuracy as a result of the optimization process.
Whereas, analytical approaches have limited applicability for few combinations [21]. Xu and Wang [22],
introduced an approach to identify parameter values by using genetic algorithm. Fraisse et al. [19],
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proposed a technique to evaluate resistors and capacitors values analytically, then analysed the
performance of various RC combinations (2R1C, 1R2C, 3R2C, and 3R4C). These parameter values can
be used to develop a reduced order model to realize thermal behavior of buildings while considering
radiative and convective loads from the internal and external sources. In many previous studies,
simplified model approaches focus on developing the system model of reduced system of equations
which are computationally faster than the conventional models [23]. However, every change in the
definition of the associated energy systems, can lead to a totally different model. Thus, the model
simplification procedure has to be performed again in this case.

This paper proposes a method for parametric identification of thermal network model (3R2C)
by using particle swarm optimization (PSO) algorithm [24]. A simplified model is then developed
these identified values for predicting the thermal dynamics of a zone. A reference model is developed
using well established Crank-Nicolson finite difference method to represent the energy flow through
the building envelope [25]. In literature, parameters are identified by comparing simplified model
with the reference model response for a step excitation of input variables. However, in reality the
input variables vary dynamically, for example the output temperature varies periodically. Therefore,
in this paper, a step and a periodic input excitation given and responses are then compared between
reference model and second-order thermal network models. Subsequently, PSO algorithm is applied
to minimize the root mean square error (RMSE) between the reference and thermal network models.
The calibrated model with the optimized parameter values has actual dynamics of the building
envelope, and 40% to 50% computationally faster than the reference model. Using this approach a
simplified model developed for a classroom in case study building (container building) and predicted
indoor temperature of the model is validated against the real data obtained from the container building.

2. Parameters Identification

The proposed method involves the reference model development for second-order thermal model
validation and its parameters identification. Three types of major heat transfers occur in building
envelope are conduction, convection, and radiation (see Figure 1). The effects of these heat transfers
to be considered while developing the model. The conduction heat transfer responsible for higher
percentage of heat transfer compare to the other two processes.

Δx Δx Δx Δx

Indoor temperature,
            Tin

Outdoor temperature, 
          Tout

i = 0 i = 1 i = 2 i = N-1 i = N

Solar radiation

Reflected  radiation

Convection

Convection

Longwave 
radiation

L

Layer1 Layer2 Layer 3

Figure 1. Heat flow through wall.



Energies 2020, 13, 2899 4 of 23

2.1. Reference Model

The conduction heat transfer in a wall under steady-state conditions can be defined using Fourier’s
law of heat conduction [26]:

Q̇cond = −kA
dT
dx

(W) (1)

where Q̇cond—conduction heat transfer through building envelope (W),
k—thermal conductivity of the material (W/m·K),
T—temperature (K),
A—surface area of the wall (m2), and
x—spatial coordinate (m)

The thermal energy flow through multilayer homogeneous wall is shown in Figure 1. Equation for
the heat transfer through building envelope can be obtained by making these assumptions:

• the conduction heat transfer is considered to be one-dimensional due to the high ratio of height to
thickness of the building envelope. This lead to maximum heat transfer in one direction,

• there is no heat source or sink within the wall,
• effects of thermal bridge are neglected, and
• properties of the building materials are independent of temperature.

The temperature at any given point is the function of space x and time t, i.e., T = T(x, t).
By making above assumptions the heat transfer Equation (1) becomes:

∂T(x, t)
∂t

= α
∂2T(x, t)

∂x2 for 0 < x < L, t > 0, (2)

where α = k
ρCp

—thermal diffusivity (m2/s),
L—thickness of the wall (m),
k—thermal conductivity of the material (W/m·K),
ρ—density (kg/m3),
Cp—heat capacity of the material (J/kg·K).

Equation (2), requires to be solved with boundary conditions at two surfaces of the envelope,
and initial conditions. Due to the effect of movement of air near the wall surfaces results in convective
heat transfer, hence convective boundaries are formulated as follows:

k
(

∂T
∂x

)
x=0

= hc[Ts(t)− Tx=0(t)]

k
(

∂T
∂x

)
x=L

= hc[Tx=L(t)− Ti(t)] (3)

The partial differential equation (PDE) (2), along with convective boundary conditions (3), can be
solved analytically, by using well established methods: Laplace transforms or Separation of variables
or others. However, heat transfer through building envelope is time-dependent, and is generally
difficult to model using analytical approach. The finite difference Crank-Nicolson method is therefore
implemented to approximate solutions at finite time and space, due to its proven ability to solve
PDEs [25].

Crank-Nicolson Finite Difference Model (CNFDM)

In order to formulate heat transfer model using CNFDM , the multilayer wall of Figure 1 is
discretized into equal segments of spatial width ∆x along its thickness. Therefore a set of algebraic
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equations are developed by discretizing the governing Equations (2) and (3) corresponding boundary
conditions, using unconditionally stable CNFDM. The general form of CNFDM is detailed as follows:

T(t+∆t)
i − T(t)

i =Ψ[(T(t+∆t)
i−1 − 2T(t+∆t)

i + T(t+∆t)
i+1 ) + (T(t)

i−1 − 2T(t)
i + T(t)

i+1)] (4)

where Ψ = k∆t/2ρC∆x2,
Equation (4) applied for interior nodes is expressed as:

(2 + 2Ψl)T
(t+∆t)
i = (2− 2Ψl)T

(t)
i + Ψl(T

(t)
i−1 + T(t)

i+1 + T(t+∆t)
i−1 + T(t+∆t)

i+1 ) (5)

where Ψl = kl∆t/2ρlCl∆x2 for sublayers l = 1, 2, 3, 4...n, discretized equal segments of the wall.
Nodes at the boundary of two intermediate layers (node between i = 2 and i = 3 in Figure 1),
the thermo-physical properties of these two material layers have an impact on the transient heat
transfer. The corresponding equations from CNFDM approach are as follows:

(2 + Ψl1 + 2Ψl2)T
(t+∆t)
i =(2−Ψl1 − 2Ψl2)T

(t)
i + Ψl1T(t)

i−1 + Ψl2T(t)
i+1 + Ψl1T(t+∆t)

i−1 + Ψl2T(t+∆t)
i+1 (6)

where Ψl1 = λl1∆t
(ρl1Cl1+ρl2Cl2)∆x2 and Ψl2 = λl2∆t

(ρl1Cl1+ρl2Cl2)∆x2 .
The convection boundary conditions at node x = 0 and x = L are formulated as listed below:

(2 + 2Ψ + 2H)T(t+∆t)
1 =(2− 2Ψ− 2H)T(t)

1 + 2Ψ(T(t)
2 + T(t+∆t)

2 ) + H(T(t)
e + T(t+∆t)

e ) (7)

(2 + 2Ψ + 2H)T(t+∆t)
N =(2− 2Ψ− 2H)T(t)

N + 2Ψ(T(t)
N−1 + T(t+∆t)

N−1 ) + H(T(t)
e + T(t+∆t)

e ) (8)

where H = hc∆t/ρC∆x,
Te = ambient temperature for boundary at x = 0, and zone air temperature for boundary at x = L.

The set of CNFDM equations of energy conservation can be expressed in tridiagonal matrix.

AT(t+∆t)
1..n = BT(t)

1..n (9)

where A is the matrix with future values and B is the matrix with present values with respect to time
coefficients (t + ∆t) and (t), respectively. T is the temperature vector at (t) and (t + ∆t). By applying
Thomas algorithm with the given initial and boundary conditions, the future temperature values are
determined [27].

2.2. 3R2C Thermal Network Model

The thermal network model approach is used to simplify the complex modeling of building
dynamics, and to obtain reduced order simplified models of the buildings based on state-space
equations.The 3R2C network model consists of three R’s and two C’s representing resistances and
capacitances of composite homogeneous wall, respectively. Lorenz and Masy [28] proposed among
the early implementations of a thermal network model of configuration 2R1C (two resistors and one
capacitor). Gouda et al. [21] proposed improvised model of configuration 3R2C to obtain accurate
models by non-linear optimization. The paper concluded that 3R2C model with proper parameter
values is best suited for practical applications in comparison with 2R1C model.

Generally, thermal network models for envelope are modeled as 2R1C or 2R2C or 3R2C
network [29–31]. Nevertheless, application of 3R2C model can be seen regularly in the literature
due to its performance accuracy and low computational cost. In 3R2C model (see Figure 2), R1, R2,
and R3 are resistors of wall thermal resistivity, and C1 and C2 are capacitors representing thermal
capacitances of the composite homogeneous wall. The degree of differential equations is equal to the
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number of capacitors in the network. Consequently, second-order differential Equations (10) and (11)
are obtained from 3R2C model.

dTc1

dt
=

Tout

R1C1
− Tc1

R1C1
− Tc1

R2C1
+

Tc2

R2C1
(10)

dTc2

dt
=

Tc1

R2C2
− Tc2

R2C2
− Tc2

R3C2
+

Tin
R3C2

+
Qin
C2

(11)

These set of equations can be expressed using state-space formulation:

Ṫ = AT + BU

y = CT + DU (12)

where T is the temperature vector, U is the input vector, y is the output vector, A is the state matrix
coefficients related to state vector, B is the input matrix values related to input vector, C is the output
matrix values related to state vector, and D is the direct transition matrix.

Figure 2. Simplified thermal network model - 3R2C.

2.3. Particle Swarm Optimization

Composite multilayer walls have different thermo-physical properties for each layer, thus setting
the values of resistors and capacitors of a thermal network model to replicate dynamics of the reference
model is a difficult task. As these values have significant impact on performance of the model, it is
essential to obtain correct values for each resistor and capacitor of a 3R2C model that emulate the real
dynamics of a building envelope.

In this study, a PSO algorithm is applied for parameter values identification of a thermal network
model. PSO is a population-based stochastic algorithm [32–34], and is suitable for discontinuous
non-linear systems with convergence behavior and robustness as key features. The particles of
PSO update themselves with the velocity, they even have a memory of the preceding location.
In addition, PSO particles have individual best position and move towards global best position by
sharing information with other particles. This characteristics makes PSO to converge faster compared
to other algorithms for example GA (crossover) [35]. Therefore, PSO can be found well suited to
parametric optimization processes when compared to other evolutionary algorithms.

A constrained PSO algorithm was developed to identify model parameter values by minimizing
the RMSE between reference and 3R2C thermal network models. The RMSE is minimized by using
objective function (13).

min f (x1, x2, x4) =

√
∑n

k=1(T f dmk − Tsimk)2

n
(13)
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subject to constraints:

x1 + x2 + x3 = 1; x1, x2, x3 > 0

x4 + x5 = 1; x4, x5 > 0;

1− (x1 + x2) > 0; 1− x4 > 0 (14)

R and C values of 3R2C model are obtained from below expressions:

R1 = x1Rtotal , R2 = x2Rtotal , R3 = x3Rtotal ,

C1 = x4Ctotal , C2 = x5Ctotal

Rtotal =
M

∑
j=1

Rlayer,m , Ctotal =
M

∑
j=1

Clayer,m (15)

where Rtotal is the total resistance and Ctotal is the total capacitance values of composite wall,
f (x1, x2, x4) = fitness function to be minimized, T f dmk and Tsimk = step and periodic input response
temperature at interval of (k).

A number of random swarm particles are generated to initialize the search for an optimal fitness
of the PSO algorithm. These particles are updated by their personal best ‘pbest’ and generation’s global
best ‘gbest’ values at each iteration. The particles values are updated based on the equations:

Vk+1
i,j =wVk

i,j + c1r1(Pbestk
i,j − Xk

i,j) + c2r2(Gbestk
j − Xk

i,j)

Xk+1
i,j =Xk

i,j + Vk+1
i,j (16)

where Pbestk
i,j = personal best jth generation of ith particle,

Gbestk
j = global best of jth generation,

Vk+1
i,j = updated velocity of the particle,

Xk+1
i,j = updated position of particle.

The constrained PSO is influenced by a number of parameters, namely number of particles,
acceleration coefficients, inertia weight, and number of iterations. These parameter values were
selected based on [36].

2.4. Simulation Results of Parametric Identification

In this study 3 types of building envelope datasets are used to demonstrate the suitability
of proposed parametric identification approach. These datasets are light, medium, and heavy
weight/thermal mass composite walls. Low thermal mass construction walls typically consist of
either steel or timber layers with insulating materials. Typically, low mass wall systems are at least
partly pre-assembled off-site this indicates that they are pre-fabricated in a industry/factory. With this
option we can construct building quicker than the heavy mass walls, as the construction work is less
weather dependent. Low mass walls have lower amount of heat storage ability. Whereas, heavy mass
walls generally built of precast concrete or concrete blocks. Properly insulated heavy mass walls can
store significant amount of heat from sun, thus minimizing cooling and heating load while enhancing
indoor comfort. Many of the conventional buildings are built using heavy mass walls. New buildings
are recently using low mass walls. Therefore, the parameters identification approach is applied to
different thermal mass walls.

The multilayer wall layer’s thermo-physical properties and wall composition details are provided
in Table 2. These thermo-physical properties and composition of layers data are obtained from the
ASHRAE Handbook of Fundamentals [37]. In order to identify the parameter values of thermal
network model and to validate the its dynamics, a reference model is developed. In addition, two other
thermal network models (model (I) and (II)) are developed for comparison purposes. The resistors
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and capacitors values of model (I) are assigned in such a way that the total resistance and capacitance
values are allocated equally for R1, R2, R3, C1, and C2 parameters. Whereas, the values of resistors
and capacitors of model (II) are assigned same as the building envelope layer’s thermal resistance and
capacitance meaning that the layer (outside) value is assigned to resistor R1. Capacitors C1 and C2

values are allocated in the same way.
Furthermore, the CNFDM-based reference model is divided into 80 equal segments to have higher

accuracy with initial conditions T(x, t) = 0 at t = 0, ∀x ∈ [0, L], boundary conditions T(x, t) = u(t)
∀t > 0, at x = 0 and x = L, T(x, t) = Te(t), ∀t > 0. A unit step and periodic input is given
to the models (optimized 3R2C model, model (I), and model (II)) and output indoor temperature
is measured.

The minimization of the objective function by PSO algorithm is shown in Figure 3. The minimized
fitness function value is plotted against the particle generations in which each generation consists of
100 particles. Initial particles are randomly generated within the bounded values, hence few particles
in first few iterations have violated the given constraints, those are omitted in the plot.

0 200 400 600 800 1000
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn
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s f
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ct
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n 

f

Figure 3. Minimized value of objective function for medium weight wall.

The developed models were simulated in Python using the following computational facilities:
Intel Core i5-7300U, CPU 2.60 GHz and 8 GB (RAM) under operating. Accordingly, the average
execution time of PSO algorithm is 30.33 seconds (1000 maximum iterations). The 3R2C thermal
network model was around 40% to 50% computationally faster over reference model.

The comparison between temperature responses of heat conduction transfer of the reference model
and the other 3 thermal network models for different thermal mass multilayer walls is represented in
Figures 4–6. For low thermal mass wall, the results in Figure 4 show that the temperature response
of optimised model has great fitness to the reference model characteristics. However, the model (II)
has acceptable accuracy but the model (I) has taken more time to reach stability with big difference in
response compared to the reference model response, hence produces large errors in real applications
when there is dynamic change in temperature. Meanwhile, the model (II) of the low thermal mass wall
has shown relatively good accuracy with reference model. The parameter values of the model (II) are
same as of the 3 layers in the low mass wall. The results show that for low thermal mass model (II) can
be applied in real time applications due to its acceptable performance. While, in the case of accuracy is
very important, optimized model is the best solution. The root mean square error (RMSE) for different
construction class walls are given in Table 3.

In the case of medium and heavy thermal mass walls, they have 4 layers, and the parameter
values of model (II) are assigned as follows: first layer resistance value to R1, combined resistance
value of second and third layer to R2, and third layer value to R3. The temperature response of the
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model (I) has poor fitness with reference model for these two walls. In Figure 6, the model (II) of
heavy thermal mass wall has followed the trajectory of reference model in both step excitation and
periodic excitation but has poor fitting with the medium thermal mass wall (see Figure 5). Furthermore,
the temperature response of model with optimized parameter values has closely followed the reference
model response dynamics in both cases of step and periodic excitation. In this context, the proposed
3R2C model with optimal parameter values is strongly recommended because of its increased accuracy
and computational efficiency.

Figures 4–6 shows that the time-lag difference between the different thermal mass walls, the time
response of the model is less in low mass wall compare to other two walls. The time-lag in the heavy
mass wall is almost 2 days to reach the steady state.
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Figure 4. Temperature dynamics of reference, optimized and comparison models for light weight wall.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(Days)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
m

pe
ra

tu
re

 (°
C)

Temperature profile of medium-weight wall (step input)

Model I
Model II
Optimized model
Reference model

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time(Days)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
m

pe
ra

tu
re

 (°
C)

Temperature profile of medium-weight wall (Periodic temperature input)

Model I
Model II
Optimized model
Reference model

Figure 5. Temperature dynamics of reference, optimized and comparison models for medium
weight wall.
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Table 2. Multilayer wall classification, thermal properties, and optimized R and C values.

Construction Class

Thermal Properties
Parametric Values R (m2·K/W and C (kJ/m2·K)

Thickness Conductivity Density Specific Heat

mm W/(m·K) kg/m3 kJ/(kg·K) Rtotal Ctotal R1 R2 R3 C1 C2

Light-weight (LW)

3.1498 76.852 0.29477 2.7812 0.07383 20.694 56.157Stucco 25.00 0.692 1858 0.84
Insulation (batt) 125.00 0.043 91 0.96
Plaster/Gypsum 20.00 0.727 1602 0.84

Medium-weight (MW)

3.8238 183.724 0.0937 3.6735 0.0565 69.664 114.059
Brick 101.60 0.89 1920 0.79
Insulation board 50.80 0.03 43 1.21
Air space 50.00 0.02514 1.205 1.00
Gypsum 20.00 0.727 1602 0.84

Heavy-weight (HW)

2.1917 402.102 0.1417 1.9018 0.1481 205.196 196.906
Brick 101.60 0.89 1920 0.79
Heavyweight concrete 203.2 0.53 1280 0.84
Insulation board 50.80 0.03 43 1.21
Gypsum 20.00 0.727 1602 0.84
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Figure 6. Temperature dynamics of reference, optimized and comparison models for heavy weight wall.

Table 3. Root mean square error (RMSE) between reference and simplified thermal network model.

Construction Class Step Excitation Periodic Excitation

Light-weight(LW) 1.239 × 10−3 1.651 × 10−2

Medium-weight(MW) 1.311 × 10−3 1.365 × 10−2

Heavy-weight(HW) 1.495 × 10−3 2.208 × 10−2

Comparison with Conduction Transfer Function (CTF) Model

There are various methods to simulate the performance of a building. These methods can be put
into two categories: (1) Analytical, and (2) Numerical. In this paper, numerical finite difference method
has been chosen to develop reference model. Many simulation tools are developed based on the
finite difference approach [38]. However, many recent well established simulation tools (EnergyPlus,
TRNSYS, etc.) use analytical conduct transfer function (CTF) method to perform calculations.

The parameters of simplified thermal network model are identified by comparing it with the finite
difference model. Furthermore, a comparison simulation has been conducted to compare thermal
network performance with the analytical conduction transfer function method. The CTF method
was introduced by Mitalas and Stephenson [39]. A transient conduction calculations performed on
multilayer wall using CTF method is detailed in [40], all coefficients for this wall was provided along
with cooling load output, and input outdoor and indoor temperatures. Applying the parameters
identification technique detailed in Section 2 on example wall, the resistor and capacitor values are
obtained. The simplified thermal network model is then developed for the example wall and compared
with the CTF model in Figure 7. A very good agreement can be noticed between optimized thermal
network and CTF model. The symmetric mean absolute percentage error (sMAPE) between the both
models was found to be 0.02008 (≈20%). The developed parametric identification method based on
CNFDM, presents very good prediction accuracy when compared with CTF model.
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Figure 7. Comparison between CTF and simplified thermal network model.

3. Detailed Modeling Approach for a Case Study Building

3.1. Building Description

The CESI smart container building is a multi-purpose building, the rooms are used as classrooms
and laboratories, located in the CESI Campus of Nanterre, France. This building is constructed under
the program French Programmes d’Investissement d’Avenir (PIA-France). The building meets the
French energy standard BBC (Bâtiment à Basse Consommation) [41].

Figure 8a shows the CESI smart building (Nanterre, France). It is an intelligent and connected
building built in partnership with companies CISCO, Philips Lighting and Vinci Energies. The 200 m2

building is made on the basis of 16 recycled maritime containers. The SMART Building integrates
different technologies and data sensors to detect various physical parameters. These include LED
lights powered and controlled by POE (Power Over Ethernet), opening sensors, POE temperature
and humidity sensors in each room, POE cameras and the presence of a weather station on the roof.
Thus, the demonstrator allows the collection of data on brightness, temperature, humidity, presence,
sash opening, energy consumption and occupancy. The server is capable of controlling the systems
and modifying the thermal and luminous ambience’s. The heating and cooling energy is supplied
to indoors through installed heat pump and ventilation system. The building is south facing with a
door opening, and south wall is almost covered with windows. A classroom was selected as a case
study room (see Figure 8b). The objective is to develop a simplified thermal network model using the
parametric identification and validate it against the measured temperature values. Similar approach
can be applied to other rooms as they are similar to the case study one.
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(a) CESI smart building.

(b) Case study room layout.

Figure 8. CESI smart building and the case study room.

3.2. Thermal Network Model—CESI Smart Building

The heterogeneous nature of buildings and parameters that influence its performance makes
modeling of a zone (case study room) highly complex. Particularly, modeling of building using
analytical approach is infeasible because of its non-linear behavior.

The thermal network approach discretize the complex building into multiple zone, where each
zone is assumed to have properly mixed well and the building walls have uniform temperatures
throughout its volume. The zones are then modeled by means of the network of nodes with
interconnecting heat flow paths. The heat transfer can occur through conduction, convection,
and radiation. Heat gains from different means: internal, solar radiation, etc,. are lumped in the
thermal network nodes, and the heat storage in building thermal mass is in thermal capacitances.
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Temperature and heat flows between the nodes are determined by energy balance approach as
described in Section 2.2. The resultant formulations are a set of coupled ordinary differential and
algebraic equations that can be solved using the state space equation.

The simplified thermal network model was developed by making the following assumptions:
• heat conduction occurs through the building envelope,
• convective heat transfer at building envelope surfaces and floors,
• solar gains through windows and solar radiation absorption in external walls,
• radiation heat transfer within the zone walls,
• effect of thermal bridge is neglected,
• heat storage is not considered in windows, and
• impact of wind velocity variation on the convective heat exchange coefficient of the wall surface

is neglected, hence the convective resistances are considered constant.

The CESI container building external walls are built using variety of materials for different sides:
east, west, north and south. Therefore, 3R2C model is developed individually for each side of external
walls, floor, and roof.

Considering all the above hypothesis, a thermal model is developed with 6 sets of 3R2C networks
and the equations obtained by energy balance at each node from the schematic shown in Figure 9:

Cz
dTz

dt
=∑

T1j − Tz

R1j
+

(Tamb − Tz)

Rwin
+ Q̇in

+ Q̇s,wi + Q̇heat (17)

C1j
dT1j

dt
=

T2j − T1j

R1j2
+

Tin−1j − T1j

R1j3
(18)

C2j
dT2j

dt
=

Tou−1j − T2j

R1j1
+

T1j − T2j

R1j2
+ Q̇s,wj (19)

Q̇s,w =αw Aw q”
rad (20)

where, Cz is the zone air capacitance, C1j is the wall capacitance indoor side, C2j is capacitance at
outdoor side of the wall, Tamb is ambient temperature, Q̇heat,pump is heating or cooling energy supplied
from heat pump, Q̇vent is heating or cooling energy supplied from ventilation system, Q̇in is heat gains
from occupants and electrical appliances, Q̇s,wi is solar gains through windows, Q̇s,wj is solar gains
from the building external walls, and Q̇heat is total supplied energy from Q̇heat,pump and Q̇vent.

The first term in right hand side of (17) represents heat transfer through the envelope (external
walls), these external walls are exposed to outside temperature and solar radiation. The second
term represents heat transfer through the windows, which allow solar radiations directly to the zone.
The internal heat gain Q̇in is the sum of all internal gains (inhabitants and electrical equipments) and
Q̇heat is the sum of energy supplied from heating equipments (heat pump and ventilation system).
The model output is zone temperature Tz, and the influential parameters of zone temperature are:
ambient air temperature, internal free gains, solar radiation. Internal gains from the occupants can
be exploited to heat the zone. Since, the chosen room is a class room, the students (adults) will
be mostly sitting and reading. The assumed heat gains from one adult student is equal to 116 W
in summer and 114 W in winter [37,42]. The measurable parameters and data collected from the
building include outdoor air temperature, indoor air temperature, global horizontal irradiance, relative
humidity, ventilation air flow rate, and occupants attendance data. The measurement ranges and
associated error ranges of the installed sensors are listed in Table 4.

The model consists of overall 13 nodes: two nodes for each envelope wall, floor, roof and a
zone node. The installed lighting appliances in the room is low energy consumption hi-tech light
systems, thus the gains from these light systems are neglected. However, heat gains from student’s
laptop is considered during the simulation. The assumed heat gains from one laptop equalled
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30 W [37], and there are no other electrical systems installed in the classroom. Furthermore, the selected
controllable input and measurable disturbances are: outside air temperature, internal free gains and
solar gains. Heating system is the only controllable input in the model. This thermal network model
can be used for real-time HVAC control applications. For example, model predictive controller is
applied for comfort and energy optimization based on the simplified thermal network model [13].
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Figure 9. Equivalent thermal network model of the case study building.

Table 4. Measurement and associated error ranges of sensors.

Sensors Measurement Range Error Range

Outdoor temperature −40 ◦C to +75◦C ±1◦C
Indoor temperature −20 ◦C to +70◦C ±1◦C
Indoor illuminance 50 lx to 20,000 lx ±20%
Relative humidity 5% to 95% ±5%

The formulation of the thermal network model of the building in state-space representation is
given as follows.

X(k + 1) = AX(k) + Bu(k) + B1d(k)

y(k) = CX(k) + Du(k) + D1d(k) (21)

The model parameters are determined from the approach given in Section 2. In general, some
of the measurable but uncontrollable inputs are easily measurable (directly) or readily available
concerning to the building location such as: ambient temperature. However, other inputs such as solar
irradiation are not readily available or measured as global horizontal irradiance. Hence, a detailed
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analysis on the solar irradiation incident on the building envelope is essential. To calculate the total
irradiation energy on the building envelope, it is needed to obtain radiation energy on each surface.

In the literature, many studies were conducted to calculate the solar irradiation incident on the
tilted surface by taking account of the isotropic diffuse sky model. In isotropic diffuse sky model,
three components of radiations are considered: isotropic diffuse, diffused radiation reflected from the
ground, and beam radiation [43]. The isotropic model is straightforward and calculation of radiation
on tilted surfaces becomes simple. However, it fails to take account of circumsolar diffuse and/or
horizon brightening components on a inclined surface, this results in the underestimation of solar
radiation (around 10 to 15% ). More advanced approaches like Hay–Davies–Klucher–Reindl (HDKR)
uses anisotropic sky models, that consist three components: isotropic, circumsolar diffuse and horizon
brightening [44–46]. Figure 10 shows the distribution of all parts of solar radiation on a tilted surface.

Considering an anisotropic sky model, the incident solar radiation on a tilted surface based on
HDKR model, is calculated by [45]:

ITotal =(Ib + Id Ai)Rb + Id(1− Ai)

(
1 + cosβ

2

)
×
[

1 + f sin3(
β

2
)

]
+ Ighρg

(
1− cosβ

2

)
(22)

where Ib = beam radiation,
Id = diffuse radiation,
Rb = geometric factor,
θ = angle of incidence,
γ = surface azimuth angle,
β = angle between tilted surface and the horizontal plane,
Igh = total radiation on horizontal surface,
ρg = ground albedo (0.3).

Anisotropy index (Ai) in Equation (22), is a function of the transmittance of the atmosphere for
beam radiation. It is the ratio of beam radiation on a horizontal ground surface to extraterrestrial
radiation (Io).

Ai =
Ib
Io

(23)

The modulating factor f in the correction factor is to account for cloudiness.

f =

√
Ib
I

(24)

The angles under consideration and other solar angles are illustrated by Figure 10b.
The angle θ is the incidence angle of the beam radiation on tilted surface, and the angle θT is the

incidence angle of the beam radiation on the inclined surface. These angles are calculated by:

Rb =
cos θ

cos θz
(25)

cos θ = sin δ sin φ cos β − sin δ cos φ sin β cos γ + cos δ cos φ cos β cos ω

+ cos δ sin φ sin β cos γ cos ω + cos δ sin β sin γ sin ω (26)

cos θz = sin φ sin δ + cos δ cos φ cos ω (27)

Since, building envelope walls are perpendicular to the horizontal plane, the β angle between the
plane of the surface and the horizontal is 90◦. The (27), then becomes:

cos θ =− sin δ cos φ cos γ + cos δ sin φ cos γ cos ω + cos δ sin γ sin ω (28)
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the total solar radiation on a surface is given by:

ITotal =(Ib + Id Ai)Rb + Id(1− Ai)(1 + 0.3535 f )/2 + Ighρg/2 (29)

The total solar radiation for complete building envelope is calculated as follows:

Q̇sol =
4

∑
j=1

ITiSiαi (30)
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Figure 10. Solar sky models and solar angles diagram.

The sums of hourly solar radiation incident on a south facing wall for 5 days in May in Nanterre,
France are shown in Figure 11. The solar radiation calculated for isotropic and anisotropic sky models.
These two calculated sums of the radiations are compared with the data procured from the weather
station on horizontal surface. The ground albedo is considered as 0.2.
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Figure 11. Hourly solar irradiation sums on south facade of the building.

3.3. Model Validation

In this section, the developed model will be validated against the measured data of the case
study room. Initially, model parameters are identified using the approach given in Section 2. Ambient
and room temperatures are measured using the sensors installed in the CESI building, and the solar
radiation energy is calculated from the above formulations. The heating input is measured from the
heating system installed in the building.

However, the developed model is non-linear in nature because of the radiation heat transfer
between the walls, that has fourth power of temperature.

Q̇rad = ε σ (T4
h − T4

c ) (31)

where Q̇rad is the radiation heat energy, ε is the emissivity coefficient of the wall surface, σ is the
Stefan-Boltzmann constant, and T is surface temperature of the wall (◦K).

Typically, the effect of heat transfer by radiation is either neglected or considered as constant. Since,
the temperature variation between two walls is minimal on an absolute scale, i.e., T[K] = 273 + Tsur f ace.
Therefore, the effect of change radiative heat energy is almost negligible. Hence, to avoid non-linearity
in the model, a constant value is assumed for radiative heat transfer coefficient. This value is
determined by linearizing radiative heat transfer near equilibrium using Taylor’s series expansion.
This approach of linearizing the model near equilibrium does not generate significant errors, thus the
effect on the model is in acceptable range of accuracy [47].

The simplified thermal network model of the zone is validated against the measured data from
case study classroom of the CESI LINEACT building. The model is validated for two seasons, two
months in summer and winter, respectively.

The developed model is simulated for two months in different seasons, winter (see Figure 12)
and summer (see Figure 13). Several key observations are noted here, there is higher variation in the
model response for winter compared to the response of summer. This variation can be due to the fact
that unpredicted indoor activities, door/windows openings, varying internal gains and air infiltration.
In the selected summer period, the building was mostly unoccupied due to the summer holidays.
Therefore, there is less variation in the response and in both the model outputs, zone temperature
follows the dynamics of the actual measured temperature of the zone. Furthermore, in summer
(see Figure 13) the raise in indoor temperature reaching almost 30◦C is due to non-operation of the
HVAC system during holidays. The HVAC systems are scheduled to operate only during the office
hours. Measured inputs of the model: solar irradiation, occupation, and ambient and adjacent rooms
temperatures are shown in Figures 14 and 15. Nevertheless, in both seasons the model reproduces the
dynamics of zone temperature of the building efficiently. The results show that the simplified thermal
network model with parameter identification is well suited approach to model the building thermal
dynamics, and the models can be used for the controller purpose.
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Figure 12. Validation of simplified thermal network model with measured zone temperature
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Figure 13. Validation of simplified thermal network model with measured zone temperature
data (summer).
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Figure 14. Measured inputs of the model: ambient and adjacent zones temperatures, solar irradiation,
and occupant numbers (winter).
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Figure 15. Measured inputs of the model: ambient and adjacent zones temperatures, and solar
irradiation (summer).

4. Conclusions

This paper has proposed an approach to develop simplified thermal network model and its
parameters identification. The model parameter values have significant impact its performance.
A stochastic PSO algorithm has been adopted to determine the parameters set that provides the
optimal approximation of the proposed low-order model dynamics with respect to the reference
model dynamics. The constraints for the PSO algorithm were chosen such that the parameter values
are not more than the total material resistance and capacitance. The performance of the simplified
thermal model with optimized parameters has computational efficiency 40% to 50% higher compared
to reference model.

The study results were divided in two sections; firstly the results of simplified model parameters
identification presented with the validation against reference model and secondly a complete zone
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model is developed and validated with the data of case study building. The model validation result has
shown a second order thermal network model produce exact thermal behavior with a better accuracy.
The developed 3R2C network model is well suited for model-based controller application. Indeed,
it has reduced system states number, it is computationally efficient, and can be adapted to any type
of buildings.

The modeling approach proposed in this paper will be further extended to model multi-zone
buildings, considering inter-zonal heat transfer. Furthermore, it will be used to predict other comfort
parameters such as humidity.
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The following abbreviations are used in this manuscript:

ASHRAE The American Society of Heating, Refrigerating and Air-Conditioning Engineers
BAS Building Automation System
BACS Building Automation Control System
BBC Bâtiment à Basse Consommation
CNFDM Crank-Nicolson Finite Difference Method
EU European Union
FDM Finite Difference Method
HDKR Hay–Davies–Klucher–Reindl
HVAC Heating, Ventilation and Air-Conditioning
LINEACT Laboratoire d’Innovation Numérique pour les Entreprises et les. Apprentissages au service de la

Compétitivité des Territoires.
NZEB Nearly Zero-Energy Building
PDE Partial Differential Equations
PIA Programme d’Investissements d’Avenir
PSO Particle Swarm Optimization
RC Resistor-Capacitor
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