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Abstract: In the last few years, one of the most important challenges of power technologies has
been the integration of traditional energy production systems and distributed energy resources.
Large-scale photovoltaic systems and wind farms may decrease the quality of the electrical grid
service, mainly due to voltage and frequency peaks and fluctuations. Besides, new functionalities,
such as the operation in islanded mode of some portions of the medium-voltage grid, are more and
more required. In this respect, a model predictive control for voltage and frequency regulation in
interconnected local distribution systems is presented. In the proposed model, each local system
represents a collection of intelligent buildings and microgrids with a large capacity in active and
reactive power regulation. The related model formalization includes a linear approximation of the
power flow equations, based on stochastic variables related to the electrical load and to the production
from renewable sources. A model predictive control problem is formalized, and a closed-loop linear
control law has been obtained. In the results section, the proposed approach has been tested on the
Institute of Electrical and Electronics Engineers(IEEE) 5 bus system, considering multiple loads and
renewable sources variations on each local system.

Keywords: optimal control; model predictive control; power systems; islanded mode; voltage and
frequency regulation; interconnected microgrids

1. Introduction

The increase of intermittent renewable energy sources (RES) has created instability issues, requiring
new controllers for modern smart microgrids [1–3]. Actually, RES may cause voltage/frequency peaks
and fluctuations that negatively affect the quality of the electrical grid service. On the other hand,
RES represents an important alternative to reduce global fossil fuel consumption. The need for new
control strategies is also motivated by the increase of distributed small generators that cause millions of
new producers potentially involved in the energy market. In such a scenario, in the balancing market,
new actors, such as aggregators [4], are present and new functionalities are more and more required.
For example, in order to preserve the electrical grid from faults and emergency situations, it may be
necessary to reduce the power demand and to operate some portions of the medium-voltage grid in
islanded mode. These new set-ups require new fast controllers, which can take into account voltage
and frequency models.

In addition, the grid operators, i.e., the transmission system operator (TSO) and distribution
system operator (DSO), are forced to deeply change their roles. As an example, the DSO must become
active in its activities as a grid manager [5]. The DSO, in particular, is responsible for the normal
operation of the distribution grid and its subsystems (i.e., managing power quality and energy losses).
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Among others, the new roles for the DSO are: operational security management, dynamic voltage and
frequency control, outages response, performing restoration actions, and market operations. In this
framework, it becomes hard to define an effective optimal control, which derives from the structure
of the power grid, and, specifically, from the presence of several issues: renewable and traditional
power production, bidirectional power flows, and stochastic modelling issues (due to uncertainties in
forecasting power generated from renewable resources). The main challenge is to define and to solve
control problems embedding prediction models for the regulation of frequency, voltage, and active and
reactive power flows. Indeed, the complete power flow equations are nonlinear and nonconvex [6].
Therefore, optimization problems can hardly apply them to compute the control in real time. On the
other hand, there is the need to represent in detail the physical system to provide reliable control
strategies [7].

This work focuses on the optimal control of interconnected local systems in a distribution grid.
A local system can represent a group of renewable generators, passive and active loads, or microgrids
with a large capacity for active and reactive power regulation. The proposed approach can be used:

• To reduce frequency oscillations and to improve inertia response due to a sudden change in the
grid (i.e., a variation on a renewable power plant production), and

• To manage a portion of the distribution grid that is operated in islanded mode because of demand
response programs and/or emergency requirements.

In fact, an increase in the RES penetration can decrease the number of generation units that
provide reserve power for primary and secondary control. So, the frequency deviation increases [8].
New equations for inverters’ control to regulate frequency and voltage are required when a change in
the grid occurs (e.g., a loss of load).

The modelling approach proposed in this paper is based on the concept of virtual inertia [9–11].
An electrical model is defined, including voltage (magnitude and phase), frequency, active and reactive
power, and stochastic components. So, the definition of an optimal control problem for frequency and
voltage regulation in multi-local systems is introduced. The aim is to define a closed-loop controller
for the mitigation of frequency and voltage variations.

The paper is organized as follows. Section 2 reports the state-of-the-art and discusses the
innovation of the proposed work. In Sections 3 and 4, the system and the optimal control problem are
formalized. Finally, the application to a case study is described in Section 5, while conclusions and future
developments are reported in Section 6. The Appendix A reports proofs related to demonstrations not
included in the text for sake of readability.

2. Literature Review

Nowadays, the control of interconnected local distribution systems is a challenging problem.
In this respect, several papers focus on the definition and solution of optimization and control problems.
A detailed survey [12] on multi-microgrids systems has been recently published, where operational
management and control are quoted as challenging problems to be faced. Zheng et al. [13] propose a
distributed model predictive control (MPC) approach using discrete-time Laguerre functions for load
frequency control in multi-area interconnected power systems, in order to overcome the problems of
computational burden and online optimization. The advantage of an MPC approach is that it allows
for implementing a multivariable controller that controls the outputs simultaneously by taking into
account all the interactions among system variables. Another strength of MPC (not used in our work,
where a closed fast feedback is adopted) is that it can handle constraints. Khooban and Niknam [14]
propose a heuristic algorithm and a fuzzy logic approach to tune parameters of classical proportional
integral (PI) controllers for multi-area load frequency control. However, electrical models are not
detailed. In the literature of microgrids, there are several interesting approaches based on MPC but
related to the single microgrid, and thus not interconnected with other local systems. In Reference [15],
a novel fractional-order model predictive control method is proposed to achieve the optimal frequency
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control of an islanded microgrid by introducing a fractional order integral cost function into the MPC
approach. As in the present work, frequency regulation is attained, even if hereinafter we propose a
more detailed system model, where active and reactive powers are present and voltage is regulated.

In Reference [16], a feedback linearization is applied to design a predictive controller for the
secondary control of the voltage and frequency in an islanded microgrid. The goal is to improve the
performance of a closed-loop nonlinear system. The control scheme is fully distributed, and necessary
and sufficient conditions for convergence and stability of the whole system are described. As a
similar approach, we model both active and reactive power, but providing a control strategy for the
whole optimization problem that can be used under a MPC scheme. In Reference [17], a MPC-based
controller uses a simplified voltage prediction model to predict the voltage behavior in an islanded
microgrid. Apart from the fact that we consider multiple microgrids, in our model, we use a more
detailed electrical model and we derive an optimal control law. The same considerations can be done
in comparison with References [18,19].

The approach considered in the present paper gives a strong emphasis on the model of the
electrical grid. Specifically, the approach is based on the concept of virtual inertia [20,21]. The problem
of virtual inertia control is mainly felt in microgrids and grids where RES are present, as it is necessary
to cope with small inertia and uncertainties. In Reference [22], the authors propose an approach to
increase the inertia of the photovoltaic (PV) system through inertia emulation, which can be obtained
by controlling the charging/discharging of the DC-link capacitor and adjusting the PV generation.
Wu et al. [23] consider an islanded microgrid with renewables and storage systems, in which virtual
inertia allows power curtailment of RES units and demand response (loads’ shifting). In fact, these
approaches are also useful for islanded microgrids, and several works are present in the recent literature
for frequency and voltage regulation, and for stability [24–28].

In Reference [24], the authors assess that droop control methods are not suitable for renewable
energy-based microgrids due to their limited capability for power delivery. They propose a
supercapacitor-based DC-link voltage stabilizer and a battery energy storage system-based frequency
stabilizer. In particular, as in Reference [25], a fuzzy-based controller is proposed. In Reference [26],
the authors highlight the drawbacks of PI controller gains and propose the Grasshopper Optimization
Algorithm to optimize the PI controller parameters.

An additional critical issue is represented by the demand of electric vehicles in a smart grid.
To face such problem, in Reference [27], distributed controllers are proposed. Other papers [28] focus
on improvements of droop controllers and on new approaches for the optimal dispatch in hierarchical
microgrids [25]. Specifically, two control modes are considered for the generation units: a voltage
control mode, with an active droop control loop, and a power control mode, which allows setting
the output power in advance. Some recent works that study virtual inertia are References [29–33].
In Reference [29], the authors study a novel control scheme for virtual inertia converters to operate
in unbalanced settings, operating test on real hardware. In Reference [30], an adaptive controller
method for a PV-based virtual inertia system is discussed. The approach is studied in the case of the
small-signal stability and low-frequency oscillation, which are characteristics of the PV generators.
In Reference [31], the authors aim at improving the inertia of a microgrid by reducing the time delay of
the communication system to overcome frequency oscillations, finding a compromise with the increase
of operational costs.

In Reference [32], the authors propose an approach to find the proper value of inertia constant,
together with the frequency droop coefficient of DERs (distributed energy resources) and tuning
load frequency controllers’ parameters to improve the frequency stability. A multi-objective decision
problem is formulated in which the following goals are considered: minimizing the maximum frequency
deviation while promptly bringing the frequency back to the desirable region, and minimizing a higher
inertia constant that results in a higher cost of energy storages. With a significant difference, here,
we propose an optimal control problem to minimize frequency and voltage deviations for multiple
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microgrids and the optimization problem is analytically solved taking into account both active and
reactive power.

In Reference [33], virtual inertia in islanded microgrids is studied. An H-infinite (H∞) robust
control approach to the virtual inertial control loop is implemented, taking into account the high
penetration of renewables, thus enhancing the robust performance and the stability of the microgrid
during contingencies. In the present paper, we propose a control law to minimize frequency and
voltage deviations taking into account both active and reactive power under an MPC scheme.

Hereinafter, the electrical grid connecting different local systems is modelled. This paper aims
at studying the regulation of voltage and frequency within local systems interconnected through a
distribution network. Since these systems have a strong renewable, uncontrolled, and intermittent
component, they intrinsically represent a disturbance that, if not controlled, may cause a decrease
in the system performance and quality. It is worthwhile to observe that the problem faced is not
to be confused with the classic problem of inter-area oscillations between systems connected by a
high-voltage grid.

In this work, an MPC approach is proposed, taking into account uncertainties, and deriving
an optimal solution that can be used in closed-loop and in real time. In the literature of power
systems, similar control approaches can be found [34,35]. Delfino et al. [36] propose a multilevel
architecture for interconnected microgrids in which the DC power flow equations are used at a
higher level, an analytical solution emulates each microgrid, and the AC power flow equations are
used at the lower level. Minciardi and Robba [37] formalize a decision model in which a stochastic
optimal control problem is defined and solved. An optimal control strategy can be also found in
Reference [38]. The authors consider the problem of load-frequency control in a multi-area power
system proposing a hierarchical optimal robust controller. They decompose the overall problem in
subsystems, solve the lower level through a control strategy, and finally, iteratively coordinate local
systems. However, a detailed representation of the electrical network is not present. Annaswamy
and Kiani, in Reference [39], include a discrete-time decentralized linear quadratic regulator (LQR)
controller in a transactive architecture for hierarchical smart grids. In the present paper, with respect to
References [34,35], a detailed representation of the electrical network is included in order to regulate
voltage, and control active and reactive power. With respect to References [36,37], the decision problem
has been solved analytically. In addition, References [34–39] do not consider frequency variations and
equivalent inertia. Other optimal control strategies for the smart grid are present in the literature [40,41]
but not in the area of interconnected local systems.

In summary, the main contributions of the proposed paper are:

• The statement of the frequency and voltage control problem of distribution grids in islanded mode
expressed as an MPC of an affine system affected by additive noise.

• The inclusion of models for the control of frequency, voltage, and active and reactive power in
distribution grids.

• The derivation of an analytical solution for the stochastic MPC problem based on a
two-stage decomposition.

• An optimal control strategy for the inter-local systems variation problem that can be used either
for frequency and voltage regulation or the operation in the islanded mode of portions of the
distribution grid for demand response purposes.

3. The System Model and the Optimization Problem

Consider a distribution power grid (Figure 1) modeled as an undirected graph G = (A, L), where
the set of nodes A = {1, . . . , N} characterizes the set of local systems and L = {1, . . . , b} is the set of
links that connect the nodes. Specifically, each local system is interfaced with the distribution grid
by a power converter which can perform a virtual inertia control (allowing the inverter to behave
as a fictitious synchronous generator) with equivalent inertia time constant Hi(i ∈ A) and damping
factor KDi(i ∈ A). The set of arcs, L, represents the set of lines that connect the local systems—each line
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has a proper impedance Zi, j = Ri, j + jXi, j (i, j ∈ A), with Ri, j (i, j ∈ A) being the line resistance and
Xi, j( i, j ∈ A) being the line inductance. All local systems are composed of different devices: distributed
controllable resources with high regulation capacity (denoted by G), reactive power-regulating sources
(denoted by NG), renewable non-controllable resources (denoted by RES), and passive loads (denoted
by L). Each local system can be modeled as an equivalent synchronous generator with equivalent
inertia to consider its contribution to the frequency regulation of the whole grid.
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Figure 1. An interconnected local systems power system.

In the following paragraphs, the state and the control variables are defined, and the optimization
problem is formalized. All the quantities (but the phases) and the equations are expressed at discrete
time per unit (p.u.) values. As suggested by the literature, this method offers computational simplicity
by eliminating units and expressing system quantities as dimensionless ratios.

The decision variables are:

• Pi,t i ∈ A , t = 0, . . . , T − 1: active power injected at node i.
• Qi,t i ∈ A , t = 0, . . . , T − 1: reactive power injected at node i.
• PGi,t i ∈ A , t = 0, . . . , T − 1: distributed controllable source active power at node i.
• QNGi,t i ∈ A , t = 0, . . . , T − 1: reactive power regulating source reactive power at node i.
• Pmi,t: regulation active power injected by local system i.
• Vi,t i ∈ A , t = 0, . . . , T − 1: voltage amplitude at node i

The parameters are:

• PLi,t i ∈ A , t = 0, . . . , T − 1: load active power at node i.
• QLi,t i ∈ A , t = 0, . . . , T − 1: load reactive power at node i.
• QGi,t i ∈ A , t = 0, . . . , T − 1: distributed controllable source reactive power at node i.
• PNGi,t i ∈ A , t = 0, . . . , T − 1: reactive power regulating source active power at node i.
• PRESi,t i ∈ A , t = 0, . . . , T − 1: renewable source active power at node i.
• QRESi,t i ∈ A , t = 0, . . . , T − 1: renewable source reactive power at node i.

The state variables are:

• δi,t i ∈ A , t = 0, . . . , T − 1: voltage phase at node i (rad).
• ωi,t i ∈ A , t = 0, . . . , T − 1: frequency at node i.

The decision variables detail for a local system is reported in Figure 2.
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The electrical grid inside each local system i is not considered, and thus only the power balance
must be satisfied:

PGi,t + PNGi,t + PRESi,t − PLi,t = Pi,t i ∈ A , t = 0, . . . , T − 1 (1)

QGi,t + QNGi,t + QRESi,t −QLi,t = Qi,t i ∈ A , t = 0, . . . , T − 1 (2)

Each local system is associated with a time-varying voltage phasor of magnitude Vi,t and phase
δi,t. The discrete-time system dynamics (∆t is the time interval length) are governed by the equations
of the virtual inertia controller, linking the node angle, δi,t, to the frequency difference to the nominal
value (ωi,t − ω0):

δi,t+1 = δi,t + (ωi,t −ω0)∆t i ∈ A t = 0, . . . , T − 1 (3)

where the frequency is related to the active power supply–demand imbalance:

ωi,t+1 = ωi,t +
Pmi,t − PGi,t −KDi(ωi,t −ω0)

2Hi
∆t i ∈ A , t = 0, . . . , T − 1 (4)

where KDi is the local system damping factor. The distribution grid model includes the linearized power
flow equations for a medium voltage AC grid, with Gi, j = 1/Ri, j (i, j ∈ A) as the line conductance,
and Bi, j = −1/Xi, j (i, j ∈ A) as the line susceptance. That is:

Pi,t =
∑
j∈A

Gi, jV j,t + Bi, j
(
δi,t − δ j,t

)
i, j ∈ A t = 0, . . . , T − 1 (5)

Qi,t =
∑
j∈A

−Bi, jV j,t + Gi, j
(
δi,t − δ j,t

)
i, j ∈ A t = 0, . . . , T − 1 (6)

The model described by Equations (5) and (6) is the well-known linearized version of power
flow equations, obtained considering the first term of Taylor expansion of the sinusoidal terms of the
equations and just considering the voltage difference between nodes [42–44].

In the following paragraphs, the linear model described by the previous equations is reformulated
in the state space canonical form.

Proposition I: The system model, described by Equations (1)–(6), can be expressed as an affine
system affected by additive noise:

xt+1 = Axt + But + Cht + Ĉĥt t = 0, . . . , T − 1 (7)

with

• ut = [Pmi,t, i = 1, . . . , N − 1, QTNi,t, i = 1, . . . , N − 1],
• xt = [δi,t, i = 1, . . . , N − 1;ωi,t, i = 1, . . . , N − 1],
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where A, B, C, and Ĉ are known matrices, ht is a vector of parameters, and ĥt represents stochastic noise
with E

{
ĥt
}
= 0.

Proof of Proposition I: The Proof is shown in the Appendix A.1.
In the day ahead, the DSO plans the production and energy flow based on different objectives,

such as the minimization of losses and the capacity of the lines. It is reasonable to consider variations
concerning an already predetermined working point. However, given the strong variability of part of
the energy sources involved in our problem, control policies are required to mitigate deviations from
an initial working point.

The proposed objective function aims at minimizing four different contributions: the square of
the difference between the phases of the grid nodes, the quadratic deviation of the frequency from
the steady-state value, the voltage quadratic deviation from the desired value, V0, and the quadratic
deviation of the active regulation power to the set point Pm∗:

min




T∑

t=0

∑
i, j ∈ A

i , j

(
δi,t − δ j,t

)2


+

 T∑
t=0

∑
i∈A

(
ωi,t −ω0

)2
+

T−1∑
t=0

∑
i∈A

(
Vi,t −V0

)2
+

T−1∑
t=0

∑
i∈A

(
Pmi,t − Pm∗i

)2



(8)

Proposition II: The objective function (8) can be expressed as a stochastic quadratic function with
mixed terms:

minJ(xt, ut) =
1
2

E

T−1∑
t=0

[
(xt − x̂)′Qt(xt − x̂) + (ut − ût)

′Rt(ut − ût)

+2(xt − x̂)′Ft(ut − ût)
′

]
+ (xT − x̂)′QT(xT − x̂)

 (9)

where xt and ut are the state and control vectors respectively, x̂, û are the tracking parameters, and Qt,
Rt, Ft , QT are known matrices.

Proof of Proposition II: The Proof is shown in the Appendix A.2.

4. The Model Predictive Control Problem

4.1. The MPC Scheme

The MPC scheme is defined in Figure 3. The optimization horizon (T) is the length over which
the optimization problem runs and (S) is the simulation horizon. Both horizons (T) and (S) can be
chosen according to the available information about uncertain parameters/forecasts (current states,
forecasted demands, and renewables). In the MPC approach, in the first run, the solution related to the
first time interval is considered. Then, uncertain parameters (new information from sensors in the field
and new forecasts) are inserted in the procedure and a new optimization problem is run (second run),
and so on for the whole duration of the simulation horizon (S). The MPC approach allows for updating
new information when available and reducing uncertainties related to renewables’ availability and
load forecasting.

4.2. Explicit Solution of the MPC Problem

The optimization problem is in the form:

minJ(xt, ut) =
1
2

E

T−1∑
t=0

[
(xt − x̂)′Qt(xt − x̂) + (ut − ût)

′Rt(ut − ût)

+2(xt − x̂)′Ft(ut − ût)
′

]
+ (xT − x̂)′QT(xT − x̂)

 (10)

subject to (s.t.) Equation (7).
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By a change of variables zt = xt − x̂ and et = ut − ût, the optimization problem is given by:

minJ(z, e) =
1
2

E

T−1∑
t=0

[
z′tQtzt + e′tRtet + 2z′tFtet

]
+ z′TQTzT

 (11)

s.t.
zt+1 = Azt + Bet + µt + Ĉĥt t = 0, . . . , T − 1 (12)

where:
µt = Cht + (A− I)x̂ + Bût t = 0, . . . , T − 1 (13)

The Equations (11)–(13) are a stochastic MPC problem, which is “non-standard,” due to the
presence of the known input sequence, µt, in the state equation. In the following claims, it is shown
how to solve the MPC problem in a closed-form through a two-stage decomposition.

Claim I: Due to its linearity, the decision problem in Equations (11)–(13) can be decomposed
separating the stochastic (zs

t+1) and deterministic (zd
t+1) components [45]:

J(z, e) = J(zs, es) + J
(
zd, ed

)
(14)

s.t.
zs

t+1 = Azs
t + Bes

t + Ĉĥt t = 0, . . . , T − 1 (15)

zs
0 = 0 (16)

zd
t+1 = Azd

t + Bed
t + µt t = 0, . . . , T − 1 (17)

zd
0 = z0 (18)

The optimal control strategy is given by:

z∗t = zs,∗
t + zd,∗

t t = 0, . . . , T − 1 (19)

e∗t = es,∗
t + ed,∗

t t = 0, . . . , T − 1 (20)

Proof of Claim I: The Proof is shown in the Appendix A.3.
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Claim II: The optimal control problem to determine ed,∗
t , due to its linearity, can be written as:

minJ
(
zd, ed

)
=

1
2

E

T−1∑
t=0

(
zd1

t − rt
)′

Qt
(
zd1

t − rt
)
+ ed

t
′
Rted

t + 2
(
zd1

t − rt
)′

Fted
t +

(
zd1

T − rT
)′

QT
(
zd1

T − rT
) (21)

where:
zd

t = zd1
t + zd2

t t = 0, . . . , T − 1 (22)

zd1
t+1 = Azd1

t + Bed
t t = 0, . . . , T − 1 (23)

zd1
0 = 0 (24)

zd2
t+1 = Azd2

t + µt t = 0, . . . , T − 1 (25)

zd2
0 = z0 (26)

zd2
t = −rt t = 0, . . . , T − 1 (27)

Proof of Claim II: The Proof is shown in the Appendix A.4.
Proposition III: The optimal control law for the problem in Equations (11)–(13), and taking into

account Claim I and Claim II, is given by:

e∗t = −Kt(zs
t + zd1

t ) + Kg
t (B
′gt+1 + Ft

′rt) t = 0, . . . , T − 1 (28)

with

gt = −
[
(A′ −Mt

′)Pt+1(I + EtPt+1)
−1(Etgt+1 + Mtrt) − (A′ −Mt

′)gt+1
]
+ (Qt −Dt)rt

t = 0, . . . , T − 1
(29)

Kt = (R + B′Pt+1B)−1(B′Pt+1A + Ft
′) t = 0, . . . , T − 1 (30)

Pt = Qt −Dt + (A′ −Mt
′)Pt+1(I + EtPt+1)

−1(At −Mt) t = 0, . . . , T − 1 (31)

Kg
t = (Rt + B′Pt+1B)−1 t = 0, . . . , T − 1 (32)

rt+1 = Art − µt (33)

PT = QT t = 0, . . . , T − 1 (34)

gT = QTrT t = 0, . . . , T − 1 (35)

being: Mt = BR−1
t Ft

′, Dt = FtR−1
t Ft

′, Dt = FtR−1
t Ft

′ and Et = BR−1
t B′.

Proof of Proposition III: The Proof is shown in the Appendix A.5.
As reported in Claim I and Claim II, the original problem can be so decomposed into a stochastic

problem and a deterministic discrete tracking problem. The closed-loop optimal control strategy is
obtained as follows [46]:

Sub-problem 1: Stochastic problem.
The optimal control problem to determine es,∗

t is given by:

minJ(z, e) =
1
2

E

T−1∑
t=0

[
zs

t
′Qtzs

t + es
t
′Rtes

t + 2zs
t
′Ftes

t

]
+ zs

T
′QTzs

T

 (36)

s.t.
zs

t+1 = Azs
t + Bes

t + Ĉĥt t = 0, . . . , T − 1 (37)

zs
0 = 0 t = 0, . . . , T − 1 (38)
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Proposition IV: The solution of the optimal control problem, Equations (36)–(38), is given by the
following recursive equations:

es∗
t = −Ktzs∗

t t = 0, . . . , T − 1 (39)

with
Kt = (R + B′Pt+1B)−1(B′Pt+1A + Ft

′) t = 0, . . . , T − 1 (40)

Pt = Qt −Dt + (A′ −Mt
′)Pt+1(I + EtPt+1)

−1(At −Mt) t = 0, . . . , T − 1 (41)

PT = QT (42)

being Mt = BR−1
t Ft

′,Dt = FtR−1
t Ft

′ and Et = BR−1
t B′.

Proof of Proposition IV: The Proof is shown in the Appendix A.6.
Sub-problem 2: Deterministic problem.
As reported in Claim II, the optimal control problem to determine ed,∗

t can be written as:

minJ
(
zd, ed

)
=

1
2

E

T−1∑
t=0

[(
zd1

t − rt
)′

Qt
(
zd1

t − rt
)
+ ed

t
′
Rted

t + 2
(
zd1

t − rt
)′

Fted
t

]
+

(
zd1

T − rT
)′

QT
(
zd1

T − rT
) (43)

s.t.
zd1

t+1 = Azd1
t + Bed

t t = 0, . . . , T − 1 (44)

zd1
0 = 0 (45)

being zd2
t = −rt, zd2

0 = z0, zd2
t+1 = Azd2

t + µt, µt = Cht + (A− I)x̂ + Bût.
Proposition V: The optimal control strategy for the problem, Equations (43)–(45), is given by

ed,∗
k = −Ktzd1

t + Kg
t (B
′gt+1 + Ft

′rt) t = 0, . . . , T − 1 (46)

with

gt = −
[
(A′ −Mt

′)Pt+1(I + EtPt+1)
−1(Etgt+1 + Mtrt) − (A′ −Mt

′)gt+1
]
+ (Qt −Dt)rt

t = 0, . . . , T − 1
(47)

Kt = (Rt + B′Pt+1B)−1(B′Pt+1A + Ft
′) t = 0, . . . , T − 1 (48)

Kg
t = (Rt + B′Pt+1B)−1 t = 0, . . . , T − 1 (49)

Pt = Qt −Dt + (A′ −Mt
′)Pt+1(I + EtPt+1)

−1(A−Mt) t = 0, . . . , T − 1 (50)

rt+1 = Art − µt t = 0, . . . , T − 1 (51)

PT = QT (52)

gT = QTrT (53)

5. Application to a Case Study

5.1. Case Study Description

To show the effectiveness of the theoretical results presented in the previous section, the proposed
control strategy has been applied to a modified IEEE 5-bus system (N = 5) [47], shown in Figure 4.
The test network has been adapted to our problem through the following assumptions. Each bus
corresponds to a local system, and, keeping the network topology unchanged, the values of cables’
resistance, Ri,j, and reactance, Xi,j, have conveniently rescaled to a distribution grid system (assuming
base quantities of 10 MVA for apparent power, V0= 15 KV for voltage and ω0= 50 Hz for frequency).
Table 1 shows the detailed values of the line parameters Ri,j, and Xi,j for the case study.
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Table 1. Lines data.

Line Resistance Ri,j (p.u.) Reactance Xi,j (p.u.)

1–2 0.088 0.266

1–3 0.355 1.066

2–3 0.266 0.800

2–4 0.266 0.800

2–5 0.177 0.533

3–4 0.177 0.533

4–5 0.355 1.066

The parameters that characterize each local system, i.e., the inertia constant, Hi, and the equivalent
damping factor, KDi, are reported in Table 2. The local system 5 is the slack node, in which the voltage,
V5,t, is fixed to 1 (p.u.) and the phase, δ5,t, is equal to 0 (rad). The case study can be representative of
small local systems connected by a distribution grid (such as interconnected microgrids), in which
there is a great presence of generation from renewable resources.

Table 2. Local systems’ parameters.

Parameter Local System 1 Local System 2 Local System 3 Local System 4

KDi (p.u) 3 4 3.5 5

Hi (s) 5 4 5.5 6

The simulation horizon is 60 s, with a discretization step ∆t of 0.5 s. This horizon length has been
chosen as a trade-off between the following two aspects: (a) to avoid delays due to the centralized
communication from the controller to the local systems, and (b) to enhance the reliability of the
short-term forecasting of RES and loads.

To make the approach more effective, the MPC strategy is applied, in which only a part of the
optimal control law is applied (e.g., 10 seconds over a T = 60 second horizon), and there is a continuous
recalculation of the control law based on new measurements and forecasting. The length of the MPC
control horizon is justified by recent developments on the nowcasting of renewable power sources that
predict 1 min future PV values [48,49].
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At this point, by the means of the local systems’ parameters and the distribution network, it is
possible to quantify the matrices A and B, defined in the Appendix A.1, described by Equations (A19)
and (A20), and needed by Equation (7):

A =



1 0 0 0 0.5 0 0 0
0 1 0 0 0 0.5 0 0
0 0 1 0 0 0 0.5 0
0 0 0 1 0 0 0 0.5
−0.22 0.21 3.8e− 19 0.035 0.76 0 0 0
0.16 −0.47 0.062 0.046 0 0.66 0 0

−2.08e− 18 0.07 −0.54 0.070 0 0 0.58 0
0.0421 0.07 0.093 −0.20 0 0 0 0.80



B =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.05 0 0 0 0.33 0 −6.93e− 18 −2.77e− 17
0 0.062 0 0 0 0.33 4.51e− 17 6.93e− 17
0 0 0.055 0 4.6e− 17 5.55e− 17 0.33 2.77e− 17
0 0 0 0.041 −5.55e− 17 2.77e− 17 −1.38e− 17 0.33


In each MPC step, the optimal control law is the sum of the solution of two different

control problems: a stochastic problem defined by Equations (36)–(38), with the optimal solution,
Equations (39)–(42), and a deterministic problem, Equations (43)–(45), with the optimal solution,
Equations (46)–(53). Both control laws have been recursively defined, i.e., all the parameters that
define the control can be calculated offline, the parameters are known, and the forecasts of renewable
generation and load.

The variations on the system are caused by the combined variation of load and RES Psc,i,t on the
local systems defined by Equation (A4), represented into the model in the terms ht and ĥt defined by
Equations (A21) and (A22) respectively, deterministic and stochastic parts of the noise. Figure 5 reports
the values, Pscd

i,t, for the whole simulation horizon. Data have been obtained by adapting real power
measurements from photovoltaic, residential, and industrial loads, and rescaled to obtain congruent
measurements for the distribution networks. The stochastic part of the noise, Pscs

i,t~ N(0,1), affects the
state at each instant t.
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The power profiles on each local system could be critical for the whole system. Without any
upper-level controller but only with the damping given by each local system, the generators could not
be able to efficiently compensate (i.e., in a reasonable time, according to the dynamics of the system)
the given power variation, causing frequency and voltage variations.

The objective of the proposed controller is to reduce the voltage and frequency variations
(during the transient period) and, after the perturbation, bringing them back to their reference value.
In a practical context, numerous frequency variations and voltage peaks on the grid could cause the
intervention of protection systems, sensitive to variations in voltage or frequency, disconnecting some
portions of the network itself, causing a blackout for many users.

5.2. Optimal Control Results

Optimal solutions for the state variables in the case with control or without control are reported in
Figures 6 and 7. It can be seen how the presence of the proposed control can limit frequency variations
(i.e., the power quality remains within acceptable limits, the voltage deviation from the reference value
is less than 5%). The dotted line represents the system with no control (only the damping coefficient
is considered). In this case, each local system operates without any central controller (like the one
developed here), but the system only reacts based on the physics of the system with constant inputs
equal to those of the equilibrium point. The bold line represents the controlled system using the
developed approach. It is important to note that without the proposed control strategy, the system
does not reach a steady state for the whole simulation.
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Figure 8 shows the voltage pattern for each local system in the presence or absence of the developed
control. The control strategy helps in containing the variations affecting this variable, improving the
system’s power quality. Finally, Figures 9 and 10 show the optimal active and reactive power at each
local system.
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When there is no control, the objective function value is equal to 0.1098, while when the proposed
control strategy is applied, it is 0.0151.

Table 3 shows the objective function values and contributions.
The test has been developed in MATLAB-SIMULINK (2018b, Mathworks, Natick, Massachusetts,

USA), running on a PC Intel i7, 16 GB RAM. The MATLAB tool has been used to calculate a priori the
control laws defined recursively in Section 4.

Table 3. Objective function values and contributions.

Contribution Phase Frequency Voltage Active Power

No Control 0.00854 8.71 × 10−4 0.0095 0

With Control 0.00853 8.64 × 10−4 0.0042 0.0015

5.3. Closed-Loop Stability Analysis

This subsection aims to perform a sensitivity analysis concerning the asymptotic stability properties
of the proposed system, with respect to the damping parameter, KDi. The choice of this parameter is
fundamental with regards to the design of the control system based on virtual inertia. It is well known
from power systems theory that the asymptotic stability of a synchronous machine is directly linked to
its damping factor, similarly for the virtual inertia that mimics this behavior.
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The first part of Figure 11 shows how different choices of damping factors at each node affect the
norm of the eigenvalues of the open-loop system for each element of the state vector x. The values are
chosen in an interval between ±50% of the ones used for the use case, 20 different damping factors
are considered.
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It is noteworthy that for lower values of KDi, some eigenvalues have a norm greater than 1, so the
system is unstable. This is consistent with the power system theory. To this end, the asymptotical
closed-loop stability of the proposed controller for an infinite time control law defined is analyzed,
as in Reference . As can be seen from the second part of Figure 11, the proposed optimal controller
also guarantees the asymptotical stability in the cases in which the system was designed as unstable.
This aspect is crucial for the optimal control of this kind of problem, as it also fixes design instabilities.
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6. Conclusions and Future Developments

The proposed work introduced an approach based on optimal control for the regulation of
voltage and frequency in multi-local systems (such as interconnected microgrids) in a distribution grid.
This represents one of the most challenging problems regarding the dynamic aspects of a smart grid.

If not considered and properly mitigated, these aspects can drastically damage the entire system.
To reduce these effects, the paper considers accurate grid models and the presence of innovative devices
that allow for better regulating the power flows on the grid and, consequently, voltage and frequency
at each node. It is worthwhile to observe that the main contribution of this paper is not to assess the
controller performance (that is optimal by definition to the linearized model) but to propose a model
that can be linearized and controlled by a closed-form control law.

To cope with the variability represented by renewable sources and load, this approach was used
in an MPC framework. In this case, just the control law corresponding to the first time interval would
be applied, while an update of the law would be performed according to the new forecasts made in the
short term. This would allow a further increase in the quality of the system. The IEEE 5 bus system
was used to test the control strategy, considering multiple loads and renewable sources variations on
each local system. The results showed a strong decrease in the number of variations as well as strong
damping of the frequency and voltage peaks in each local system. This greatly increases the power
quality of the electrical system. A sensitivity analysis about the asymptotical stability was also given,
showing that the proposed control can also prevent instabilities caused by an incorrect design of the
damping parameters.
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Future developments will concern several aspects. First, delays in the communication between
the central controller and each local system could be inserted in the optimal control problem.

The particular model of the local systems will be the focus of future investigations. Furthermore,
distributed and team robust approaches to overcome the poor robustness of totally centralized control
approaches in case of emergencies will be considered.
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Appendix A

Appendix A.1. Proof of Proposition I

Equations (5) and (6) in the absence of shunt admittances can be written in the compact form:

Pt = GVt − Bpδt + Kp t = 0, . . . , T − 1 (A1)

Qt = −BpVt −Gδt + Kq t = 0, . . . , T − 1 (A2)

with
Vt = [Vi,t, i = 1, . . . , N − 1]
δt = [δi,t, i = 1, . . . , N − 1]

Qt = [Qi,t, i = 1, . . . , N − 1]
Pt = [Pi,t, i = 1, . . . , N − 1]

where Kp and Kq are known parameters coming from considering the voltage slack bus equal to 1.
Equation (1) can be inserted in the frequency state Equation (4):

ωi,t+1 = ωi,t +
Pmi,t + PNGi,t + Psci,t − Pi,t −KDi(ωi,t − 1)

2Hi
∆t i ∈ A t = 0, . . . , T − 1 (A3)

being
Psci,t = PRESi,t − PLi,t = Pscd

i,t + Pscs
i,t i ∈ A t = 0, . . . , T − 1 (A4)

where Pscd
i,t and Pscs

i,t are the deterministic and stochastic parts of the net load, respectively.
The frequency state equation is given by:

ωt+1 = Aωωt + BωPt + Bω,mPm,t + Cωhω,t + Cω,shω,s,t t = 0, . . . , T − 1 (A5)

being:
ωt = [ωi,t, i = 1, . . . , N − 1]

Pm,t = [Pmi,t, i = 1, . . . , N − 1]

hω,s,t = [Pscs
i,t, i = 1, . . . , N − 1]

hω,t = [PNGi,t + KDi + Pscd
i,t, i = 1, . . . , N − 1]
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where

Aω =



1− KD1
2H1

∆t 0 · · · 0

0
. . . · · · 0

...
...

. . . 0
0 0 0 1− KDN−1

2HN−1
∆t



Bω =


−

∆t
2H1

0 · · · 0

0
. . . · · · 0

...
...

. . . 0
0 0 0 −

∆t
2HN−1


Bω,m = Cω = Cω,s = −Bω

Substituting Equation (A1) in the frequency state equation, we obtain:

ωt+1 = Aωωt + Bω(GVt − Bpδt + Kp) + Bω,mPm,t + Cωhω,t + Cω,shω,s,t t = 0, . . . , T − 1 (A6)

then, the voltage can be obtained from the Equation of reactive power (A1). That is:

Vt = −B−1
p Qt − B−1

p Gδt + B−1
p Kq t = 0, . . . , T − 1 (A7)

and substituting Equation (A7) in the frequency state Equation (A6) we have:

ωt+1 = Aωωt + Bω,mPm,t + Cωhω,t + Cω,shω,s,t − BωGB−1
p Qt

+(BωGB−1
p G + BωB−1

p )δt + BωGB−1
p Kq + BωKp

t = 0, . . . , T − 1 (A8)

substituting Equation (2) (where the control variable is QNGi,t) into Equation (A8), we get:

ωt+1 = Aωωt + Bω,mPm,t + Cωhω,t + Cω,shω,s,t − BωGB−1
p (QG,t + QNG,t + QRES,t −QL,t)

−(BωGB−1
p G + BωBp)δt + BωGB−1

p Kq + BωKp

t = 0, . . . , T − 1
(A9)

with
QG,t = [QGi,t, i = 1, . . . , N − 1]
QNG,t = [QNGi,t, i = 1, . . . , N − 1]
QRES,t = [QRESi,t, i = 1, . . . , N − 1]
QL,t = [QLi,t, i = 1, . . . , N − 1]

Let us pose:
Aω,δ = BωGB−1

p G + BωBp (A10)

ht = [hω,t; QGi,t + QRESi,t −QLi,t −Kq − BpKp, i = 1, . . . , N − 1]Dω = (−BωGB−1
p ) (A11)

Cω = Cω,s = diag(∆t) (A12)

Cd =

[
Cω
Dω

]T

(A13)

QTN,t = −B−1
p G−1BpQNG,t (A14)

then, we obtain:

ωt+1 = Aωωt + Bω,mPm,t + Cdht + Cω,shω,s,t −QTN,t + Aω,δδt t = 0, . . . , T − 1 (A15)
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It is important to note that QTN,t = [QTNi,t, i = 1, . . . , N − 1] is an auxiliary variable that is crucial
to define the objective function accurately (as it will be explained in the following). Thus, in the state
equation, we have to satisfy the following condition: CTNQTN,t = CTNB−1

p G−1BpQNG,t = BωGB−1
p QNG,t.

Thus, one should write CTN =
[
B−1

p G−1Bp
]−1

BωGB−1
p .

Then, we obtain:

ωt+1 = Aωωt + Bω,mPm,t + Cdht + Cω,shω,s,t −CTNQTN,t + Aω,δδt t = 0, . . . , T − 1 (A16)

as regards the other state equation, one can write:

δt+1 = Aδδt + Aδ,ωωt −Aδ,ω t = 0, . . . , T − 1 (A17)

where Aδ(N − 1xN − 1), Aδ,ω(N − 1xN − 1) are known matrices.
Finally, posing xt =[δi,t, i = 1, . . . , N − 1;ωi,t, i = 1, . . . , N − 1] and ut =[Pmi,t, i = 1, . . . , N −

1; QTNi,t, i = 1, . . . , N − 1], it is possible to write:

xt+1 = Axt + But + Cht + Ĉĥt t = 0, . . . , T − 1 (A18)

where:

A =

[
Aδ Aδω
Aωδ Aω

]
(A19)

B =

[
0 0

Bω,m −CTN

]
(A20)

ht =

[
I
ht

]
(A21)

ĥt =

[
0

hω,s,t

]
(A22)

C =

[
Aδ,ω 0
0 Cd

]
(A23)

Ĉ=
[

0 0
0 Cω,s

]
(A24)

Appendix A.2. Proof of Proposition II

As regards the objective function, we consider the four terms in Equation (7):

• The first term can be written as δ
T
t Qδδt.

• The second term is given by (ωt −ω0)
TQω(ωt −ω0).

• The fourth term is given by (Pm,t − P
∗

m)
T

Rp(Pm,t − P
∗

m).

With
P
∗

m = [Pm∗i , i = 1, . . . , N − 1]

where QδQω and Rp are the identity matrix of appropriate dimensions.
The third objective is the most complicated and it is given by (substituting voltage with

Equation (A7)):

(−B−1
p (QG,t + QNG,t + QRES,t −QL,t −Kq) − B−1

p Gδt − I)
T

Rv(−B−1
p (QG,t + QNG,t + QRES,t −QL,t −Kq) − B−1

p Gδt − I)
t = 0, . . . , T − 1 (A25)
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Equation (A25) can be written as posing Yt = B−1
p (QG,t + QRES,t −QL,t + Kq) − I:

(−B−1
p QNG,t − B−1

p Gδt −Yt)
T

Rv(−B−1
p QNG,t − B−1

p Gδt −Yt) t = 0, . . . , T − 1 (A26)

to reformulate Equation (A26), we can write, posing:

(−B−1
p QNG,t − B−1

p Gδt −Yt)
2
= (−B−1

p G)
2
(B−1

p G−1BpQNG,t + δt + G−1BpYt)
2

t = 0, . . . , T − 1
(A27)

and posing QTN,t = −B−1
p G−1BpQNG,t ,γt = −G−1BpY

(B−1
p G)

2
(QTN,t + δt − γt)

2
= (B−1

p G)
2
(δ

2
t + (QTN,t − γt)

2
+ 2(QTN,t − γt)δt)

t = 0, . . . , T − 1
(A28)

and thus, posing M = (B−1
p G)

2, the overall objective function can be expressed as:

J =
∑
t
[δ

T
t Qδδt + (ωt −ω0)

TQω(ωt −ω0) + (Pm,t − P
∗

m)
T

Rp(Pm,t − P
∗

m) + δ
T
t Mδt

+(QTN,t − γt)
T

M(QTN,t − γt) + 2Mδt(QTN,t − γt)]
(A29)

Equation (A29) can be expressed in a vector form by using the following notation:xt = [δt;ωt],ut =

[Pm,t; QTN,t],x̂ = [0;ω0],ût = [P
∗

m;γt]

J =
T−1∑
t=0

(xt − x̂)′Qt(xt − x̂) + (ut − ût)
′Rt(ut − ût) + 2(xt − x̂)′Ft(ut − ût)

with

Q =

[
M + Qδ 0

0 Qω

]
(A30)

R =

[
Rp 0
0 M

]
(A31)

F =

[
0 M
0 0

]
(A32)

Appendix A.3. Proof of Claim I

Due to its linearity, the system state equation can be written separating the stochastic (zs
t+1) and

deterministic (zd
t+1) components [45]:

zt+1 = zs
t+1 + zd

t+1 = A
(
zs

t + zd
t

)
+ B

(
es

t + ed
t

)
+ µt + Ĉĥt t = 0, . . . , T − 1 (A33)

thus, the system can be so decomposed into a stochastic and deterministic subsystem. That is:

zs
t+1 = Azs

t + Bes
t + Ĉĥt t = 0, . . . , T − 1
zs

0 = 0
(A34)

zd
t+1 = Azd

t + Bed
t + µt t = 0, . . . , T − 1

zd
0 = z0

(A35)
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the objective function is:

minJ(z, e) =
1
2

E

T−1∑
t=0

 (zs
t+1 + zd

t+1)
′
Qt(zs

t+1 + zd
t+1) + (es

t + ed
t )
′Rt(es

t + ed
t )

+2(zs
t+1 + zd

t+1)
′Ft(es

t + ed
t )

+ (zs
t+1 + zd

t+1)
′QT(zs

t+1 + zd
t+1)

 (A36)

Also, the cost function (Equation (A36)) can be decomposed into its stochastic and deterministic
components represented by the functions J(zs, es) and J

(
zd, ed

)
, defined straightforwardly. This means

that for each admissible solution (z, e), and the corresponding stochastic (zs, es) and deterministic(
zd, ed

)
components, the following identity holds:

J(z, e) = J(zs, es) + J
(
zd, ed

)
. (A37)

This immediately follows from the assumptions on the stochastic process, Ĉĥt, which
implies E

{
zs

t

}
= 0, and E

{
es

t

}
= 0∀t. In fact, in this way, the expected values of terms

zs
t
′Qtzd

t , zd
t
′
Qtzs

t , ed
t
′
Rtes

t , es
t
′Rted

t , zd
t
′
Ftes

t , zs
t
′Ftzd

t are equal to zero.
Thus, the overall optimal solution is given by:

z∗t = zs,∗
t + zd,∗

t t = 0, . . . , T − 1 (A38)

e∗t = es,∗
t + ed,∗

t t = 0, . . . , T − 1 (A39)

being, of course
(
z∗,d, e∗,d

)
, (z∗,s, e∗,s), the optimal solutions of the problem corresponding to the

optimization of the deterministic and stochastic costs, respectively. In fact, for every admissible
solution (z, e), the following relationship can be written:

J(z, e) = J(zs, es) + J
(
zd, ed

)
≥ J(z∗,s, e∗,s) + J

(
z∗,d, e∗,d

)
= J(z∗, e∗). (A40)

Appendix A.4. Proof of Claim II

The proof follows the results obtained in the continuous domain and reported in Reference [50].
The optimal control problem to determine ed,∗

t is given by:

minJ(z, e) =
1
2

E

T−1∑
t=0

[
zd

t
′
Qtzt + ed

t
′
Rted

t + 2zd
t
′
Fted

t

]
+ zd

T
′
QTzd

T

 (A41)

s.t.
zd

t+1 = Azd
t + Bed

t + µt t = 0, . . . , T − 1 (A42)

zd
0 = z0 (A43)

The deterministic problem can be introduced observing that zd
t can be decomposed in two parts:

zd
t = zd1

t + zd2
t t = 0, . . . , T − 1 (A44)

where:
zd1

t+1 = Azd1
t + Bed

t t = 0, . . . , T − 1 (A45)

zd1
0 = 0 (A46)

zd2
t+1 = Azd2

t + µt t = 0, . . . , T − 1 (A47)

zd2
0 = z0 (A48)
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The vector zd2
t may be exactly determined for each instant t. This means that the deterministic

component of the cost function can only be influenced by the values of zd1
t . Then, putting zd2

t = −rt,
the optimization of J

(
zd1, ed

)
is equivalent to the optimization of

minJ(z, e) =
1
2

E

T−1∑
t=0

(
zd1

t − rt
)′

Qt
(
zd1

t − rt
)
+ ed

t
′
Rted

t + 2
(
zd1

t − rt
)′

Fted
t +

(
zd1

T − rT
)′

QT
(
zd1

T − rT
) (A49)

Appendix A.5. Proof of Proposition III

As reported in Reference [47], the following steps have been considered for the solution of
discrete-time optimal control (Equations (35)–(37)):

1. Calculate the Hamiltonian function:

H
(
zs

t , es
t ,λt+1

)
=

1
2

T−1∑
t=0

[
zs

t
′Qtzs

t + es
t
′Rtes

t + 2zs
t
′Ftes

t

]
+λt+1

(
Azs

t + Bes
t

)
(A50)

2. Obtain state, co-state, and control from the Hamiltonian:

∂H
(
zs

t , es
t ,λt+1

)
∂λt+1

= zs,∗
t+1 = Azs,∗

t + Bes,∗
t t = 0, . . . , T − 1 (A51)

∂H
(
zs

t , es
t ,λt+1

)
∂zt

= λ∗t = A′λ∗t+1 + Qtzs,∗
t + Ftes,∗

t t = 0, . . . , T − 1 (A52)

∂H
(
zs

t , es
t ,λt+1

)
∂et

= 0 = B′λ∗t+1 + R tes,∗
t + Ft

′zs,∗
t t = 0, . . . , T − 1 (A53)

3. Obtain open-loop optimal control:

Solving Equation (A53) and replacing it into Equations (A51) and (A52):

es,∗
t = −R−1

t B′λ∗t+1 −R−1
t Ft

′zs,∗
t t = 0, . . . , T − 1 (A54)

zs,∗
t+1 = Azs,∗

t − Etλ
∗

t+1 −Mtzs,∗
t t = 0, . . . , T − 1 (A55)

λ∗t = A′λ∗t+1 + Qtzs,∗
t −Mt

′λ∗t+1 −Dtzs,∗
t t = 0, . . . , T − 1 (A56)

For the sake of simplicity, we have defined Mt = BR−1
t Ft

′,Dt = FtR−1
t Ft

′ and Et = BR−1
t B′.

The final (boundary) condition is given by:

λT =
1
2

∂
(
zs,∗

T
′QTzs,∗

T

)
∂zs,∗

T
= QTzs,∗

T t = 0, . . . , T − 1 (A57)

4. Obtain the Riccati equation:

We make the assumption:
λ∗t = Ptzs,∗

t t = 0, . . . , T − 1 (A58)

and replacing Equation (A62) into Equation (A59), we obtain:

zs,∗
t+1 = Azs,∗

t − EtPt+1zs,∗
t+1 −Mtzs,∗

t t = 0, . . . , T − 1 (A59)

zs,∗
t+1 = (I + EtPt+1)

−1
[
Azs,∗

t −Mtzs,∗
t

]
t = 0, . . . , T − 1 (A60)
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We then replace Equations (A62) and (A64) into Equation (A60):

Ptzs,∗
t = At

′Pt+1
{
(I + EtPt+1)

−1
[
Azs,∗

t −Mtzs,∗
t

]}
+ Qtzs,∗

t −Dtzs,∗
t −Mt

′Pt+1
{
(I + EtPt+1)

−1
[
Azs,∗

t −Mtzs,∗
t

]}
t = 0, . . . , T − 1

(A61)

this equation must hold for all values of the state z∗t , which in turn leads to the fact that the coefficient
of z∗t in Equation (A61) must individually vanish. That is,

Pt = Qt −Dt + (A′ −Mt
′)Pt+1(I + EtPt+1)

−1(At −Mt) t = 0, . . . , T − 1 (A62)

5. Closed-loop optimal control:

Obtaining these solutions off-line, use Equation (A58) in the control relation Equation (A54) to get
the closed-loop optimal control as

es,∗
t = −R−1

t B′Pt+1
(
Azs,∗

t + Bes,∗
t

)
−R−1

t Ft
′zs,∗

t t = 0, . . . , T − 1 (A63)

Now, pre-multiplying by R and solving for the optimal control, we have:

es∗
t = −Ktzs∗

t t = 0, . . . , T − 1 (A64)

Kt = (R + B′Pt+1B)−1(B′Pt+1A + Ft
′) t = 0, . . . , T − 1 (A65)

Pt = Qt −Dt + (A′ −Mt
′)Pt+1(I + EtPt+1)

−1(At −Mt) t = 0, . . . , T − 1 (A66)

PT = QT (A67)

Appendix A.6. Proof of Proposition IV

The proof follows the same steps of Proposition III. Specifically, the Hamiltonian function and
related conditions are given by:

H
(
zd1

t , ed
t ,λt+1

)
= 1

2

T−1∑
t=0

{(
zd1

t − rt
)′

Qt
(
zd1

t − rt
)
+ ed

t
′
Rtet + 2

(
zd1

t − rt
)′

Fted
t

}
+λt+1

(
Azd1

t + Bed
t

)
t = 0, . . . , T − 1

(A68)

∂H
(
zd1

t , ed
t ,λt+1

)
∂λt+1

= zd1,∗
t+1 = Azd1,∗

t + Bed,∗
t t = 0, . . . , T − 1 (A69)

∂H
(
zd1

t , ed
t ,λt+1

)
∂zt

= λ∗t = A′λ∗t+1 + Qtzd,∗
t −Qtrt + Fte∗t t = 0, . . . , T − 1 (A70)

∂H
(
zd1

t , ed
t ,λt+1

)
∂et

= 0 = B′λ∗t+1 + Rted,∗
t + Ft

′(zd1,∗
t − rt) t = 0, . . . , T − 1 (A71)

ed,∗
t = −R−1

t B′λ∗t+1 −R−1
t Ft

′(zd1,∗
t − rt) t = 0, . . . , T − 1 (A72)

zd1,∗
t+1 = Azd1,∗

t − Etλ
∗

t+1 −Mt(zd1,∗
t − rt) t = 0, . . . , T − 1 (A73)

λ∗t = A′λ∗t+1 + Qtzd1,∗
t −Qtrt −Mt

′λ∗t+1 −Dt(zd1,∗
t − rt) t = 0, . . . , T − 1 (A74)

λT =
1
2

∂
((

zd1
T − rT

)′
QT

(
zd1

T − rT
))

∂zd1
T

= QTzd1
T −QTrT t = 0, . . . , T − 1 (A75)

being M = BR−1F′,D = FR−1F′ and E = BR−1B′.
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We may assume that λ∗t = Ptzd1,∗
t − gt, and we obtain

zd1,∗
t+1 = Azd1,∗

t − EtPt+1zd1,∗
t+1 + Etgt+1 −Mt(zd1,∗

t − rt) t = 0, . . . , T − 1 (A76)

zd1,∗
t+1 = (I + EtPt+1)

−1
[
Azd1,∗

t + Etgt+1 −Mt(zd1,∗
t − rt)

]
t = 0, . . . , T − 1 (A77)

Ptzd1,∗
t − gt = A′

Pk+1

 (I + EtPt+1)
−1[

Azd1,∗
t + Etgt+1 −Mt(zd1,∗

t − rt)
] − gt+1

+ Qtzd1,∗
t

−Qtrt −Dt(zd1,∗
t − rt) −Mt

′

Pk+1

 (I + EtPt+1)
−1[

Azd1,∗
t + Etgt+1 −Mt(zd1,∗

t − rt)
] − gt+1


t = 0, . . . , T − 1 (A78)

This equation must hold for all values of the state z∗t , which in turn leads to the fact that the coefficient
of zt and the rest of the terms in Equation (A77) must individually vanish. That is

Pt = Qt −Dt + (A′ −Mt
′)Pt+1(I + EtPt+1)

−1(A−Mt) t = 0, . . . , T − 1 (A79)

gt = −
[
(A′ −Mt

′)Pt+1(I + EtPt+1)
−1(Etgt+1 + Mtrt) − (A′ −Mt

′)gt+1
]
+ (Qt −Dt)rt

t = 0, . . . , T − 1
(A80)

Finally, the closed-loop optimal control is

ed,∗
k = −Ktzd1

t + Kg
t (B
′gt+1 + Ft

′rt) t = 0, . . . , T − 1 (A81)

with
Kt = (Rt + B′Pt+1B)−1(B′Pt+1A + Ft

′) t = 0, . . . , T − 1 (A82)

Kg
t = (Rt + B′Pt+1B)−1 (A83)

Pt = Qt −Dt + (A′ −Mt
′)Pt+1(I + EtPt+1)

−1(A−Mt) t = 0, . . . , T − 1 (A84)

rt+1 = rt − µt t = 0, . . . , T − 1 (A85)

PT = QT (A86)

gT = QTrT (A87)
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