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Abstract: Modeling and control of proton-exchange membrane fuel cells (PEMFC) has become a
very popular research topic lately due to the increasing use of renewable energy. Despite this fact,
most of the work in the current literature only studies standard dynamical models without taking
into consideration possible parasitics such as small gas flow perturbations that could be available in
the system. This paper addresses this issue by elaborating on time-scale modeling of an augmented
eighteenth-order PEMFC-reformer system via singular perturbation theory. The latter captures time
scales that arise in the model due to the presence of small perturbations. Specifically, a novel and
efficient algorithm that helps identify the presence of different time-scales is developed. In addition,
the method converts an implicit singularly perturbed model into an explicit equivalent where the
time-scales are evident. Using this algorithm, a complete singularly perturbed dynamic model of the
augmented eighteenth-order PEMFC-reformer system is obtained. Modeling of the PEMFC-reformer
system is followed by linear quadratic regulator (LQR) design for the individual time-scales present
in the system.

Keywords: PEM fuel cells; singularly perturbed modeling; LQR optimal control

1. Introduction

An increase in worldwide energy demand and the quest for sustainability have led to major
investments in renewable resources. The latter are eco-friendly, generally reliable, and have lower
operating costs. While there are several disadvantages associated with renewable sources such as
vulnerability or the inability to generate power in large quantities, the consensus among researchers
is that energy in the future will primarily be generated by renewable sources. One of the latter is
the fuel cell. This source has become very popular due to a higher efficiency compared to other
renewable sources, low maintenance costs, and ubiquity of hydrogen. Fuel cells have been widely
used in industrial settings (e.g., factories) [1], residential units [2], and the automotive industry
(e.g., electric vehicles) [3,4], and are also commonplace in smart grid ecosystems where they are
used as supplementary renewable sources in microgrids [5,6]. A major enabler that has aided in
hydrogen mobility, and subsequently in the widespread use of fuel cells, has been the investment in
infrastructure by several countries in North America, Europe, and Asia [7,8]. Government statistics in
these countries [8] show that demand for a hydrogen economy is increasing, hence possibly putting
the fuel cell at the forefront of the clean energy revolution.

The device works by converting the chemical energy of hydrogen and oxygen into electricity
through a pair of redox reactions [9]. In addition to electricity, the chemical reaction produces water
and heat [9,10]. While the method of operation is standard for all varieties of fuel cells, they have
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distinct features such as different material composition, efficiency, and operating temperatures. Some
of the most common types that are currently in use and also heavily researched are the proton-exchange
membrane fuel cell (PEMFC) [9], the solid oxide fuel cell (SOFC) [11], and the phosphoric acid fuel cell
(PAFC) [12].

It is worth noting that modeling and simulation play a critical role in fuel cell design.
A high-fidelity model gives the designer the capability to modify parameters accordingly and use
them in the final implementation, therefore leading to an optimal desired design. One such PEMFC
model was originally developed in [9]. This model has been investigated in a variety of domains over
the years. For example, in [13], the authors consider dynamic and controlled operation of a PEMFC
integrated with a natural gas fuel processor system (FPS) and a catalytic burner (CB). Optimization is
performed to generate the air and fuel flow intake setpoints to the fuel processor system for different
load levels, and then linear quadratic regulator techniques are used to develop a controller to mitigate
hydrogen starvation in the fuel cell. In [9], analysis and design of air flow controllers that prevent
oxygen deprivation of the fuel cell stack as the current changes was presented. Improvements in
transient oxygen regulation when the fuel processing system voltage was included in the model
were demonstrated. A combined PEMFC-FPS model was studied in [14], where the authors used
order-reduction techniques to show that similar controller performance can be obtained if the model
size is reduced.

Unlike the work of [9] and other aforementioned references, this research differs in that an
augmented singularly perturbed model of the PEMFC-FPS is obtained. While the latter has been
defined in [14], it has not been studied in a singularly perturbed fashion. The technological context
as well as the motivation behind this work lies in the fact that fuel cell systems can contain inherent
parasitics such as small impedances or load perturbations. A standard dynamic model does not
include such parasitics and that can lead to inaccuracies in simulations which, in turn, would affect
the efficiency of the overall system design. Singular perturbation methods are typically used for such
models and are very important from a practical aspect since they capture the model’s slow and fast
dynamics, hence providing a more accurate model. Besides the singularly perturbed modeling of the
fuel cell system, case studies of optimal controller design are presented. Namely, linear quadratic
(LQ) controllers are designed for the individual time-scales to meet operational requirements. It is
important to note that in this paper, the term “fuel cell system” strictly refers to a setup consisting of a
PEMFC and an FPS and does not include additional components such as filters, converters, etc.

The contributions of this paper are threefold. First, the theory that enables one to convert an
arbitrary linear system with two or more time-scales into a singularly perturbed model is developed.
The algorithm leverages an ordered Schur decomposition that arranges the system’s eigenvalues along
the main diagonal. Furthermore, the algorithm is computationally efficient, which is essential from a
practical perspective (e.g., parametric studies). Next, the singularly perturbed model of the overall
PEMFC-FPS is derived and formalized. Lastly, LQ controllers for each of the lower order models are
designed so that the response meets operational requirements.

The paper is organized as follows. In Section 2, the preliminaries of PEMFCs and singularly
perturbed systems are introduced. In Section 3, theoretical details on time-scale decoupling
via the ordered Schur decomposition are presented. Section 4 covers the singularly perturbed
modeling of the PEMFC-FPS, followed by Section 5 where LQ controller design is illustrated.
The remaining sections, namely, Section 6 and Section 7, correspond to the Results and Discussion,
and Conclusions, respectively.

2. Preliminaries

2.1. PEM Fuel Cells

The purpose of this subsection is to familiarize the reader with the PEMFC. For more details on
the topic, the reader is referred to [9,10,13] and the references therein. A simplified fuel cell diagram is
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shown in Figure 1. The PEMFC contains an electrolyte (center unit in Figure 1), an anode, and a cathode.
Hydrogen and oxygen gas are the primary fuels used in the redox chemical reaction. The products of
the latter are energy, excess fuel (if any), water, and heat. Due to several advantages, such as no harmful
gas emissions, light weight, small size, and low operating temperature, the PEMFC has become a very
popular energy alternative.

The chemical reaction starts at the anode, where hydrogen fuel is processed and electrons are
separated from protons on the surface of a catalyst. The electrons travel via a circuit to generate
electricity while the protons pass through the membrane to the cathode of the cell. At the cathode,
existing protons and electrons coming from the circuit are combined with oxygen to produce water,
which together with heat are the only waste products. It is important to note that instead of oxygen gas
in purified form, air can also be used as a fuel. An additional process at the electrode extracts oxygen
from air which is then used in the chemical reaction.

𝐻2 fuel in

Excess 

fuel out

𝑂2 fuel in

Water and 

heat out

Anode Cathode

Figure 1. Simplified diagram of a proton-exchange membrane fuel cells (PEMFC). The proton-exchange
membrane is located between the anode and cathode.

The hydrogen gas going into the fuel cell on the other hand has to be in pure form. It can either
be supplied from a dedicated tank or obtained from a fuel processing system (FPS) also known as a
gas reformer. The FPS typically uses natural gas as raw material and produces hydrogen via a series of
chemical reactions.

This research investigates the modeling and controller design of a PEMFC and FPS originally
studied in [9]. Unlike in [9], this work explores the singularly perturbed modeling of the PEMFC-FPS
augmented system. On that end, an overview of singular perturbation methods in control is provided
in the following subsection to familiarize the reader with the theory.

2.2. Overview of Singularly Perturbed Methods in Control

While singular perturbation methods in control have been used extensively since the sixties [15],
they are still an important research topic [16–18]. For a detailed treatment of singular perturbation
methods, the reader is referred to [15,19–21] and the references therein.

A linear time-invariant (LTI) strictly proper singularly perturbed system in mathematical form is
represented as

ẋ1(t) = A1x1(t) + A2x2(t) + B1u(t)

εẋ2(t) = A3x1(t) + A4x2(t) + B2u(t)

y(t) = C1x1(t) + C2x2(t),

(1)
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where x1(t) ∈ Rn and x2(t) ∈ Rm are the slow and fast state variables respectively, u(t) ∈ Rp are the
system control inputs, y(t) ∈ Rq are the system measurements, and ε is the small singular perturbation
parameter 0 < ε � 1. In a real physical system, ε can represent parasitic capacitance in a circuit,
moment of inertia in a mechanical system, etc. All the matrices in (1) are constant and of appropriate
dimensions. Two time-scale LTI singularly perturbed systems have eigenvalues located in two disjoint
groups: slow O(1) eigenvalues close to the imaginary axis and fast O( 1

ε ) eigenvalues far from it.
The following standard assumption is imposed [19].

Assumption 1. Matrix A4 is nonsingular.

When ε = 0 (a common strategy for order reduction), the following reduced-order system
corresponding to the slow dynamics is obtained:

˙̄x1(t) = A0 x̄1(t) + B0u(t)

ȳ(t) = C0 x̄1(t) + D0u(t),
(2)

where
A0 = A1 − A2 A−1

4 A3 B0 = B1 − A2 A−1
4 B2

C0 = C1 − C2 A−1
4 A3 D0 = −C2 A−1

4 B2.
(3)

The approximated fast subsystem is [19]

ε ˙̄x2(τ) = A4 x̄2(τ) + B2u(τ)

ȳ f (τ) = C2 x̄2(τ),
(4)

where τ = t/ε. According to the theory of singular perturbations [15,19], the approximation obtained
in (2)–(4) satisfies

x1(t) = x̄1(t) +O(ε), ∀t ≥ t0

x2(t) = x̄2(t)− A−1
4 (A3 x̄1(t) + B2u(t)) + O(ε),

∀t ≥ t0 + O(ε).

(5)

Hence, the smaller ε, the better the approximation. Furthermore, λ(A0) and λ(A4/ε) are O(ε)
perturbation from the slow and fast eigenvalues of the original model, respectively.

Another effective method to obtain exact dynamic decoupling is by utilizing the transformation
developed in [22]. Referred to as the Chang transformation, it diagonalizes the system by exposing the
slow and fast dynamics. The transformation is given as follows.

[
z1(t)
z2(t)

]
=

[
I − εHL εH

L I

] [
x1(t)
x2(t)

]
= T

[
x1(t)
x2(t)

]
(6a)[

x1(t)
x2(t)

]
=

[
I εH
−L I − εLH

] [
z1(t)
z2(t)

]
= T−1

[
z1(t)
z2(t)

]
. (6b)

After (6a) is applied to (1), the decoupled system is then

ż1(t) = Asz1(t) + Bsu(t)

εż2(t) = A f z2(t) + B f u(t)

y(t) = Csz1(t) + C f z2(t),

(7)
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where
As = A1 − A2L Bs = B1 − HB2 − εHLB1

A f = A4 + εLA2 B f = B2 + εLB1

Cs = C1 − C2L C f = C2 − εC2LH + εC1H.

(8)

A noticeable difference between the reduced-order slow model defined in (2)–(3) and the
decoupled system (7) is that the measurement in (7) lacks an input u(t) while ȳ(t) from (2) includes a
D0u(t) term.

Matrices L and H are obtained by solving the following equations.

A4L− A3 − εL(A1 − A2L) = 0
HA4 − A2 + ε(HLA2 − A1H + A2LH) = 0.

(9)

The reader can refer to [23–25] for methods on finding the solution of L and H.

3. Time-Scale Decoupling via the Ordered Schur Decomposition

This section serves as the basis for the singularly perturbed modeling of the PEMFC-FPS
augmented system. Namely, the algorithm that achieves complete decoupling of an arbitrary singularly
perturbed model is developed. This method is then applied in the following section. Theoretical
techniques presented here were briefly introduced in [26]. This section contains a thorough explanation
of the method.

3.1. Ordered Schur Transformation

As noted earlier, many real physical systems contain small parasitics when they are modeled.
This forces parts of the system to operate in different time-scales. Quite often, it may be difficult
to distinguish between the time-scales. Methods such as permutation matrices or other similarity
transformations [19] have been proven successful to obtain a standard singularly perturbed form for
two time-scale systems but it is challenging when additional time-scale dynamics are present.

In this paper, the aforementioned issue is addressed by developing a method that brings
an implicit singularly perturbed system into its explicit form, where the perturbation parameters
ε1, ε2, · · · , εN are either known or can be easily determined. ε1 is associated with the slowest state
variable and εN is associated with the fastest, namely, 0 < εN � εN−1 � . . .� ε1 = 1.

Consider a general implicit multiple time-scale system without inputs, as shown in (10).

ẋ(t) = A(ε)x(t), (10)

where x(t) = [x1(t) x2(t) . . . xN(t)]T is the state vector. To simplify the problem, an ordered Schur
decomposition is employed to transform the model into a well-conditioned form. This is followed by the
extraction of the perturbation parameter and sequential decoupling to obtain the individual time scales.
The Schur decomposition is an efficient method used to find the system’s eigenvalues by utilizing the
QR algorithm [27].

For a matrix A ∈ Rn×n, there exits a unitary matrix T ∈ Rn×n such that TT AT = Ã is upper
quasi-triangular.

Ã =


R11 R12 · · · R1N
0 R22 · · · R2N
...

. . . . . .
...

0 · · · 0 RNN

 . (11)

Matrix blocks Rij, i = j can be 1× 1 or 2× 2. 1× 1 blocks correspond to real eigenvalues while 2× 2
blocks correspond to complex eigenvalues.
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The eigenvalues appearing along the diagonal of Ã can be arbitrarily ordered. An additional
transformation has to be employed to achieve desired reordering (descending) of the system matrix [27–29].
A transformation z(t) = Tx(t) [30] can be found such that the unitary matrix T decomposes the system
into the Schur form. Upon applying the ordered Schur algorithm, the dynamic Equation (10) takes the
following form

ż(t) = Ãz(t), (12)

where

Ã =


A11 Ψ12 . . . Ψ1N
0 A22 . . . Ψ2N
...

...
. . .

...
0 0 . . . ANN

 . (13)

Diagonal block matrices Aij, i = j, contain the system’s eigenvalues in descending order.
z(t)1, z(t)2, . . . , z(t)N are vectors each representing each time scale and Ψij are matrix blocks of
appropriate dimensions. Note that blocks Aij, i = j, represent individual time-scales rather than
individual eigenvalues.

3.2. Parameter Extraction and Time-Scale Decoupling

Prior to decoupling the transformed system, it is essential to convert it to an explicit singularly
perturbed form by extracting the perturbation parameters from the system matrix. This is
achieved by defining the perturbation parameters. For two time-scale stable systems with clearly
separated eigenvalues (real or complex with small imaginary parts), ε is commonly evaluated as
ε = max Re{λs}/min Re{λ f } [31]. However, referring to examples such as the PEMFC-FPS under
consideration, it can be inferred that the imaginary parts of the eigenvalues are indispensable for
calculating the perturbation parameter. Hence, the latter is evaluated as the ratio of the magnitudes
of the largest eigenvalue of the slowest time-scale with the smallest eigenvalue of the next fastest
time-scale

εi =
max|λslowest|

min|λi f ast |
, i = 2, 3, · · · , N. (14)

Since the system is in ordered Schur form, the perturbation parameters can be easily evaluated
using (14) and extracted to put the system into the explicit singularly perturbed form. The explicit
multi-time-scale system now looks as follows:

ε1ż1(t)
ε2ż2(t)

...
εN żN(t)

 =


Ã11 Ψ̃12 . . . Ψ̃1N
0 Ã22 . . . Ψ̃2N
...

...
. . .

...
0 0 . . . ÃNN




z1(t)
z2(t)

...
zN(t)

 , (15)

where the elements of the system matrix have been scaled in accordance with parameter extraction.
The explicit system can now be decoupled into multiple distinct time-scale systems by successively

applying the Chang transformation in (6a).
To initiate the decoupling, the perturbation parameter is extracted from the fastest time-scale

and (12) is rewritten as a standard two time-scale singularly perturbed form.[
Ż1(t)

εN Ż2(t)

]
=

[
Ã1 Ã2

Ã3 Ã4

] [
Z1(t)
Z2(t)

]
. (16)

In (16), matrices Ã3 and Ã4 represent the last row of the system’s matrix in (13) with εN extracted.
Ã4 represents the fastest time-scale, while Ã3 contains the rest of the matrix blocks which happen to
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be all zero in this case. Ã1 and Ã2 are matrices of appropriate dimensions containing the rest of the
system matrix in (12).

Utilizing (6a), the system in (16) is initially decoupled into two subsystems, where the fast
subsystem represents the fastest time-scale available and the slow subsystem contains the rest of the
time-scales.

ξ̇(t) = (Ã1 − Ã2LN)ξ(t) (17a)

εN η̇N(t) = (Ã4 + εN LN Ã2)ηN(t). (17b)

As a reminder to the reader, matrices L and H satisfy (9). A modified Newton’s method developed
in [25] follows.

D(i)
1 L(i+1)

N + L(i+1)
N D(i)

2 = Q(i)

D(i)
1 = Ã4 + εL(i)

N Ã2 D(i)
2 = −ε(Ã1 − Ã2L(i)

N )

Q(i) = Ã3 + εL(i)
N Ã2L(i)

N L(0)
N = Ã−1

4 Ã3.

(18)

The new slow subsystem (17a) is partitioned again, as in (19), where εN−1 is now extracted from
the second fastest time-scale. [

Ẏ1(t)
εN−1Ẏ2(t)

]
=

[
G̃1 G̃2

G̃3 G̃4

] [
Y1(t)
Y2(t)

]
. (19)

The algorithm is applied sequentially till all the perturbation parameters have been extracted
and the system is in explicit singularly perturbed form. The relation between the system in original
coordinated z(·) and the new one is given as

η1(t)
η2(t)

...
ηN(t)

 = T


z1(t)
z2(t)

...
zN(t)

 , (20)

where T is defined as T = T̄2T̄3 · · · T̄N−1TN and T̄i is

T̄i ,

[
Ti 0
0 I

]
. (21)

Matrix Ti represents the linear transformation for each time-scale i. On the other hand, matrix
T̄i is an augmentation of Ti with an identity matrix I of appropriate dimensions so that its size is the
same as T. Unlike in [31], the system matrix in ordered Schur form simplifies the computations. For a
quasi-triangular system such as (12), Ã3 in (16) is 0. Then, equations for the solution of matrices L and
H in (9) simplify to the following.

Ã4LN − εLN(Ã1 − Ã2LN) = 0 (22a)

ε(HN LN Ã2 − Ã1HN + Ã2LN HN)− Ã2 + HÃ4 = 0. (22b)

An additional simplification comes due to the new system matrix structure.

Theorem 1. Due to the structure of (15), matrix LN of the Chang transformation evaluates to a zero matrix.
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Proof. Upon applying the recursive algorithm (18), it is easy to show that matrix LN in (22a) evaluates
to a zero matrix by solving the Sylvester equation for the first iteration

Mvec L(1)
N = 0. (23)

Matrix M is defined as (In ⊗ Ã4 − εÃT
1 ⊗ In) and is full rank. Therefore, ker(M) = 0, which

implies L(1)
N = 0. Since LN

(0) = 0 and L(1)
N = 0, then by induction, for all other iterations L(i)

N = 0. This
applies to matrix Li, i = N − 1, N − 2, . . . , 1, for the remaining time-scales.

In the absence of matrix L, (22b) then becomes just a Sylvester equation.

HN Ã4 − Ã2 − εÃ1HN = 0. (24)

Likewise, transformation (6a) simplifies to (25). Note that the state variables in (25) are arbitrary.[
ξ(t)
η(t)

]
=

[
I −εH
0 I

] [
z1(t)
z2(t)

]
. (25)

After the process is repeated for all the N time-scales available in the system, the individual
subsystems are then given as follows.

ε1η̇1(t) = Ã1η1(t)

ε2η̇2(t) = Ã2η2(t)
...

εN η̇N(t) = ÃNηN(t).

(26)

System (26) is now completely decoupled into a standard explicit singularly perturbed form.
Note that if control is considered, the input matrix for each time-scale would be obtained sequentially
in a similar fashion. The slow and fast input matrices for a two time-scale system are evaluated as
Bs = B1 − HB2 − εHLB1 and B f = B2 + εLB1, respectively.

The overall process discussed in this section can be summarized as follows.

Algorithm 1 Time-Scale Decoupling of Implicit Singularly Perturbed Systems

1: Input: Implicit singularly perturbed system
2: Apply Schur decomposition
3: If Eigenvalues are not ordered then

apply swapping algorithm [27] or [29]
4: Evaluate εi for each time-scale and form explicit system
5: Use Chang transformation [22] to get individual time-scales
6: Output: Completely decoupled system

4. Singularly Perturbed Modeling of the PEMFC-FPS

The general nonlinear models of the PEMFC and FPS systems studied in this paper were originally
derived and used for controller design in [9]. The fuel cell considered in [9] has been used for research
in the automotive industry and has a stack size of approximately 40 kW. Its operation temperature
varies from 50 ◦C to 100 ◦C. The associated FPS is typically used for PEMFCs with stack size of 100 kW
and is made up of a hydrodesulfurizer, a catalytic partial oxidation reactor, a water gas shift reactor,
and a preferential oxidation reactor [9]. Original PEMFC and FPS models have been linearized around
a nominal operation point, where the system net power is zo

1 = 40 kW and oxygen excess ratio is
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zo
2 = 2 [9]. Both linear and nonlinear model responses are compared in [9] and it is validated that the

errors are insignificant.
This paper does not elaborate any further on the nonlinear systems but instead uses the linearized

system for modeling and controller design. The reader is referred to [9,10] for additional details.

4.1. PEMFC and FPS Linear Model

Variables that are used in determining the model of the PEMFC fall into two main
categories: masses of the gases that are used in the chemical reaction and the pressure of
these gases. The state vector for the linear PEMFC model is defined as δx ∈ R8, δx =[

mO2 mH2 mN2 ωcp psm msm mw,an prm

]
. Corresponding descriptions of state variables is

provided in Table 1.

Table 1. PEMFC nomenclature.

Symbol Variable Definition Units

mO2 Mass of oxygen kg
mH2 Mass of hydrogen kg
mN2 Mass of nitrogen kg
ωcp Compressor speed rad/s
psm Pressure of gas in supply manifold kPa
msm Mass of gas in supply manifold kg

mw,an Mass of water in anode channel kg
prm Pressure in return manifold kPa

Likewise, for the FPS, masses and pressures of gases are essential for modeling. The state vector
in this case is δx ∈ R10, δx =

[
Tcpox pan

H2
pan phex ωblower phds pmix

CH4
pmix

air pwrox
H2

pwrox

]
.

Table 2 describes the state variables of the tenth order FPS model.

Table 2. Fuel processing system nomenclature.

Symbol Variable Definition Units

Tcpox Catalyst temperature K
pan

H2
Pressure of hydrogen in anode kPa

pan Anode pressure kPa
phex Heat-exchanger pressure kPa

ωblower Speed of the blower (rad/sec) kPa
phds Pressure of hydrodesulfurizer kPa
pmix

CH4
Pressure of CH4 in mixer kPa

pmix
air Pressure of air in mixer kPa

pwrox
H2

Hydrogen pressure in water gas shift converter (WROX) kPa
pwrox Total pressure in WROX kPa

Using information from the PEMFC and FPS models, an augmented linear state-space model is
created as in (27) [14].[

δẋPEMFC(t)
δẋFPS(t)

]
=

[
APEMFC 0

0 AFPS

] [
δxPEMFC(t)

δxFPS(t)

]
+

[
BPEMFC 0

BFPS1 BFPS2

] [
δublow
δuval

]
[

yPEMFC(t)
yFPS(t)

]
=

[
CPEMFC 0

0 CFPS

] [
δxPEMFC(t)

δxFPS(t)

]
+

[
Dblow

PEMFC 0
Dblow

FPS Dval
FPS

] [
δublow
δuval

]
.

(27)
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State-space system in (27) can be written as follows:

δẋ(t) = Aaugδx(t) + Baugδu(t)

y(t) = Caugδx(t) + Daugδu(t),
(28)

where Aaug ∈ R18×18, Baug ∈ R18×2, Caug ∈ R5×18, and Daug represent matrices in (27). Numerical
values of APEMFC, AFPS, BPEMFC, BFPS, CPEMFC, and CFPS are available in [9] and also included in
Appendix A for reference. Note that the feedthrough matrix D is zero in both the PEMFC and FPS,
therefore Daug = 0.

In the following subsection, a singularly perturbed linear model of (27) is derived using methods
from Section 3.

4.2. Singularly Perturbed Model of the PEMFC-FPS

The eigenvalues of the augmented system are key in determining the time-scale composition of the
model. Figure 2 depicts graphically the sorted eigenvalues of the PEMFC-FPS. Recall from Section 3.2
that the magnitude of the eigenvalues is used to evaluate the singular perturbation parameter εi.
Based on the distribution shown in Figure 2, a three time-scale model is chosen. The first nine modes
represent the slow subsystem, the following six represent the second time-scale, and the last three
constitute the fastest time-scale. Note that this decision is not necessarily strict.

0 5 10 15 20
0

100

200

300

400

500

600

700

Figure 2. Magnitude of the eigenvalues of the PEMFC-FPS (fuel processor system) augmented system.
The reader can observe that the first nine eigenvalues are O(1), the following six are O(10), and the
remaining areO(100). Separation between clusters implies that three different time-scales are available.

At this point, the singular perturbation parameters of the three time-scale model can be
calculated using (14). The magnitude of the largest eigenvalue of the slow subsystem is |λ9| = 3.33.
The magnitude of the smallest eigenvalues of the second and third time-scales are |λ10| = 12.17 and
|λ16| = 157.90. Hence, ε1, ε2, and ε3 are as follows.

ε1 = 1, ε2 =
3.33

12.17
≈ 0.27, ε3 =

3.33
157.90

≈ 0.02. (29)
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The singularly perturbed model then becomes ż1(t)
ε2ż2(t)
ε3ż3(t)

 =

Ã11 Ψ̃12 Ψ̃13

0 Ã22 Ψ̃23

0 0 Ã33


z1(t)

z2(t)
z3(t)

+

B̃1

B̃2

B̃3

 [
δublow
δuval

]

y(t) =
[
C̃1 C̃2 C̃3

] z1(t)
z2(t)
z3(t)

 .

(30)

State variables belonging to each time-scale are presented in Table 3.

Table 3. State variable distribution among time-scales.

State Variables

Time-scale 1 pmix
CH4

mH2 ωblower mO2 phex pmix
air pwrox

H2
pan pwrox

Time-scale 2 phds prm mw,an psm pan
H2

ωcp

Time-scale 3 Tcpox mN2 msm

After applying the algorithms developed in Section 3 to the original augmented PEMFC-FPS
model in (27), the matrices that help form the singularly perturbed model (30) are obtained. The state
matrix Aschur = T−1 AaugT, control matrix Bschur = TBaug, and output matrix Cschur = CaugT−1 are
available in Appendix B. Linear mapping T represents the transformation from the original augmented
model (27) to the ordered Schur model. It is also important to note that matrices Aschur and Bschur,
specified in Appendix B, do not represent the state and control matrices in (30) because the singular
perturbation parameters have not been extracted yet. To obtain model (27), Aschur and Bschur are simply
multiplied by the ε of the corresponding time-scale.

Lastly, the Chang transformation [22] is applied sequentially to obtain a completely decoupled
system (refer to Algorithm 1).

5. LQ Control System Design for the PEMFC-Reformer System

In this section, LQ controller design is demonstrated for the decoupled subsystems of the
PEMFC-FPS model obtained in the previous section. Specifically, all three time-scales are considered
independent models and LQ control is applied to each of them. An overview of LQ control is first
presented followed by simulation results.

5.1. LQ Control Overview

In LQ control, our objective is to drive the state vector x(t) to the origin from any nonzero initial
state [32]. If only state-feedback control is used and the closed-loop eigenvalues are assigned far inside
the left half of the s-plane, the state x(t) will die out quickly but elements of the feedback gain can be
high in magnitude, therefore requiring a high control cost. Alternatively, if the closed-loop eigenvalues
are assigned closer to the imaginary axis, the rate of decay of x(t) will be slow and a small control
action will be required. This trade-off between the state-vector x(t) and control action u(t) can be
represented by the following cost function.

J =
1
2

∫ ∞

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt. (31)
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The LQ problem is then to find a control u(t) such that the cost function (31) is minimized.
An important assumption here is that R > 0 and Q ≥ 0. The solution to this infinite-horizon optimal
control problem is a control input given by [32]

u(t) = −Fx(t), (32)

where the gain is given as F = R−1BT P and matrix P is the solution of the following algebraic Riccati
equation [32].

AT P + PA + Q− PBR−1BT P = 0. (33)

The state vectors x(t) for each time-scale are given in Table 3.

5.2. Feedback Controller Design

Controller design starts with the decoupled PEMFC-FPS model presented in (27). Initially, the
ordered Schur transformation Tschur is applied to obtain model (30) followed by sequential Chang
transformation (6a) to get a decoupled three time-scale model as follows. η̇1(t)

ε2η̇2(t)
ε3η̇3(t)

 =

Â11 0 0
0 Â22 0
0 0 Â33


η1(t)

η2(t)
η3(t)

+

B̂1

B̂2

B̂3

 [
δublow
δuval

]
. (34)

In (34), η1(t) ∈ R9, η2(t) ∈ R6, and η3(t) ∈ R3. The overall similarity transformation to arrive
to (34) from original model (27) is T = TordSchurTChang, where TChang is in itself two different linear
transformations, namely, TChang = T̄Chang2TChang3. Note that T̄Chang2 has the form given in (21).

The control input vector for system (34) now becomes as follows.

u(t) =

[
δublow
δuval

]
= −F

η1(t)
η2(t)
η3(t)

 . (35)

Note that it is important to convert the control input vector into the original coordinates of
the system [33]. To do so, the transformation ηi(t) = TChangzi(t) is used to put the system in z(·)
coordinates, where z(·) represents the ordered Schur model. Another similarity transformation to
get to the original coordinates x(·) is necessary, namely, zi(t) = TordSchurxi(t). The control input them
becomes

u(x(t)) = −FTChangTordSchurx(t). (36)

In the following subsection, the aforementioned principles are applied to the decoupled
PEMFC-FPS model. It is worth noting that pairs (A, B) and (A, C) for all the state-space models
considered are stabilizable and detectable, respectively.

5.3. LQ Control Simulation Results

LQ controller design in this section is based on requirements of an actual physical system as
noted in [10]. Table 4 shows operating time specifications for different processes that occur in a
PEFMC-reformer system. In this section, LQ controllers for one state in each time-scale are designed.
Scaled reference step inputs are considered in each of the three cases. The selection of matrices Q
and R in this section is based on parametric studies. This method ensures that (31) is minimized and
requirements in Table 4 are met. An example of LQ control for various values of Q and R is shown in
Figure 3 for mO2 . It is evident that different values of Q (shown as the trace of Q in this case) and R can
have a significant impact on the controller’s response.
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tr(Q) = 4501, R = 474

tr(Q) = 5416, R = 568

Figure 3. Linear quadratic regulator (LQR) design for mO2 for various Q and R values.

Table 4. Fuel cell system operating time requirements.

Process Operating Time

Electrochemistry O(10−19 s)
Hydrogen & air manifolds O(10−1 s)
Flow control/supercharging devices O(100 s)

Recall that the first subsystem corresponding to the slowest time-scale is a ninth-order model.
For this case, only the mass of oxygen, namely mO2 is selected for control. From Table 4 (see [10]),
it is observed that this process has a time constant of O(100) seconds. Ideally, for a satisfactory
performance, it is preferred that the response settles in less than ten seconds. Likewise, a relatively
small overshoot would be ideal so that the mass of oxygen in the chamber does damage the hardware.
Figure 4 shows the response for a reference input set to 1 kg. The simulation is run for fifteen seconds.
It can be observed that the settling time is around eight seconds (within the requirements). There
is a noticeable overshoot but given the time duration, it does not pose any risks to the hardware.
The values of the matrices Q and R used for this design are presented in (37).

Q = diag
{

3613 7417 7059 7009 62 3743 9015 3183 5971
}

, R = 298. (37)
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Figure 4. LQR design simulation results for mO2 .
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Figure 5 represents the second fastest subsystem. Specifically, the state variable corresponding
to the pressure in the supply manifold has been used to demonstrate controller design. A reference
input of 7 kPa has been used in the simulation. According to the requirements, the operational time
for processes occurring in the manifold are of O(10−1) seconds. Therefore, the design entails a very
short settling time and a small overshoot.

Simulation results of the design are presented in Figure 5. It is clear that this design provides a
short rise time, a very minimal settling time which falls within the requirements, and no overshoot.
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Figure 5. LQR simulation results for psm.

The parameters for this desired design are given as follows.

Q = diag
{

8, 223, 940 251, 505 4, 144, 289 7, 314, 075 7, 813, 740 3, 672, 859
}

, R = 1. (38)

Lastly, response for the fastest subsystem is shown in Figure 6. In the latter, results for the state
corresponding to the mass of nitrogen (mN2 ) are shown, for a reference input of 0.5 kg. The simulation
is run for 0.05 seconds as the reader can observe. It is clear from Figure 6 that the mass of mN2 goes to
the desired setpoint in a very short period of time. In addition, the design ensures a short rise time and
no overshoot.
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Figure 6. LQR design simulation results for mN2 .
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Matrices Q and R for this design are given in (39).

Q = diag
{

131, 830 123, 500 190, 903
}

, R = 1. (39)

6. Discussion of Results

Results of this research can be divided into two main parts:

1. Introduction of an algorithm that converts implicit singularly perturbed systems into explicit ones.
2. Singularly perturbed modeling of the PEMFC-FPS augmented model followed by LQ

controller design.

6.1. From Implicit to Explicit Singularly Perturbed Systems

The theoretical basis behind this research lies in the development of an algorithm that converts
a linear system with known two or more time-scales (this could be determined from the eigenvalue
distribution for example) into a singularly perturbed model. The algorithm relies on an ordered Schur
decomposition. Singular perturbation parameters are determined via the ratio of the eigenvalues, and
their extraction leads to a final singularly perturbed form. Then, exact decoupling of the obtained
singularly perturbed system is sequentially performed.

The developed algorithm is an efficient method that help obtain an explicit form where the
time-scales are clearly defined. While there are different methods to put an implicit singularly
perturbed system into its explicit equivalent (for example, using permutation matrices), our method
offers more flexibility. For instance, if the model is very large scale, using permutation matrices may
not be feasible and it could be computationally expensive.

6.2. Singularly Perturbed Modeling of the PEMFC-FPS and Controller Design

The main novelty of this research lies in the formulation of the singularly perturbed model of
the PEMFC-FPS. Starting with an augmented PEMFC-FPS model, the theoretical basis to obtain a
model that is completely decoupled into different time-scales was presented. The enablers behind the
modeling are the eigenvalues of the system. Large magnitude differences among the eigenvalues show
that the augmented system consists of multiple time-scales, and since singular perturbation theory is
commonly used to study such systems, it was applied to (27).

Using this method, the explicit singularly perturbed model (30) was obtained. The latter model
was decoupled and controllers were designed for each sub-subsystem. Results showed that a
performance within operational requirements can be attained.

6.3. Real-World Implications

Modeling and simulation are key tools used for a successful fuel cell system design. In this
paper, a modeling methodology was initially developed by using singular perturbation techniques.
The method helps obtain an explicit singularly perturbed model and also offer a way to decouple
the model into individual time-scales which can be used separately to design controllers. Having a
complete model and efficient algorithms is very important not only because it enables the designer to
rigorously analyze the system but also because it helps alleviate computational burdens if, for example,
parametric studies or Monte Carlo runs are considered.

7. Conclusions

A lack of PEMFC-FPS time-scale modeling served as motivation for this research. Initially,
the theoretical basis that enables the designer convert a linear model with multiple time-scales
into an explicit singular perturbation model was introduced. These techniques were applied to
a popular augmented PEMFC-FPS model and it was shown that it can be represented as a three
time-scale singularly perturbed model. The latter was then decoupled into individual submodels,
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each corresponding to a different time-scale, and LQ control was applied in each case. The methods
developed in this paper capture all the dynamics present in the system including small parasitics.
From a practical standpoint, the work presented here is indispensable to the designer since, in addition
to a complete model, the efficient algorithm helps decouple the full-order model into individual
time-scales for separate analysis such as controller design, as it was shown via case studies.
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CB Catalytic burner
FPS Fuel processing system
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PAFC Phosphoric acid fuel cell
PEMFC Proton exchange membrane fuel cell
SOFC Solid oxide fuel cell

Appendix A. Linear Model Matrices

Appendix A.1. PEMFC Model State-Space Matrices

APEMFC =



−6.3091 0 −10.954 0 83.7446 0 0 24.0587
0 −161.08 0 0 51.5292 0 −18.026 0

−18.786 0 −46.314 0 275.659 0 0 158.374
0 0 0 −17.351 193.937 0 0 0

1.2996 0 2.9693 0.3977 −38.702 0.1057 0 0
16.6424 0 38.0252 5.0666 −479.38 0 0 0

0 −450.39 0 0 142.208 0 −80.947 0
2.0226 0 4.6212 0 0 0 0 −51.211


The corresponding control and output matrices are

BPEMFC =
[
0 0 0 3.9467 0 0 0 0

]T

CPEMFC =

 0 0 0 5.0666 −116.45 0 0 0
0 0 0 0 1 0 0 0

12.9699 10.3235 −0.5693 0 0 0 0 0
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Appendix A.2. Reformer Model State-Space Matrices

AFPS =



−0.074 0 0 0 0 0 −3.53 1.0748 0 10−6

0 −1.468 −25.3 0 0 0 0 0 2.5582 13.911
0 0 −156 0 0 0 0 0 0 33.586
0 0 0 −124.5 212.63 0 112.69 112.69 0 0
0 0 0 0 −3.333 0 0 0 0 0
0 0 0 0 0 −32.43 32.304 32.304 0 0
0 0 0 0 0 331.8 −344 −341 0 9.9042
0 0 0 221.97 0 0 −253.2 −254.9 0 32.526
0 0 2.0354 0 0 0 1.8309 1.214 −0.358 −3.304

0.0188 0 8.1642 0 0 0 5.6043 5.3994 0 −13.61


The corresponding control and output matrices are

BFPS =

[
0 0 0 0 0.12 0 0 0 0 0
0 0 0 0 0 0.1834 0 0 0 0

]T

CFPS =

[
1 0 0 0 0 0 0 0 0 0
0 0.994 −0.088 0 0 0 0 0 0 0

]

Appendix B. Singularly Perturbed Model Matrices

Matrices Aordschur, Bordschur, and Cordschur after the ordered Schur transformation.

Aordschur =

[
Aordschur1 Aordschur2

09×9 Aordschur4

]
,

where
Aordschur1 =

−0.0862 −0.0028 0 −0.0156 0 3.2612 0.6874 0 0.5969
0 −0.3580 0 −2.5583 0 0.2237 2.4690 0 −1.9679
0 0 −1.4030 0 0.2086 0 0 −2.2670 0
0 0 0 −1.4680 0 −0.2864 1.1048 0 −1.7870
0 0 0 0 −1.6473 0 0 −0.4183 0
0 0 0 0 0 −2.7710 24.0183 0 −205.9237
0 0 0 0 0 −0.0125 −2.7710 0 16.4292
0 0 0 0 0 0 0 −2.9158 0
0 0 0 0 0 0 0 0 −3.3330


Aordschur2 =

0.1163 0 0 0 0.8907 0 0.1059 0 2.2927
5.2432 0 0 0 0.1165 0 24.4106 0 0.2548

0 −2.2491 0.1289 210.1544 0 241.6745 0 −126.1038 0
5.2145 0 0 0 −0.1451 0 13.5518 0 −2.1245

0 3.9128 −0.2000 104.2744 0 98.8688 0 −55.9802 0
−110.9045 0 0 0 −136.2951 0 −3.4635 0 −114.8570

5.7071 0 0 0 −136.4296 0 10.5405 0 132.5512
0 −15.9345 0.8944 −178.9414 0 −374.8447 0 159.2652 0

2.7122 0 0 0 −160.6942 0 −5.3201 0 119.4144
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Aordschur4 =

−12.169 0 0 0 −6.8593 0 22.822 0 72.358
0 −18.259 −0.16427 −25.29 0 173.89 0 −35.75 0
0 0 −22.403 17.616 0 18.042 0 455.08 0
0 0 0 −46.177 0 13.922 0 −45.378 0
0 0 0 0 −89.137 0 −0.91046 0 10.517
0 0 0 0 0 −89.485 0 −41.234 0
0 0 0 0 0 0 −157.9 0 −2.8084
0 0 0 0 0 0 0 −219.62 0
0 0 0 0 0 0 0 0 −660.68


Bordschur =

[
Bordschur1 Bordschur2 Bordschur3

]T
,

where

Bordschur1 =

[
0.0014 0.0261 0.0033 −0.0013 0.0683 −0.0002

0 0 0 0 0 0

]

Bordschur2 =

[
0.0034 −0.0950 0.0305 −1.5709 1.5369× 10−5 4.1576× 10−5

0 0 −1.0901× 10−6 0 0.0030 −0.0653

]

Bordschur3 =

[
0 4.5845× 10−5 9.1141× 10−5 −4.5239× 10−5 3.6205 7.1346× 10−5

0.1600 0.0599 −0.0083 −0.0081 0 0.0048

]

Cordschur =
[
Cordschur1 Cordschur2 Cordschur3

]
,

where

Cordschur1 =


−106.4104 −0.4210 32.2881 −15.7390 −1.2406 30.7187

0.9138 0.0036 −0.2773 0.1352 0.0107 −0.2638
0.1455 0.0042 0.05586 0.1538 0.0126 0.5252

0 0 0 0 0 0
−0.02716 −0.0024 −0.0669 0.0490 −0.0063 −0.0006



Cordschur2 =


0.1670 −1.3415 0.0391 −2.0167 1.9730× 10−5 5.3373× 10−5

−0.0014 0.0115 0 0 0 0
−0.0014 0.0111 12.8628 −9.5524 0.0065 0.01755

0 0 −0.0004 1.5619× 10−14 0.0722 −0.7087
0.0032 −0.0085 0.0014 0 −0.2012 −0.0520



Cordschur3 =


0 5.88548× 10−5 0.0001 −5.8076× 10−5 4.6478 9.1591× 10−5

0 0 0 0 0 0
0 0.0194 0.0385 −0.0191 −4.2530 0.03012

−0.4599 0.4285 0.0036 0.0117 0 0.3119
−0.1403 0.4191 0.0920 0.0707 0 −0.8579
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