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Abstract: The economic impact associated with power quality (PQ) problems in electrical systems is
increasing, so PQ improvement research becomes a key task. In this paper, a Stockwell transform
(ST)-based hybrid machine learning approach was used for the recognition and classification of
power quality disturbances (PQDs). The ST of the PQDs was used to extract significant waveform
features which constitute the input vectors for different machine learning approaches, including the
K-nearest neighbors’ algorithm (K-NN), decision tree (DT), and support vector machine (SVM) used
for classifying the PQDs. The procedure was optimized by using the genetic algorithm (GA) and
the competitive swarm optimization algorithm (CSO). To test the proposed methodology, synthetic
PQD waveforms were generated. Typical single disturbances for the voltage signal, as well as
complex disturbances resulting from possible combinations of them, were considered. Furthermore,
different levels of white Gaussian noise were added to the PQD waveforms while maintaining the
desired accuracy level of the proposed classification methods. Finally, all the hybrid classification
proposals were evaluated and the best one was compared with some others present in the literature.
The proposed ST-based CSO-SVM method provides good results in terms of classification accuracy
and noise immunity.

Keywords: power quality disturbances; classification; feature selection; swarm optimization; support
vector machine; genetic algorithm; K-NN algorithm; decision tree; S-transform

1. Introduction

Power quality (PQ) is essential for electrical systems to operate properly with the minimum
possible deterioration of performance. Emerging PQ challenges, such as the growing integration of
large power plants based on renewable sources, improvements in nonlinear loads, and the recent
requirements of smart grids, must be considered to obtain an optimal operation of the existing power
grid. These factors increasingly require constant revisions of the common power quality problems,
enhanced standards, further optimization of control systems, and more powerful capabilities for
measuring instruments.

The purpose of this research was to contribute to this task, meeting the particular PQ requirements
about detection and classification of power quality disturbances (PQDs) through optimal hybrid
machine learning approaches.

Usually, the PQDs’ identification procedure is carried out in three steps, i.e., signal analysis,
feature selection, and classification. In the stage of PQDs’ analysis, some advanced mathematical
techniques were used to extract the feature eigenvectors that enable disturbance identification.
The time-frequency analysis methods include short-time Fourier transform (STFT), Stockwell transform
(ST) [1], wavelet transform (WT) [2–4], Hilbert–Huang transform [5,6], Kalman filter [7,8], strong trace
filter (STF) [9], sparse signal decomposition (SSD) [10], Gabor–Wigner transform [11], and empirical
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mode decomposition (EMD) [12,13]. In this study, ST was selected due mainly to its noise immunity,
simplicity of implementation, and flexible and controllable—to some extent—time-frequency resolution.
These advantages far outweigh the computational cost that may be required.

The selection of suitable feature remains a key challenge that requires developing tools in areas
such as statistical analysis, machine learning, or data mining [14]. Valuable efforts have been made
in this sense and some techniques are used for a precise selection of features including the principal
component analysis [15], K-means-based apriori algorithm [16], classification and regression tree
algorithm [17], multi-label extreme learning machine [18], random forest model [19], sequential
forward selection [20], and bionic algorithms. This latter group has also been successfully used in
classification rule discovery. Particularly significant among bionic algorithms are genetic algorithms
(GA) [20–22] and swarm-based approaches like ant colonies [23,24] and, above all, particle swarm
optimizers (PSO) [25–28]. For example, recently in [25], a combination of PSO and support vector
machine (PSO-SVM) was used to optimize the error of the classifier by selecting the best feature
combination. Similarly, in [26], PSO optimizes the noise cut-off threshold of PQD signals working
together with a modified ST in the feature extraction stage. However, canonical PSO has some
limitations for feature selection. Improved and implemented PSO variants include competitive swarm
optimizer [29–31] (CSO), discrete particle swarm optimizer [32], and exponential inertia weight particle
swarm optimizer [33]. It should be noted that, as PSO was firstly designed for continuous optimization
problems, this may not always be the most appropriate method to solve a combinatorial optimization
problem such as feature selection. The CSO algorithm, however, is specifically adapted to perform this
type of problem with each particle learning from a pair of randomly selected competitors to elevate
both global and local search abilities. In this paper, GA and CSO were selected and compared to
minimize the number of selected features.

Regarding the disturbance pattern recognition capability and according to the optimal selection of
features provided by the above-mentioned algorithms, numerous machine learning approaches have
been widely utilized for classifying power quality disturbances. Common classification techniques
include artificial neural network (ANN), K-nearest neighbor (K-NN) algorithm, support vector machine
(SVM), and decision tree (DT) methods.

Support vector machine (SVM) is a good option for classification purposes, especially when
dealing with small samples, nonlinearity, or high dimension in pattern recognition [2,16,22,34,35].
Among the advantages of SVM are the lack of local extremum, feature mapping of nonlinear separable
data, low space complexity, and the capability to adjust only a reduced number of features as compared
to, for example, the ANNs [36]. On the contrary, its disadvantages include limitations resulting from
speed and size, in both training and testing, as well as those resulting from an improper choice of the
kernel. These handicaps involve, in practical terms, high algorithmic complexity and extensive memory
requirements. Improved applications of SVMs algorithms include multiclass SVM [M-SVM] [37],
directed acyclic graph SVMs [DAG-SVMs] [38] and radial basis function kernel SVM [RBF-SVM] [39].

For its part, the rule-based DT classifier is a good choice when the features are clearly distinguishable
from each other [40,41]. PQDs’ classifiers based on DT include fuzzy decision tree [42–44] and the
aforementioned classification and regression tree algorithm (CART) [17,21]. On the one hand,
DT advantages include removing unnecessary computations, a singular set of parameters which
allows differentiating between classes and a smaller number of features at each nonterminal node
while maintaining performance at an acceptable level. On the other hand, its principal disadvantages
include being strongly dependent on the selected features, accumulation of errors from level to level
in a large tree, and overlap—which increases the search time and memory space requirements when
the number of classes is large. Compared to other approaches, DT flowchart symbols configure a
simple and straightforward model in which the control parameters are easy to understand and apply.
Thus, DT is easier to set up and interpret and, despite the mentioned dependence of the classification
process on the selected features, its execution of data is better than other methods. For example, in [22],
a comparative using DT/SVM, wavelet transform (WT) and ST is shown.
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Most of the previous works in the literature are mainly focused on pattern recognition issues,
so PQDs are generally treated as single-event signals. However, in electrical systems, it is common to
find several disturbances consecutively in the same observation window. These combined disturbances
are much more difficult to identify and treat than single ones. In this work, complex PQDs were
designed through a consecutive or simultaneous combination of two simple ones in the same interval.
From ST, time-frequency features were extracted, while feature selection was optimized by using
K-NN, GA, and CSO. In the classification stage, K-NN (again) and distinct types of SVM and DT were
considered. There were different proposals of classifiers depending on the optimization-classification
sequence chosen. All these proposals operated over the same dataset obtained after optimization.
A comparative in terms of classification accuracy and noise immunity of the proposed models
was planned. In Figure 1, a general block scheme of the proposed classification plan is presented.
The main steps included PQD signal processing via ST, feature extraction, optimal feature selection,
and classification. A detailed overview of the proposed comparative study including different hybrid
methods can be found in Section 5. The MATLAB (Classification Learner Toolbox) software was used to
implement the whole machine learning methods required at both optimization and classification stages.
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Figure 1. General block scheme of the proposed classification plan.

The rest of this paper is organized as follows: In Section 2, a simplified outline of the extraction of
the initial feature set is presented. Section 3 is devoted to the optimal selection of features, describing
the optimizers used for this task. Section 4 briefly describes the machine learning methods used to
classify. In Section 5, a detailed overview of the proposed classification plan is shown. In Section 6,
PQ disturbances’ synthesis and the resulting training datasets are detailed. In Section 7, results are
discussed. The last section draws conclusions from the results.

2. Initial Feature Set Extraction Based on S-Transform and Statistical Parameters

Each proposed disturbance signal was generated in a discrete form to compute its S-transform,
the detailed description of which is given in the Appendix A. ST was chosen for its inherent noise
immunity and acceptable time-frequency resolution.

The resulting complex S-matrix provided valuable time-frequency data on which PQD features
were extracted by computing several statistics and figures of merit. In this two-dimensional S-matrix,
the signal was split into different frequencies (M = 1280 rows) and distinct samples (N = 2560 columns).
This extraction of features had a relevant effect on the accuracy of classification because of its great
influence on the overall performance of machine learning approaches.

In a first approximation, the chosen initial feature set should have been enough to guarantee a
correct identification of every one of the considered disturbed signals. In this work, the extracted set
was formed by nine features (k1–k9) and included the introduced disturbance energy ratio (DER) index
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as well as some of the well-known statistical parameters, such as maximum, minimum, root mean
square and mean values, standard deviation, variance, skewness, and kurtosis. These features were
calculated following the equations shown in Table 1.

Table 1. Mathematical equations of the initial feature set.

Extracted Features

K1 Maximum M = max
{
Ajn

}
1 Standard

deviation σ =

√∑M
j=1

∑N
n=1(Ajn−µj)

2

(M−1)(N−1)
K6

K2 Minimum m = min
{
Ajn

}
Variance σ2 =

∑M
j=1

∑N
n=1(Ajn−µj)

2

(M−1)(N−1)
K7

K3 Mean
value µ =

∑M
j=1

∑N
n=1 Ajn

M·N

Skewness
(phase) 2 SK(φ) =

∑M
j=1

∑N
n=1(φjn−µ(φ)j)

3

M·N·σ3
(φ)

K8

K4 RMS RMS =

√∑M
j=1

∑N
n=1 A2

jn

M·N
Kurtosis KT =

∑M
j=1

∑N
n=1(Ajn−µj)

4

M·N·σ4
K9

K5 DER DER = RMS>50
RMS50Hz

- -
1 Ajn, 2 φjn are the absolute value and phase value of the jn-th element in the S-matrix.

All statistical parameters were calculated from both time samples (N = 2560) and frequency
(M = 1280) intervals. The skewness parameter was computed based on the phase values of the complex
elements in the S-matrix. For the rest of the parameters, calculations were done from the absolute
values of such elements.

Disturbance Energy Ratio (DER) Index

The introduced DER index represents the ratio between the energy of the signal with frequency
components greater than 50 Hz and that one whose components are equal to or less than 50 Hz. Thus,
the definition of DER parameter includes the terms

RMS>50 =

freq=6400 Hz∑
freq=50.1 Hz

RMSj (1)

and
RMS50Hz =

∑freq=50Hz

freq=0Hz
RMSj. (2)

This index is very useful for the characterization of PQ disturbances with high-frequency content
as, for example, oscillatory transients.

Sample datasets for training/testing consist of single observations, each of which is computed
from features, as shown in Table 1.

3. Optimal Feature Selection: GA and CSO

The main purpose of using an optimizer is to reduce as much as possible the dimension of input
feature dataset for the prediction models. Once data have been obtained by S-transform, further
analysis is necessary to achieve the optimal feature vector. As seen above, a vector with nine different
features was proposed. However, the given feature vector contained attributes whose information was
redundant to distinguish the most discriminating features of PQDs. The intraclass compaction could
be minimized and the interclass division could be maximized by reducing the number of features.
For this purpose, after obtaining the dataset features, it was necessary to select the best optimizer.
Wrapper-based techniques are a significant group within feature selection methods that are very
accurate and popular and eliminate redundant features by using a learning algorithm with classifier
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performance feedback. The two main optimization methods used in this work, namely GA and CSO,
belong to this group.

3.1. Genetic Algorithm

Darwin’s theory of evolution, “Survival of the Fittest”, inspired the design of genetic algorithms
in the 1960s [45]. GA is an adapted heuristic search algorithm [45] that uses optimization methods
based on genetics and rules of natural selection. The flowchart that describes the operation of GA is
shown in Figure 2.
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algorithms (GA) members.

In GA [46], an optimal feature vector can be represented by a chromosome, which includes the
most discriminative features. In turn, chromosomes comprise multiple genes, each one corresponding
to a feature. The population is a finite set of chromosomes manipulated by the algorithm in a similar
way to the process of natural evolution. In this process, chromosomes are enabled to crossover and to
mutate. The crossing of two chromosomes creates two offspring and these two each produce two more,
and so on. A genetic mutation in the offspring generates an almost identical copy of the combination
of their parents but with some part of the chromosome moved. Generations are the cycles where the
optimization process is carried out. Crossover, mutation, and evaluation make it possible to create a set
of new chromosomes during each generation. A predefined number of the (best) chromosomes survives
to the next cycle of the replica due to the finite size of the population. The population can achieve a
fast adaptation despite its limited size, which results in quick optimization of the criterion function
(score). The most important step of GA is the crossover, in which exchanges of information among
chromosomes are implemented. Once the best individuals are selected, it is necessary to crossover
these solutions between themselves. The main purpose of this step is to get a greater differentiation
between populations based on new solutions that could be better than the previous ones. A second
important step is a mutation, which increases the variableness of the population.
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Another key piece is the fitness function. It is necessary to obtain an effective enforcement-oriented
version of GA. The fitness function is the procedure or device that is responsible for assessing the
quality of each chromosome, specifying which one is the best from the population. Once the fitness
function is calculated with each individual of the initial population, the next stage is the so-called
selection, in which chromosomes with the best qualities are selected to generate the new evolution of
the population using discrimination criteria.

Different GA implementations use specific important parameters to determine the execution
and performance of the genetic search. However, some other parameters, including crossover rate,
population size, and mutation rate, are usual for all implementations. The probability of taking an
eligible pair of chromosomes for crossover is called rate crossover. Conversely, the probability of
changing a bit of randomly selected chromosomes is called mutation rate. The crossover rate usually
presents high values, close to or equal to 1, while the mutation rate is usually small (1% to 15%).

In the present work, the chromosome consisted of nine genes, each of which represented a feature.
As shown in Figure 2, the chromosome is represented as a vector of bits since all the genes could be
assigned with either 0 or 1 (0 when the corresponding feature was not selected and 1 when it was).
A population of 560 individuals (chromosomes) and 100 iterations (generations) was selected for this
problem. The search began initializing the parameters to:

• Initial (parent) population size: 10 (chromosomes).
• Crossover rate: 0.8.
• Mutation rate: 0.01.

The performance of the classifier must be kept above a certain specified level. For this, the least
expensive subset of features must be found. For this purpose, the performance is measured using the
error of a classifier. The viability of a subset is ensured when the error rate of the classifier is lower
than the so-called feasibility threshold. The goal is to find the smallest subset of features among all
feasible ones.

In this case, the identification accuracy of the K-NN algorithm was set as the fitness value of the
chromosome. In order to assess the quality of the chromosome through the fitness function (accuracy),
the k parameter of the K-NN method was adjusted to 10 and the value of cross-validation was set to
8 folds. The K-NN input dataset was exclusively designed for this validation procedure (see Section 6
for details).

3.2. Competitive Swarm Optimization

Competitive swarm optimizer [29] is a particular case of particle swarm optimizer (PSO), thus
belonging to evolutionary algorithms inspired by flocking and swarming behavior. Swarm methods
try to emulate the adaptive strategy, which considers collective intelligence as behavior without any
structure of centralized control over individuals. Usually, the overall structure of swarm optimizers
includes different algorithms with each handle a specific task. The critical one is the classification rule
discovery algorithm, which is, in essence, a standard GA. Thus, a group of individuals (particles) acts
and evolves following the principles of natural selection—survival of the fittest. In PSO, the optimal
solution for a problem is obtained from the global interactions among particles. In contrast, the CSO
method introduces pairwise interactions randomly selected from the swarm (population). Generations
succeed one another after each pairwise competition, in which the fitness value of the loser is updated
by learning from the winner that goes directly to the swarm of the next generation. CSO has proven to
be better than GA in optimization tasks related to feature selection due to its easy-to-use structure,
fewer parameters, and simple concept, even though its computational cost is slightly higher. However,
as will be shown below in the conclusions, the superiority of CSO over GA is clear from the solution
quality, but in terms of success rate, it is not so.

In this work, particles were defined by the feature set (K1...K9) in the same way as chromosomes
(individuals) in GA. They also derived from the same dataset (560 individuals) from which particles
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were randomly selected. Then, the swarm size was set to 100 and the maximal number of generations
(iterations) was set as 200.

Following a parallel process to that carried out in the GA optimizer, a K-NN simple identification
model was used to check the efficiency of the CSO-based feature selection, in this case with k = 5. Once
again, the accuracy of the K-NN identifier was established as the fitness function of the CSO optimizer.

Both types of optimization methods, GA and CSO, reduced the number of features from nine to
five, but they were not the same.

As was mentioned above, K-NN was chosen to act as a fast validation tool in the feature optimal
selection stage. At this stage, the aim was to reduce features and high accuracy was not as necessary as
simplicity, speed, and efficiency. In these aspects, the K-NN was highly competitive. As shown below,
this method is going to be used again in the next stage to compare its classification performance with
that of other approaches. In the next section, unlike this one, the aim is to achieve the highest possible
accuracy in the classification.

4. Classifiers: K-NN, SVMs, and DTs

Once the optimized set of feature was determined, the next process was the classification of data
with these features. In this work, various classification methods were used to find better efficiency
and the best behavior with noise signals. These methods included the K-nearest neighbors’ algorithm,
the support vector machine, and the decision trees.

4.1. K-Nearest Neighbors’ Algorithm

One of the proposed classification approaches used the K-NN classifier to identify both single
and complex disturbances. K-NN [47], as a supervised learning algorithm, determines the distance
to the nearest neighboring training samples in the feature space in order to classify a new object.
This Euclidean distance is stated as follows:

D j
(
xi, y j

)
=

√∑p

k=1

(
xi,k − y j,k

)2
(3)

where D j
(
xi, y j

)
is the Euclidean distance-based relationship between the ith p-dimensional input

feature vector xi and the jth p-dimensional feature vector y j in the training set. A new input vector
xi is classified by K-NN into the class that allows a minimum of k similarities between its members.
The parameter k of the K-NN method is a user-specific parameter. Often k is set to a natural number
closer to

√
Ntrsamples [47], in which Ntrsamples is the number of samples in the training dataset. In this

work, different K-NN classifiers were fit on the training dataset resulting from values of k between 5
and 12. The lowest classification error rate on the validation set permitted selecting the sough-after
value of k.

Traditional K-NN approach based on Euclidean distance becomes less discriminating as the
number of attributes increases. To improve the accuracy of the K-NN method for PQDs classification,
a weighted K-NN classification method can be used [48]. The weight factor is often taken to be the
reciprocal of the squared distance, ωi = 1/D2

j

(
xi, y j

)
. Several schemes can be developed to attempt to

calculate the weights of each attribute based on some discriminability criteria in the training set.

4.2. Support Vector Machine

SVM is a statistical method of machine learning that uses supervised learning [49]. Although this
method was originally intended to solve binary problems, its use was easily extended to multiclass
classification problems. The major objective of SVM is the minimization of the so-called structural risk
by proposing hypotheses to minimize the risk of making mistakes in future classifications. This method
finds optimal hyperplanes separating the distinct classes of training dataset in a high-dimensional
feature space and, based on this, test data can be classified. The hyperplane is equidistant from the
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closest samples of each class to achieve a maximum margin on each side of it. Only the training samples
of each class that fall right at the border of these margins are considered to define the hyperplane.
These samples are called support vectors [50,51].

Next, a rough sketch of SVM is outlined below in an oversight-specific manner. Consider a dataset
containing a data pair defined as

(
xi, y j

)
(i = 1, . . . , M), where M is the number of samples, yi ∈ {−1, 1}.

Based on an n-dimensional vector w normal to the hyperplane and a scalar b, the issue is to find the
minimum value of ‖w‖ in the objective equation f (x) =

〈
wT
·x + b

〉
. The position of the separating

hyperplane can be determined based on the values of w and b that fulfil the constraint yi·
(
wT
·xi + b

)
≥ 1.

The key parameter b/‖w‖ gives the distance from the origin (x0, y0) to the closest data point along w.
Furthermore, to deal with the case of the linear inseparable problem, where empirical risk is not zero,
a penalty factor C and slack variables ξi are introduced. The optimal separating hyperplane can be
determined by solving the following constrained optimization problem [24,52]:

Minimize
1
2
·‖w‖2 + C·

M∑
i=1

ξi (4)

subject to
yi·

(
wT
·xi + b

)
≥ 1− ξi f or i = 1, 2, . . . , M
ξi ≥ 0 f or all i

(5)

where ξi is the distance between the margin and wrongly located samples xi.
Despite SVM being a linear function set, it is possible to solve nonlinear classification problems by

using a kernel function. As shown in Figure 3, the mapping translates the classified features onto a
high-dimensional space where the linear classification is feasible.
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In SVM method, there are different types of specific kernel functions to improve the classifier,
including the linear kernel (the easiest to interpret), Gaussian, or radial basis function kernel (RBF),
quadratic, cubic, etc. These kernels differ in the complexity of definition and precision in the
classification of different classes. In this work, both quadratic and cubic kernel functions were used.

Two approaches that combine multiple binary SVMs were used to address multiclass classification
problems: One versus one (OVO) and one versus all (OVA). The OVO approach needs m·(m− 1)/2
SVM classifiers to distinguish between m classes [2]. The classifiers are trained to differentiate the
samples of one class from those of another class. Based upon a vote of each SVM, an unknown
pattern is classified. Thus, the strategy to accomplish a single class decision follows a majority voting
scheme based on sign

(
yi·

(
wT
·xi + b

))
[52]. The class that wins the most votes is the one predicted for x.

This winning class is directly assigned to the test pattern.
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4.3. Decision Tree

The decision tree is a classification tool, based on decision rules, which uses a binary tree graph
to find an unknown relationship between input and output parameters. A typical tree structure is
characterized by internal nodes representing test on attributes, branches symbolizing outcomes of the
test, and leaf nodes (or terminal nodes) defining class labels. Decisions at a node are taken with the
help of rules obtained from data [43,53].

The DT should have as many levels as necessary to classify the input feature data. Depending
on the number of levels of this DT, the classification can be more or less accurate, and more or less
calculation complex. A key point, in this sense, is the suitable choice of the maximum number of splits.
It is well known that high classification accuracy on the training dataset can be achieved through a fine
tree with many leaves. However, such a leafy tree usually overfits the model and often reduces its
validation accuracy in respect of the proper training accuracy. On the contrary, coarse trees do not
reach such a high training accuracy, but they are easier to interpret and can also be more robust in the
sense of approaching the accuracy between both training and representative test dataset.

Based upon the foregoing and in order to achieve the required degree of accuracy, in this work,
the maximum number of splits was set to 91 and the so-called Gini’s diversity index was chosen as the
split criterion. At a node, this index was defined as follows

GINI index = 1−
∑

j

p2
j (6)

and it is the probability of class j complying with the criteria of the selected node. Gini’s diversity
index gives an estimation of node impurity since the optimization procedure in tree classifiers tends to
nodes with just one class (pure nodes). Thus, a Gini index of 0 is derived from nodes that contain only
one class; otherwise, the Gini index is positive. Therefore, the optimal situation for a given dataset is to
achieve a Gini index with a value as small as possible.

4.4. Bagged Decision Tree Ensemble

Ensemble classifier compiles the results of many weak learners and combines them into a single
high-quality ensemble model. The quality of that approach depends on the type of algorithm chosen.
In this study, the selected bagged tree classifiers were based on Breiman’s random forest algorithm [54].
In the bagged method, the original group of data divides into different datasets by random selection
with replacement, and then a classification of each one of them is obtained by a decision tree method.
The result of each learner is submitted to a voting process and the winner finally sets the best
classification model of the bagged DT Ensemble method.

This method permits obtaining lower data variance than a single DT and also gets a reduced
over-adjustment. The model can be improved by properly selecting the number of learners. It should
be noted that a large number of them can produce high accuracy but also slow down the classification
process. In this work, a compromise solution was found by setting the number of learners to 30.

5. Full Comparative Classification of PQDs: Detailed Overview

A detailed overview of the proposed hybrid classification plan is shown in Figure 4, where the
main steps described in previous sections have been highlighted. The first one is the analysis stage,
where signal processing of the PQDs was obtained via S-transform. Then, an initial feature set, which
was defined by statistical parameters, was extracted. Next, feature vectors were optimized employing
both GA and CSO algorithms, including an extra validation provided by K-NN algorithm. The last
stage consisted of classification involving the determination of PQ multi-event by using DT (fine tree),
bagged decision tree ensemble, weighted K-NN, and both quadratic and cubic SVMs.
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6. Field Data Synthesis of PQDs

In this section, PQDs’ synthesis and the resulting training datasets are detailed.

6.1. Generation of PQ Disturbances

A database of 13 PQDs that include both single and multiple events was generated in accordance
with both IEEE-1459 and EN-50160 standards [55,56]. The MATLAB R2017a software was used to
program a virtual signal generator, called SIGEN, allowing for a customizable setup of the simulated
signals required for testing. Thus, SIGEN generated a pattern in each category of events by varying
the parameters that were controllable by the user. As a result, both steady-state and transient-state
disturbances could be modelled. The graphical user interface of single-phase SIGEN is demonstrated
in Figure 5.
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The processes of SIGEN were performed to complete the effective generation of electric signals,
as follows:

• First, electrical input signals were defined and the user set their parameters.
• Second, signals according to these specifications were built.
• Finally, the synthesized signals could be sent either to a file or a data acquisition board (DAQ).

SIGEN was designed following the guidelines described in the IEEE-1159 standard for monitoring
electric power quality [57].
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All the signals had in common the following fundamental specifications: Voltage = 230 V RMS
(root mean square), frequency = 50 Hz, duration = 0.2 s, sampling frequency = 12.8 kHz, total cycles =

10, total samples = 2560. Stationary and/or transient disturbances, as well as white Gaussian noise, were
added to this fundamental signal. The levels of added noise were characterized by the signal-to-noise
(SNR) ratio of 20 dB, 30 dB, 40 dB, and 50 dB. For each noise level and each PQD category, 100 signals
were generated through SIGEN by varying all the parameters. This set had a total of 5600 simulated
signals, 1400 for each noise level involving all categories (13 types of the PQDs plus one pure sinusoidal
signal). These signal sets transformed in the dataset intended to verify the classification performance,
as will be seen next.

Another set of signals was needed for the feature selection stage. It included 560 simulated signals
(40 signals × 14 PQD categories) with random SNR between 20 dB and 50 dB.

6.2. Training/Testing and Validation Datasets

Once statistical features were computed based on the ST matrix, datasets were created. A first
dataset contained 560× 9 data (samples × features) and it was used as input of the K-NN-based fast
validation tool for optimal feature selection (see Sections 3.1 and 3.2).

As concluded in Section 3, the choice of either of the selected optimization algorithms (GA and
CSO) allowed obtaining a feature set which comprised only five features. Thus, for each of the four
specific noise levels considered, the second type of dataset containing 1400× 5 data (samples × features)
was used to fit the different proposed classification models. This training dataset was partitioned into
train/test datasets like 80/20%, respectively. Then, while the test dataset was kept aside, the train set
split again into the actual train dataset (80% again) and the validation set (the remaining 20%). Data for
each subset was randomly selected. This cross-validation procedure iteratively trained and validated
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the models on these sets, avoiding overfitting. In this study, a 10-folds cross-validation method was
used to evaluate the performance of the proposed classifiers.

It must be noted that the mentioned training dataset was different to that one used in the previous
feature selection stage. This ensured that no observations that were a part of the feature selection task
were a part of the classification task.

6.3. PQDs’ Classes

The following 14 classes were tested and labelled as: Harmonic (C1), Flicker (C2), Sags (C3), Sags
and harmonic (C4), Interruption (C5), Interruption and harmonic (C6), Notch (C7), Swells (C8), Swells
and harmonic (C9), Oscillatory transient (C10), Oscillatory transient and harmonic (C11), Oscillatory
transient and sag (C12), Impulsive transient (C13), and pure sinusoidal signal (C14). In Table 2 the
simulated PQDs waveforms are depicted.

Table 2. Synthetized PQDs’ waveforms.
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Table 2. Cont.
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7. Results and Performance Comparison

Depending on the optimization and pattern recognition approach selected, five hybrid classification
methods were considered: CSO&QSVM (quadratic SVM), CSO&WK-NN (weighted K-NN), GA&FTree
(fine tree), GA&ETree (ensemble tree), and GA&CSVM (cubic SVM). In Table 3, the classification
accuracy on training dataset under different noise conditions of the proposed models are listed.

Table 3. Recognition accuracy comparison between proposed methods under noisy conditions.

Accuracy Comparison between Proposed Models (%)

Optimization &
Classification

SNR

20 dB 30 dB 40 dB 50 dB

CSO&QSVM 97.6 99.2 99.85 99.95

CSO&WK-NN 95.7 98.6 99.7 99.75

GA&FTree 93.4 97.7 99.3 99.5

GA&ETree 94.6 97.5 99.4 99.55

GA&CSVM 94.4 97.7 99.0 99.4

The best results of classification accuracy were obtained using CSO&QSVM in any noise conditions.
The results for 30 dB SNR and above had high classification accuracy for both CSO&QSVM and
CSO&WK-NN, and the rest of the models had acceptable values. In high noisy conditions (20 dB),
the accuracy was satisfactory only for CSO&QSVM. The values obtained applying the rest of the methods
were lower and required the next analysis with separate PQDs for a better interpretation of the results.

In order to evaluate noise immunity under different accuracy requirements, single-class test
datasets (each with 25× 5 data of a unique class) were subjected to the trained classifiers separately.
The noise threshold (minimum SNR value) for each class was determined through a trial-and-error
method, by applying the principle of keeping SNR value as low as possible while maintaining
the targeted classification accuracy. Thus, if the classification accuracy on an initial single-class
dataset was, for example, lower than 80%, a new dataset with higher SNR value was generated and
tested. The iterative procedure was stopped when the pretended accuracy was achieved. In Table 4,
a comparison of minimum SNR values using these methods for different accuracy rates and distinct
PQDs classes is presented. In each specific case, the maximum level of noise allowing the pretended
accuracy rate (80%, 90%, and 100%) is shown. In the last row, the overall SNR average threshold value
of each column is determined. This value was just an estimation of the noise immunity for a pretended
accuracy rate in the separate classification process.
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Table 4. Comparison of noise threshold (SNR minimum) for classification accuracy of the models proposed.

Minimum SNR (dB) for Individual PQD Classification Using the Models Proposed and According to 3 Levels of Accuracy

CSO Optimizer Genetic Algorithm

Quadratic SVM Weighted K-NN Fine Tree Ensemble Tree Cubic SVM

PQDs Accuracy 100% 90% 80% 100% 90% 80% 100% 90% 80% 100% 90% 80% 100% 90% 80%

Harmonic 26.7 26 25.3 26.65 25.4 25 25.9 25.1 24.8 25.5 25.2 24.9 X X X

Flicker 23 19.3 17.6 24.7 24.3 23.9 14.4 13.2 12.9 13.5 13.1 12.8 19.4 18.5 18.1

Sag 18.8 18.1 17.2 22.7 21.7 21.35 15.4 14.6 14.3 12.6 12.35 12.1 12.7 12.3 12.1

Sag + H 19 18 16.3 16.8 15.8 15.3 15.2 14 13.6 19 16.5 15.6 19 17.2 15.8

Interruption 14 13.2 12.7 17.5 16.3 15.9 11.5 11.15 10.9 11.5 11.1 10.85 18 16.2 14.5

Interruption + H 10 9.3 8.8 11.3 10.8 10.5 X X X X X X X X X

Notch 13 11.4 10.9 16.5 15.8 14 12.4 11.85 11.6 12.4 10.95 10.65 X X X

Swell 15.9 15.3 14.9 15.4 14.95 14.65 16.25 15.9 15.65 10.95 9.9 9.2 15.4 14.85 14.6

Swell + H 13.5 12.85 12.6 14.5 14.25 14 X X X X X X 12.5 11.6 11

Osc. Transient 21 19.7 19.35 24.4 22.6 21.7 15 13.5 12.4 13.8 12.7 10.5 12.55 11.7 11.1

Osc. Transient + H 22.8 20.2 19.6 25.3 23.7 22.45 16.75 16 13.8 13.1 10.6 9.5 17 15.8 13.1

Osc. Transient + Sag 21.7 19.4 18.9 19.85 19.3 19.1 14.6 13.9 13 11.45 9.9 9 16.8 15.6 13.6

Impulsive Transient 22 20.4 19.8 19 18.35 18.2 18.4 17.2 15 21.2 18 16.6 15.3 14.5 13.6

Overall SNR (dB) 18.57 17.16 16.46 19.54 18.71 18.16 15.95 15.13 14.36 15.02 13.66 12.85 15.87 14.82 13.75
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From Table 4 it can be seen that the GA-based models offered good SNR values for most PQDs,
often even better than those resulting from CSO algorithm, especially when dealing with single events.
However, none of the suggested GA-based models was capable to classify properly the multiple
interruption plus harmonic disturbances. In the same terms of working with five optimal features,
both GA&FTree and GA&ETree also misclassified swell plus harmonic events and GA&CSVM could
not resolve notches and harmonics disturbances. This lack of identification of a separated PQDs could
justify the modest results obtained by GA-based models in Table 3. On the contrary, the proposed
CSO-based models achieved good individual noise rates for a separate classification of classes according
to different accuracy targets. As a result, both CSO&QSVM and CSO&WK-NN methods presented an
overall SNR average threshold under 20 dB, specifically 18.57 dB and 19.54 dB, respectively. When
both QSVM and WK-NN classifiers acted on single-class datasets, this slightly lower SNR value in
the CSO&QSVM method suggested a better performance with regard to noise immunity. But this
behavior in high noisy conditions was not only valid for single-class datasets, but also for the complete
dataset. As shown above, in Table 3, CSO&QSVM obtained the best results also with the complete
training dataset.

On the other hand, in Table 5, performances of the best-proposed CSO-QSVM method are compared
to those of other classification methods already reported in the literature. It can be seen that some
methods reported information of accuracy with noise levels (SNR) up to 50 dB [37,58], 40 dB [27], and
30 dB [42]. Others [17,59,60], although reaching 20 dB, had low accuracy. It is remarkable the high
impact of noise in the accuracy of the wavelet-based approaches [37,60]. The remaining works presented
acceptable accuracy [15,38,39,41,43] but none was capable to deal with 13 PQDs as the actual proposal
did. Only [15] achieved similar performances than those of the proposed CSO-QSVM approach. That
studied 12 kinds of single and multiple PQDs through the use of improved principal component analysis
(IPCA) and 1-dimensional convolution neural network (1-D-CNN) and achieved an overall accuracy of
99.76% and 99.85% for 20 dB and 50 dB, respectively. That classifier needed six features, distinct from
the optimal feature set proposed in this work, which was composed of only five of them.

Table 5. Performance comparison of different methods.

Literature
Processing &
Recognition

Nº of
PQDs

Nº of
Features

Recognition Accuracy (%)

20 dB 30 dB 40 dB 50 dB

[15] PCA + CNN 12 6 99.76 - - 99.85

[17] Fast ST + Embedded DT 12 6 91.50 98.58 98.83 98.92

[27] Mod. ST + DT + PSO 13 6 - - 98.38 -

[37] Wavelet + SVM 16 6 - - - 95.56

[38] ST+DAG-SVM 9 9 97.77 - - -

[39] Modified ST + SVM 8 19 98 - - -

[41] ST + DT 7 6 98.1 - - -

[42] FST + Fuzzy DT 13 5 - 97.95 98.67 -

[43] ST + DT+ Fuzzy C-M 10 14 99.3 - - -

[58] ST + ANN + DT 13 - - - - 99.9

[59] ST + PNN 9 4 98.38 98.63 99.13 -

[60] Wavelet +PNN 14 5 86.86 91.93 93.71 94.57

Proposed ST + CSO + SVM 13 5 97.6 99.2 99.85 99.95

Table 5 also displays a comparative in terms of feature dimension in each reported approach.
The ST-based probabilistic neural network (PNN) approach [59] accepted a set with four features but
only dealt with nine PQDs, while PNN based on wavelet [60] was treated with 14 PQDs but with poor
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noise immunity as indicated by its accuracy rates. This comparative study shows that the proposed
CSO-QSVM model, at last, equaled the better results of classification accuracy obtained in the literature,
but using only five features per sample and dealing with 13 PQDs classes. These results, together with
the comparison between alternative proposals (Table 3) and the detailed analysis of noise immunity
(Table 4), constitute the main contributions of this paper.

Although the present work dealt with simulated signals, the results were so good that they could
be extrapolated when applied to experimental data. In such a case, a comparative with those studies
based on real signals could be applied properly.

As a future extension, an experimental setup would be used to test the effectiveness of the
proposed hybrid methods under common real-time working conditions. Emulated PQ incidence on
distribution networks could be modelled by low-cost hardware prototyping and software components.

8. Conclusions

The motivation for this work stemmed from challenges facing the electrical systems and equipment
in determining optimal, cost-effective, and efficient power quality management. In this way, this paper
addressed the optimal hybrid classification methods based on machine learning approaches for
meeting detection, identification, and classification of simulated PQDs. Specifically, ST was selected
for detection and feature extraction of PQDs, and, following the trend nowadays to further optimize
the recognition approach, several optimization algorithms were tested for optimal feature selection.
At this step, this work underlined the GA and CSO algorithms since they achieved the best results.
The resulting optimal feature sets were fed to several classifiers, highlighting among them the QSVM,
CSVM, FTree, ETree, and WK-NN approaches for showing improved performance.

The GA optimization algorithm associated with the FTree, ETree, and CSVM approaches could
not classify properly all PQDs under the conditions established in this analysis. However, the results
obtained through these approaches were very promising and showed the great potential of these kinds
of models when dealing with a certain group of PQDs.

Alternatively, CSO-based methods including CSO-QSVM and CSO-WK-NN achieved high
classification accuracy under noisy conditions. A thorough comparative assessment in terms of noise
immunity and classification accuracy led us to conclude that the proficiency of CSO-QSVM method is
slightly better than CSO-WK-NN method.

It can also be noted that the results found seemed to confirm the current trend by which, despite the
optimization based on GA algorithms being highlighted by their efficiency, GA-based methodologies
are progressively being replaced by the swarm optimization algorithms.

Finally, performances of CSO-QSVM method were compared to those of other classification
methods already reported in the literature, concluding that the proposed method achieved a higher
degree of efficiency than most of them, and, based on the results, it may work well under high noise
background in practical applications.
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Appendix A

The continuous Stockwell transform (ST) [1] of a signal x(t) was originally described as

S(τ, f ) = ei2ππ fτW(τ, d) (A1)
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i.e., a phase factor acting on a continuous wavelet transform (CWT)

W(τ, d) =
∫ +∞

−∞

x(t)µ(τ− t, d)dt (A2)

where τ is a time displacement factor, d is a frequency-scale dilation factor, and µ(t, d) is a specific
mother wavelet that includes the frequency-modulated Gaussian window

µ(t, d) =

∣∣∣ f ∣∣∣
√

2π
e−

t2 f 2

2 e−i2ππ f t. (A3)

Instead, in this paper, the STFT pathway to address the ST definition was preferred,

STFT(τ, f ) =
∫ +∞

−∞

x(t)w(τ− t)e−i2ππ f tdt (A4)

From this approach, ST can be written as

S(τ, f ) =
∫ +∞

−∞

x(t)w(τ− t, f )e−i2ππ f tdt (A5)

where w(t, f ) is the Gaussian window function similar to that proposed by Gabor (1946), but now also
introducing the aforementioned added frequency dependence

w(t, f ) =

∣∣∣ f ∣∣∣
√

2π
e−

t2 f 2

2 (A6)

where the inverse of the frequency 1/
∣∣∣ f ∣∣∣ represents the window width.

From either of the two viewpoints, the complete ST definition can be written as

S(τ, f ) =
∫ +∞

−∞

x(t)

∣∣∣ f ∣∣∣
√

2π
e
−(τ−t)2 f 2

2 e−i2π f tdt (A7)

and also can be represented in terms of its relationship with FT and related spectrum X(f ) of x(t)

S(τ, f ) =
∫ +∞

−∞

X(α+ f )e
2π2α2

f 2 ei2πατdα f , 0. (A8)

As is well known, the way to recover the original signal from continuous ST is expensive in terms
of data storage due to oversampling. This sampled version of the ST permits calculating the widely
used ST complex matrix that is obtained as (τ→ jT, f → n/NT)

S
[
jτ, n

NT

]
=

N−1∑
m=0

X
[

m+n
NT

]
G(m, n)e

i2πmj
N , n , 0

S[ jτ, 0] = 1
N

N−1∑
m=0

X
[

m
NT

]
, n = 0

(A9)

where T denotes the sampling interval, N is the total number of sample points, and both X
[

m+n
NT

]
and

G(m, n) result after discrete fast Fourier transform (FFT), respectively, on the PQ disturbance signal x(t)
and the Gaussian window function w(t, f ):

X
[ n
NT

]
=

1
N

N−1∑
k=0

x[kT]e−
i2πnk

N (A10)
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G(m, n) = e
−2π2m2

n2 (A11)

where j, k, m, and n are integers in the range of 0 to N − 1.
The result of discrete ST is a 2D time-frequency matrix that is represented as

S(τ, f ) = A(τ, f )e−iφ(τ, f ) (A12)

where A(τ, f ) is the amplitude andφ(τ, f ) is the phase. Each column contains the frequency components
present in the signal at a particular time. Each row displays the magnitude of a particular frequency
with time varying from 0 to N − 1 samples.
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