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Abstract: The disclosing of new diffusion frontiers for wind energy, like deep-water offshore
applications or installations in urban environments, is putting new focus on Darrieus vertical-axis
wind turbines (VAWTs). To partially fill the efficiency gap of these turbines, aerodynamic developments
are still needed. This work in particular focuses on the development of a mathematical model that
allows predicting the possible performance improvements enabled in a VAWT by application of
the Gurney flaps (GFs) as a function of the blade thickness, the rotor solidity and geometry of
the Gurney flap itself. The performance of airfoil with GFs was evaluated by means of detailed
simulations making use of computational fluid dynamics (CFD). The accuracy of the CFD model
was assessed against the results of a dedicated experimental study. In the simulations, a dedicated
method to simulate cycles of variation of the angle of attack similar to those taking place in a cycloidal
motion (rather than purely sinusoidal ones) was also developed. Based on the results from CFD,
a multidimensional interpolation based on the radial basis functions was conducted in order to find
the GF design solution that provides the highest efficiency for a given turbine in terms of airfoil and
solidity. The results showed that, for the selected study cases based on symmetric airfoils, the GF
positioned facing outwards from the turbine, which provides the upwind part of the revolution,
can lead to power increments ranging from approximately 30% for the lower-solidity turbine up to
90% for the higher-solidity turbine. It was also shown that the introduction of a GF should be coupled
with a re-optimization of the airfoil thickness to maximize the performance.

Keywords: VAWT; wind turbine; gurney flap; CFD; RBF; power augmentation

1. Introduction

1.1. Background

The interest in cheap and environment friendly electrical energy generation, lately driven also
by the need for meeting stricter standards of clean energy production, has resulted in a wide range
of scientific research on the subject of renewable energy sources. One of the leading technologies is
wind energy, which is reaching a cost of energy competitive (in the case of large rotors) with other
conventional sources. Although the majority of installed wind energy power today comes from wind
farms made of several large horizontal axis wind turbines (HAWTs), the disclosing of new diffusion
frontiers like deep-water offshore applications or installations in densely inhabited environments
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are putting new focus on different turbine architectures, like Darrieus vertical axis wind turbines
(VAWTs) [1]. This technology has some undisputed advantages (e.g., the insensitivity to wind direction,
the possibility of putting the generation system on the ground, the lower susceptibility to highly
turbulent flows [2,3]), but their efficiency is lower compared to that of HAWTs. This is not only due to
intrinsically more complex aerodynamics with a continuous variation of the angle of attack (AoA),
often leading to dynamic stall [4], but also due to the lack of systematic scientific research from their
conception in the 1920s up to the 1990s [2]. If this efficiency gap is somehow filled, many scientists
forecast a significantly more important role of VAWTs in the near future [5].

Among different approaches to reach this scope, lately increasing attention is given to the
possibility of applying passive flow control devices to Darrieus blades [6], in order to delay the onset
of stalls and improve the lift-to-drag ratio, especially at medium-low Reynolds numbers. Gurney flaps
(GFs) are one of the technologies in the spotlight. In the early 1970s, the American racing driver Dan
Gurney came out with an idea to fix a short metal bar at the trailing edge on his racing car rear wing.
After conducting few tests, he found out that this simple modification allowed approaching turns with
higher velocity and also increasing the car speed on straight lines. The simple construction of this
device has encouraged researchers to investigate its application in different areas [7–10], and especially
in wind turbines, where they do represent one of the most interesting solutions [11,12]. It has been
found that the effect of the lift coefficient enhancement of the GF is connected with the change of the
flow structure at the trailing edge, as it is shown in Figure 1, which reports the vorticity contours
near the trailing edge of the airfoil. The two large separation bubbles around the sharp trailing edge
are replaced by two thinner vortices inducing a lower drag. The Gurney flap also delays the flow
separation to a higher angle of attack. The gain on the lift coefficient is burdened with increments of
the drag coefficient. Thus, it is a particularly good solution in case of applications where the drag force
is of minor importance, like in the case of Darrieus VAWTs.
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1.2. Objectives

The aim of the present study is to assess the possible benefits provided by GFs if used on airfoils
subject to continuous variations of the angle of attack, as in the blades of Darrieus wind turbines.
More specifically, focus is given to the symmetric NACA 4-digits airfoils, which have been shown to be
particularly effective in VAWTs [13]. The airfoil thickness represents the first investigated parameter;
values of 12% chord (NACA0012), 15% chord (NACA0015), 18% chord (NACA0018), and 21% chord
(NACA0021) are considered. Then, the impact of different heights and shapes of the GFs on the
performance of these airfoils is evaluated in static conditions, but also in dynamic pitching movements.
It is often erroneously thought that the variation of the angle of attack in the Darrieus-type cycloidal
motion can be modeled as a pure pitching motion. However, different energy extractions take place
upwind and downwind, which in turn impose a notable variation of the AoA in those zones [2].
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Moreover, the change of sign of the AoA in proximity of the azimuthal positions of 0◦ and 180◦ leads
to very sudden variation rates, which are also responsible for the onset of dynamic stall [14].

To meet the objectives described above, the use of computational fluid dynamics (CFD) is
mandatory. Due to the complex flow structures taking place behind the GF, the continuous variation of
the AoA, and the existence of large separated regions when the stall appears, the simpler modeling
methods (e.g., a panel method) are insufficient for this scope [6,15]. In order to limit the computational
cost, the unsteady Reynolds-averaged formulation of the Navier–Stokes equations (URANS approach)
is used for the presented analyses as the best compromise. Due to the wide range of spatial and
temporal scales that need to be captured in the flow features in the presented problem, more accurate
methods addressing the turbulent flows such as direct numerical simulation (DNS) or large eddy
simulation (LES) would be in fact unusable. In addition, recent examples in the literature showed that
the proposed approach is able to properly capture all the effects connected to the use of GFs [6]. A key
original model developed for the study presented in this paper is represented by the definition of
AoA variations that match exactly the functioning conditions in a broad range of Darrieus VAWTs.
These were defined upon combination of detailed full-CFD simulations carried out by the authors and
computation of airfoil in pitching motion. Finally, the obtained results were extended using radial basis
functions (RBFs) interpolation to provide a comprehensive overview of the effects of GFs installation
on the performance of selected airfoils.

1.3. Organization of the Study

The study is organized as follows. Section 2 presents the study cases that have been used both for
the calibration and validation of the numerical approach and for the sensitivity analyses. Section 3
presents the methods that were used for the analysis. A description of the CFD settings, including
their validation, is first presented; then, the development of the AoA variation trends that mimic the
Darrieus functioning is discussed. Section 4 is the main body of the study, including results obtained for
static airfoils as well as results obtained for dynamic airfoils in Darrieus-like motion. In this section the
multivariate sensitivity analysis based on the radial basis functions (RBFs) interpolation is presented.
Section 5 summarizes the main outcomes of the study.

2. Study Cases

2.1. Experimental Validation Benchmark

In order to assess the effectiveness of the numerical techniques prior to proceed with the extended
sensitivity analysis on the GF effects on the airfoil in Darrieus-like motion, an experimental benchmark
was identified. In particular, the test case presented by researchers from the Technical University (TU)
of Berlin in [16] was used. Dedicated experimental studies were conducted inside the laminar wind
tunnel of the Hermann Föttinger Institute. The tested airfoil was NACA0021 with the Gurney flap on
the pressure side. As discussed, this airfoil was also used in one of the study cases of the sensitivity
analysis; therefore the experimental case was then fully representative for the scope of this study.

In [17] the authors presented a variety of tests with different Reynold numbers (Re = 140 k and Re
= 180 k) and GF size and mounting configuration. For the sake of brevity, the CFD validation was here
reported only for the configuration with the GF conventionally mounted on the pressure side, depicted
in Figure 2, which shows a sketch of the Gurney flap geometry used in the experiments. Table 1 reports
the chosen test conditions for the validation and the Gurney flap height is given by a percentage value
of chord length. For any additional details on experimental measurements (which are not the original
content of the present work), please refer to [17].
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Figure 2. Experimental Gurney flap (GF) geometry.

Table 1. Details of the experimental setup.

Profile NACA0021
Chord length 0.14 m

Reynolds number 180,000
Gurney flap height 2.5%

2.2. Gurney Flaps

Two different types of Gurney flap mounting were investigated (represented in Figure 3). In further
detail, the conventional one-side mounting (A) is the most common method, generally including the
GF mounted towards the pressure side of the airfoil. In case of functioning onboard a Darrieus turbine,
however, each side of the airfoil acts alternatively as the pressure or suction side depending on the
fact that the blade is moving in the upwind or downwind half of the trajectory [18]. On this basis,
both the configuration with the GF facing out and the one facing in with respect to the revolution
centre were tested. In addition to these configurations, the one presented in Figure 3B, called “fish tail”
in the following, was also tested. This configuration was thought to somehow reply to the contrasting
requests discussed before, i.e., it is able to provide the power augmentation both for positive and
negative incidence angles, partially limiting the additional drag coming from the half working in the
suction side by inclining it with respect to the chord. In this sense, it can be considered as an evolution
of the “both-side” configuration tested in [6].
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For the scopes of the present work, the two configurations were tested with GFs having a length
varying in the range of 0% to 5% of the chord length.

2.3. Test Plan

As discussed, the scope of the study was to evaluate the effectiveness of GFs as power augmentation
devices when operating on board Darrieus turbine. To this end, three configurations of an airfoil
in cycloidal motion were considered. The idea was to reproduce realistic functioning conditions in
terms of Reynolds number, AoA variation trend, and inflow. On this basis, relevant study cases were
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selected from the literature, with particular attention to those already tested by some of the authors
and for which a relevant body of data was available. The configurations are summarized in Table 2.
Upon examination of the table, one can notice that one important parameter that has been taken into
account is the equivalent turbine solidity, calculated as in Equation (1).

σ =
Nc
D

(1)

Table 2. Summary of the operational conditions considered for the study cases.

Geometrical Parameters

Diameter 3.50 m 1.60 m 1.03 m
Number of blades 1 1 3

Chord 0.200 m 0.200 m 0.086 m
Solidity 0.057 0.125 0.250

Original wing profile NACA0018 NACA0018 NACA0021

Working Conditions

Free stream velocity 8.235 m/s 8.0 m/s 13.0 m/s
Air density 1.20 kg/m3 1.20 kg/m3 1.20 kg/m3

Air viscosity 1.789 × 10−5 Pa·s 1.789 × 10−5 Pa·s 1.789 × 10−5 Pa·s
TSR 4.45 3.14 3.30

Blade Reynolds Number 482,000 386,000 250,000

The solidity of the rotor is in fact an index of how much the turbine is “permeable” to the flow,
thus of how much the energy extraction is unbalanced between the upwind and the downwind portion
of the revolution. In more detail, the higher the solidity, the more kinetic energy from the wind is
harvested by the upwind part and the less energy can be harvested by the downwind part. The velocity
used to calculate the blade Reynolds number, presented in Table 2, is an average value of the relative
wind velocity during the revolution. The turbine tip-speed ratio (TSR) is conventionally defined as the
ratio between the peripheral speed of the airfoil and the undisturbed wind velocity.

The study cases presented in Table 2 were used in particular to extract realistic trends of variation
of the angle of attack and the relative air speed on the airfoils. These curves, presented in Figure 4,
were obtained with the procedure described in [19] and slightly smoothed to purge them by unphysical
discontinuities arising during the calculation of the induced velocity in areas of macro-vorticity,
as discussed in the reference. The trends of Figure 4 were then used as an input for the sensitivity
analysis on the GF effects. To this end, they were applied to four different uncambered airfoils of
different thickness-to-chord ratios, namely the NACA0012, NACA0015, NACA0018, and NACA0021
(shown in Figure 5).
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3. Methods

3.1. Numerical CFD Simulations

The computational domain adopted for the CFD simulations is depicted in Figure 6A. The domain
was made in the conventional bullet shape, having a distance of 20 and 40 chords upstream and
downstream of the airfoil, respectively. The dimensions of the bullet were in agreement with the most
conservative suggestions that can be found in the literature. The choice of the bullet-shaped domain
was due to the possibility of imposing only an inlet (at which values of the velocity vector, turbulence
intensity, and turbulent viscosity ratio were assumed) and an outlet boundary (at which the value of
the gauge pressure was assumed, and for all other quantities zero normal derivative was assumed),
with benefits in terms of calculation stability. The same approach was followed successfully in [16].
The works by Balduzzi et al. [20] were taken as the main references in order to select the most suitable
numerical settings for the solver. For the sake of completeness, an overview on the main settings of the
simulation models is given in the following section.
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Figure 6. (A) Computational domain; (B) detailed view of the mesh at the trailing edge of the smooth
airfoil (left) and near the GF (right).

The commercial code ANSYS® FLUENT® was used in the two-dimensional form to solve the
time-dependent unsteady Reynolds-averaged Navier–Stokes (URANS) equations in a pressure-based
formulation. The fluid was air, modeled as an ideal compressible gas. Based on previous experience,
the validation against experiments made use of the four equations Transition SST model. This choice
was due to the very low Reynolds number achieved in experiments (max 180 k), which provoked a
massive impact of transition phenomena. Conversely, in the sensitivity analysis based on the realistic
conditions of Table 2, the authors decided to achieve the turbulence closure by means of Menter’s
SST k-ω model [21], which is a blend of k-ε and k-ω two-equation formulations. This was due to
pretty higher Reynolds numbers, which made the transitional effects less relevant. Moreover, the same
study cases were originally simulated with this turbulence model, which proved to be particularly
effective and robust. The Coupled algorithm (non-segregated) was employed, where the Navier–Stokes
equations set is directly solved through an implicit discretization of pressure in the momentum
equations, with benefits in terms of robustness and convergence, as shown in [20]. The second order
upwind scheme was used for the spatial discretization of the whole set of URANS and turbulence
equations, as well as the bounded second order for time differencing to obtain a good resolution.
To allow for the pitching movement of the airfoil, the domain was split into rotating and stationary
parts. The interface was circular, having a diameter of 14C. To handle the coupling of the two domains,
a general grid interface (GGI) was used. The computational mesh generated for the two domains was
of the unstructured type, made with the native mesher of the ANSYS® package. Triangular elements
were used throughout the domain, with a massive element refinement within the rotating region and
an additional local refinement area around the GF, as shown in Figure 6B. In order to properly capture
the flow behavior within the boundary layer, a 30-layer O-grid with prismatic elements was instead
created around the airfoil and the GF. The first element height was always chosen so as to guarantee a
dimensionless wall distance (y+) at the grid nodes of the first layer above the blade wall constantly
lower than 1. According to the prescriptions of [22], the expansion ratio for the growth of elements
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starting from the surface was kept below 1.05 to achieve good mesh quality. A mesh dependency study
was carried out to ensure that the results were not affected by mesh density and quality. Regarding the
grid created for the validation of experiments, please refer to [17] for any additional details. For the
spatial discretization of the airfoils with GF three different meshes were created. The y+ was lower
than 1, thus the meshes differed by the number of elements along the airfoil surface and their size in
the free stream area. Created meshes had around 160,000, 280,000, and 400,000 elements, respectively.
The mesh sensitivity analysis was conducted for the NACA0021 airfoil with Gurney flap lengths equal
to 1%, 2%, and 3% of the chord length, respectively (these values are indicated in Figure 7A–C as GF1,
GF2, GF3). Different AoAs were tested, even though Figure 7 only reports the case at AoA = 0◦ at
Re = 250 K for brevity.Energies 2020, 04, x FOR PEER REVIEW  8 of 24 

 

 
Figure 7. Mesh quality influence on (A) lift, (B) drag, and (C) moment coefficients. 

It can be observed that asymptotic convergence is reached as the mesh is refined. The mesh with 
a number of elements equal to 400,000 was considered as not affected by the mesh size and further 
computations were carried out using this mesh. The values of the coefficients presented in Figure 7 
have been averaged over 500 time steps after getting a converged solution. As extensively discussed 
in [22], the influence of the time step size also has to be considered carefully in order to obtain the 
desired accuracy of the computational model. In order to perform reliable dependence studies of 
temporal discretization, both the one-side GF and the fish tail GF were tested, since they were thought 
to induce a quite different vortex shedding at the trailing edge for low AoAs (see [6]), thus leading to 
different characteristic Strouhal numbers. Tests were carried out using a time-step of 10−3, 10−4, and 

10−5 s, respectively. Upon examination of the results, it was apparent that a time-step of 10−4 s was 
sufficient to achieve independent results (differences in the absolute value lower than 0.1%). 

3.2. Pitching Movements and Conventions 

The cycloidal motion of each blade on board a Darrieus VAWT generates a continuous variation 
of the angle of attack on the blade itself as a function of the relative positioning of the chord and the 
oncoming wind. This, in turn, leads to a variable intensity of the relative speed and to discontinuous 
forces exerted by the airfoils. 

For the conventions used in the study, please refer to Figure 8. The overall torque T produced 
by the blade is given by Equation (2), where L and D are the lift and drag forces, respectively, and M 
it the moment around the blade-spoke connection point, which does not always correspond to the 
aerodynamic centre [23]. 𝑇 = 𝐿 sinα − 𝐷 cosα 𝑅 + 𝑀 (2) 

  

Figure 7. Mesh quality influence on (A) lift, (B) drag, and (C) moment coefficients.

It can be observed that asymptotic convergence is reached as the mesh is refined. The mesh with
a number of elements equal to 400,000 was considered as not affected by the mesh size and further
computations were carried out using this mesh. The values of the coefficients presented in Figure 7
have been averaged over 500 time steps after getting a converged solution. As extensively discussed
in [22], the influence of the time step size also has to be considered carefully in order to obtain the
desired accuracy of the computational model. In order to perform reliable dependence studies of
temporal discretization, both the one-side GF and the fish tail GF were tested, since they were thought
to induce a quite different vortex shedding at the trailing edge for low AoAs (see [6]), thus leading
to different characteristic Strouhal numbers. Tests were carried out using a time-step of 10−3, 10−4,
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and 10−5 s, respectively. Upon examination of the results, it was apparent that a time-step of 10−4 s
was sufficient to achieve independent results (differences in the absolute value lower than 0.1%).

3.2. Pitching Movements and Conventions

The cycloidal motion of each blade on board a Darrieus VAWT generates a continuous variation
of the angle of attack on the blade itself as a function of the relative positioning of the chord and the
oncoming wind. This, in turn, leads to a variable intensity of the relative speed and to discontinuous
forces exerted by the airfoils.

For the conventions used in the study, please refer to Figure 8. The overall torque T produced
by the blade is given by Equation (2), where L and D are the lift and drag forces, respectively, and M
it the moment around the blade-spoke connection point, which does not always correspond to the
aerodynamic centre [23].

T = (L sinα−D cosα)R + M (2)
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The dependency of the AoA on the relative positioning between the blade and the wind, as well
as on the force really exerted by the blade, which induces a reduction of the oncoming wind, lead to
the well-known variation trends of the AoA that are non-symmetrical between the upwind and the
downwind halves of the revolution and characterized by very steep variation rates. As a result, recent
research works (e.g., [17]) showed that simulating a blade in pure pitching motion is not sufficient to
give reliable estimation of the functioning of cycloidal motion.

To this end, in the present study, the AoA trends depicted in Figure 4 were applied directly to
the blades. An average value of the Reynolds number (calculated based on the actual ones taken
from CFD) was imposed at the inlet boundary, while the actual forces (lift, drag, and pitching motion)
in motion were reconstructed point-by-point by means of the relative speed value also presented in
the same figure, in order to have a more precise estimation. By doing so, the variation of the airfoil
performance with the Reynolds number is unfortunately neglected, but this cannot be avoided in the
case of a pitching approach like the one presented here. However, since each simulation is carried out
with each specific equivalent TSR, this variation is thought to be sufficiently small to not compromise
the accuracy of the results. In order to compare airfoils and turbines working in different conditions,
the introduction of dimensionless coefficients is needed. The main coefficients used in the following of
the study are the torque coefficient (Equation (3)) and the power coefficient (Equation (4)):

CT =
T

1
2ρc2V2

∞

(3)

Cp =
P

1
2ρAV3

∞

(4)
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3.3. Radial Basis Functions (RBFs) Interpolation for Data Reduction

The parametric analysis carried out on the airfoil performance with different GFs provided only
a finite set of points. In order to obtain a continuous response surface, the multivariate radial basis
functions (RBFs) interpolation was applied. This method is very efficient for interpolation of large
scattered data sets. It also has some drawbacks connected with unstable solutions and fast growth
of the computational cost for large data series and also non-negligible error connected with Runge’s
phenomenon at the boundary of the domain. Drawbacks notwithstanding, it seems to be a suitable
choice for the considered case of data reduction [24].

A multivariate function Φ is called radial (RBF) if its value at each point depends only on its
distance from the base point, what is written in mathematical notation as:

Φ(r) = Φ(‖r− r0‖) (5)

where ‖·‖ is the Euclidian norm in the Rn space and r0 is the vector describing the position of the base
point. The radial function based interpolation takes the form of a linear combination of base functions
attached to all N collocation nodes giving following equation:

u(r) =
N∑

i=1

αiΦ(‖r− r0‖) (6)

where αi is an unknown interpolation coefficient. The values of interpolation coefficients can be found
by collocating the interpolation function of Equation (6) and then solving the resultant linear set of
equations which can be briefly written as:

αi = Φ−1
·u(r) (7)

where the interpolation (or collocation) matrix is computed as:

Φ =
{
Φi j

}
=

{
Φ
(
‖ri − r j‖

)}
where i, j = 1, . . . , N (8)

The radial function form has to be chosen adequately with respect to the considered problem.
Thus, to find the most suitable function, a dedicated analysis was carried out for different common
types of radial functions. The functions are shown in Table 3.

Table 3. Utilized radial basis functions.

Functions Form

Multiquadric (MQ) ϕ(r) =
√

r2 + c2

Inverse Quadratic (IQ) ϕ(r) = 1
r2+c2

Inverse Multiquadric (IMQ) ϕ(r) = 1
√

r2+c2

The shape parameter c, which appears in the definition of different radial basis functions, is a
parameter that controls the shape of the basis function and hence the size of the region of influence
of a given basis function around the collocation point. The higher the value of shape parameter,
the bigger is the region of influence of the basis function; unfortunately, this also causes deterioration
of conditioning of the approximation problem.

It needs to be pointed out that the interpolation matrix Φ is symmetric and positively defined,
hence it is always invertible. However, by incrementing the number of nodes and consequently the
number of base functions, the matrix conditioning becomes worse. The condition number of a matrix
measures error is introduced by the finite arithmetic of computations on computers [25]. The matrix
condition number for inversion is given by following equation:
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к(Φ) = ‖Φ‖‖Φ−1
‖ (9)

where к is the conditioning number. In case of an interpolation based on the RBFs, the conditioning
number value of the interpolation matrix is strictly connected with the shape of applied interpolation
function. In the case of the functions presented in Table 3, this is controlled by the shape parameter [26].
For every interpolation problem it is possible to find optimal value of the shape parameter value;
see [26]. To this end, two additional simulations, regarding the geometrical parameters of the airfoil
thickness and the Gurney flap length, which had not been covered during the case studies, were done
for each interpolation data set. Further, based on the additional simulations, the root main square
(RMS) method was used to assess the interpolation accuracy, which is given by the following equation:

RMS =

√∑N
j=1

(
f̃
(
p j

)
− f

(
p j

))
N

(10)

where p is the vector of points, which in the interpolation corresponds with the collocation points,
f̃ indicates the interpolation function, and f is the numerical values of the original function. Figure 9
shows the values for the matrix of conditioning number and resulting RMS error as a function of the
shape parameter.
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4. Results and Discussions

4.1. Experimental Assessment of the Numerical Model

As discussed, an extensive validation of the numerical model was carried out preliminary upon
comparison with experimental data from the Hermann Föttinger Institute (HFI) of the TU Berlin [17].

The test case was a NACA0021 airfoil under a Reynolds number of 180 k. The numerical model
was tested both in terms of static polars and in dynamic pitching motion. For the sake of brevity,
only the results with a one-sided GF (2.5%c) are reported here: Figure 10 displays the comparison of
static polars and Figure 11 the performance in sinusoidal movement within an AoA range between 10
and 30 deg and a reduced frequency k of 0.05.

k =
ω
u0
·
c
2
=
π f c
u0

(11)
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Figure 11. Comparison experimental results and CFD computations for dynamically changed angle
of attack.

It has to be remarked that the numerical data in Figure 10 were run in unsteady RANS mode for
several incidence angles (see Figure 12). Figure 12, in particular, shows the contours of normalized
velocity, i.e., the local velocity divided by the undisturbed one. In particular, as common practice,
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the use of unsteady simulations was mandatory for high AoAs after a stall, where the analysis of
the residuals showed issues in convergence history, characterized by the intense fluctuations of the
calculated aerodynamic forces already shown by [6].

Energies 2020, 04, x FOR PEER REVIEW  12 of 24 

 

 
Figure 10. Comparison experimental results and CFD computations for static flow around airfoil 
equipped with GF at different values of angle of attack. 

 

Figure 11. Comparison experimental results and CFD computations for dynamically changed angle 
of attack. 

It has to be remarked that the numerical data in Figure 10 were run in unsteady RANS mode for 
several incidence angles (see Figure 12). Figure 12, in particular, shows the contours of normalized 
velocity, i.e., the local velocity divided by the undisturbed one. In particular, as common practice, the 
use of unsteady simulations was mandatory for high AoAs after a stall, where the analysis of the 
residuals showed issues in convergence history, characterized by the intense fluctuations of the 
calculated aerodynamic forces already shown by [6]. 

 
Figure 12. Normalized velocity contours for 0°, 2°, 4° and 12°, 14°, 16° angles of attack. Figure 12. Normalized velocity contours for 0◦, 2◦, 4◦ and 12◦, 14◦, 16◦ angles of attack.

In thte case of GFs, the use of unsteady simulations was also necessary for very low AoAs (between
0◦ and 4◦), where the GF itself produces some vortices that detach alternatively from the corners and
then are convected downstream. In those cases, the timestep for the simulation was based on the
previous experience of [6]. Upon examination of both comparisons, sound agreement can be noted
overall between experiments and simulations, proving the effectiveness of the method.

4.2. GF Effects in Cycloidal Motion: Impact on Torque Profiles

If the final expected outcome of the application of GFs to Darrieus turbines is the power
enhancement (that will be discussed in detail in the next section), it is worth analyzing from a physical
point of view their impact on the functioning of the airfoils during a revolution. The balance of the
energy extraction between the upwind and the downwind halves of the revolution is in fact very
important not only for the overall efficiency, but also for the possible creation of stresses and vibrations
of the turbine.

Figure 13 shows the influence of the Gurney flap length and configuration (i.e., the single facing
outward or inward, and the fish tail GF, respectively) on the torque coefficient as a function of the turbine
position. Displayed data do refer to the first test case only (solidity equal to 0.057 and NACA0018),
even though the physical behavior was of general validity in the case of blades in cycloidal motion.
The values indicated as “No GF” show the torque distributions with the smooth airfoil.

Upon examination of the figure, it is apparent that the outward pointing Gurney flap tends
to increase the unbalance of the torque distribution. The increment of torque in the upwind part
is significant and it is connected with the lift-to-drag ratio increment induced by the GF, which is
particularly relevant for the higher AoAs reached upwind. On the other hand, the torque reduction
downwind is related to the increased drag at those low AoAs that derive from the low wind speed
going through the rotor. The inward pointing Gurney flap instead leads to an increment of the torque
coefficient along the downwind part of turbine, leading to a more balanced torque profile, even though
the extracted work (i.e., the area below the curve) is pretty much the same. The fish tail configuration
finally confirmed the hypothesized change in performance, providing a relative increase of the torque
coefficient for both the upwind and the downwind parts of the revolution.
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The relative impact to the produced power of the two halves of the machine is even more apparent
from Figure 14. It is very interesting to notice that the fish tail not only provides an increase of the
performance on both halves of the machine, but also a very balanced power between the two.
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4.3. GF Effects in Cycloidal Motion: Sensitivity Analysis on GF Characteristics

As discussed, the scope of the present analysis was to study the prospects of different GF
configuration in terms of power augmentation of Darrieus VAWTs using symmetric airfoils. To this
end, a large number of simulations were carried out. Figure 15A–C and Figure 16A–C show the results
of all the studied cases in a way which allows the reader to have an overall outlook on the main effects.
In further detail, the two figures show the influence of the one-sided Gurney flap (Figure 15) and the
fish tail configuration (Figure 16), respectively, in terms of power coefficient variation for different
airfoils thickness. Graphs A–C refer to the three different equivalent turbine solidities (increasing from
A to C). The white color in the color palette indicates the reference value of the power coefficient with
the smooth airfoil, the red color indicates an incremented one, and the blue color a decreased one.
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Finally, the positive and negative values of Gurney flap length in Figure 15 indicate its outward
and inward pointing directions, respectively, with respect to the turbine axis.

Upon examination of the graphs, some interesting observations can be noted:

� The outward positioning of the GF (if one-sided) always provided the largest power increase in a
blade in cycloidal motion; however, as soon as the solidity increased, the possibility of having a
more balanced energy extraction (i.e., with the inward positioning) became attractive;

� For higher solidities, the application of the GF seems to provide a constant increase of performance.
This can be explained as follows: a) in case of the inward positioning, this is due to the discussed
re-distribution of the energy extraction between the upwind and downwind halves. In a very
solid turbine, indeed, the wind velocity oncoming to the downwind half of the revolution is
very low, thus leading to small AoAs and then to a reduced torque production. In this view,
adding a GF that is able to increase the performance in this region (where it acts on the pressure
side of the airfoils) leads to potential benefits; b) in case of the outward positioning, the torque
extraction is maximized in the upwind half (where the flow is more energized), sacrificing the
performance downwind;

� For low solidities, this latter approach is the only one providing significant benefits. In this case,
the torque profile is sufficiently balanced even in the original configuration and then it is more
convenient to maximize the impact of the GF upwind, where the flow speeds are higher.

Due to the complexity of analyzing so much data at a glance, some relevant trends have been
extracted and reported in Figures 17 and 18.

Figure 17 first reports the extracted power for the four tested airfoils (i.e., as a function of the
thickness-to-chord ratio of the airfoils) as a function of the GF length in the case of the outward (A),
inward (B), mounting, and fish tail configurations (C). The high-solidity test case was selected, even if
the same considerations can be repeated for the other three cases. Upon examination of the figure,
one can notice that for the inward mounting (i.e., the one privileging the downwind side), the thinner
the airfoil, the higher the performance that can be achieved. Also, the optimal GF length decreases
monotonically with the airfoil thickness. On the other hand, the thinner NACA0012 airfoil is more
sensitive to the GF length, with steeper variation curves. This is due to the larger impact of the GF
additional drag on the thin airfoil. Overall, the thicker NACA0021 airfoil shows a quite different
behavior than the other ones, with flatter response curves and much larger optimal GF lengths.

On the other hand, in case of the outward mounting, the best performance is achieved for
medium-solidity airfoils, where the application of a GF to very thin or very thick ones does not provide
benefits. The optimal GF length keeps shifting to lower values as soon as the airfoil thickness decreases.
The same analysis is repeated in case of the fish tail configuration (see Figure 17C). One can notice that
the fish tail configuration provides consistent benefits for almost all the airfoils, with only the exception
of the very thin one, where the draft increase is probably not compensated for by the additional lift.

Figures 18 and 19 compare the optimal configurations found among the tested turbines with
different values of solidity.

Upon examination of the figure, some of the relevant trends discussed before are still clearly
noticeable. In addition, it is worth noticing that:

� In the case of the inward mounting, the maximum performance (presented as a torque increment
with respect to no GF configuration) in the case of low solidity is monotonically increasing with
the airfoil thickness-to-chord ratio, while for the high solidity, better performance is obtained with
the medium NACA00018. The optimal GF height generally increases with the airfoil thickness.

� An opposite trend than the one above was noticed for the outward mounting of the Gurney flap.
However, the optimal GF height kept increasing with the airfoil thickness;

� In the cases of the fish tail configurations quite thick airfoils are preferred, with the optimal GF
height also increasing with the airfoil thickness.
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4.4. Response Surfaces

Even though scattered data coming from the simulations already provided some interesting
indications about the relevant trends, more detailed results were needed to find optima with a sufficient
accuracy. To this end, a radial basic interpolation was carried out on the data. This analysis provided a
three dimensional solution of the surface response. As a result, the power coefficient as a function of the
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airfoil thickness and the Gurney flap length for different configurations are shown in Figures 20 and 21
for the single-side GF and the fish tail GF, respectively. These plots were obtained for interpolation
with use of the Inverse Multiquadric (IMQ) basis functions.
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Optima were then found on the surfaces. Table 4 reports the values of the power coefficient for the
configurations equipped with the most efficient blade and the reference blade, respectively. The power
coefficient increment was defined as a ratio of the power coefficient of the blade with changed thickness
and of the Gurney flap to the power coefficient of the reference blade.
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Table 4. Power coefficient and geometrical parameters of the most efficient turbine and the reference
one using IMQ functions.

IMQ

Turbine solidity 0.057 0.125 0.250

Geometrical Parameters

Ref. One sided Fish tail Ref. One sided Fish tail Ref. One sided Fish Tail
Airfoil Thickness 18.00 18.38 19.87 18.00 15.52 19.94 21.00 14.06 19.74

Gurney flap
length 0.00 3.48 2.08 0.00 3.50 2.84 0.00 3.42 2.42

Results

Power coefficient 0.27 0.37 0.36 0.29 0.43 0.37 0.19 0.36 0.33
Increment, % - 37.04% 33.33% 48.28% 27.59% - 89.47% 73.68%

It can be observed that the potential increment of the power coefficient due to the introduction
of the Gurney flap can be really significant (up to +89.5%), especially when higher-solidity turbines
are considered.

Overall, the increment provided by the fish tail configuration is lower than that of a one-sided GF.
The fish tail shape is more suitable for turbines with lower solidity, while the one-sided Gurney flap
configuration significantly influences the performance of turbines with higher solidity values. It has to
be pointed out, however, that the quantitative results reported in Table 3 only refer to the selected study
cases (some of them quite theoretical) and operating conditions. Performance increases to be expected
for real rotors are probably lower than the reported values. However, the tendencies are thought to
be of general application and they clearly highlight the potential of GFs for use in Darrieus VAWTs.
Finally, it is worth noticing that the introduction of the Gurney flap in case of medium-high solidity
turbines would suggest that the airfoil thickness should be slightly changed, going toward notably
thinner airfoils in the case of the one-sided GF and to slightly thinner ones for the fish tail configuration.
In case of low-solidity machines, on the other hand, a medium-thickness airfoil is still the best choice.

5. Conclusions

In this study, the possible benefits provided by Gurney flaps when applied to blades subject
to continuous and non-sinusoidal variations of the angle of attack have been analyzed by means of
an extended sensitivity analysis. These analyses are propaedeutic for understanding the possible
use of GFs as power augmentation devices in Darrieus wind turbines. Symmetric NACA 4-digits
airfoils were considered. The airfoil thickness which represents one of the investigated parameters
had values of 12% chord (NACA0012), 15% chord (NACA0015), 18% chord (NACA0018), and 21%
chord (NACA0021). The GF height and mounting (angle of inclination with respect to the chord and
airfoil side with respect to the revolution axis) represented the other main variables. The different
test cases were analyzed by means of unsteady CFD simulations. Then, radial basis functions were
used to interpolate the results and provide detailed response surfaces describing the impact of the
aforementioned variables.

Upon examination of the results, it was shown that:

� A proper GF selection can indeed provide performance increases when used in a Darrieus wind
turbine (possible benefits up to +89.5% when added in combination with the correct thickness
of airfoil);

� The potential benefits are higher in case of more solid turbines;
� The introduction of a GF should be coupled with a re-optimization of the airfoil thickness to

obtain the maximum performance. In case of medium-high solidity turbines, this would imply a
reduction in the thickness-to-chord ratio;
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� The one-sided Gurney flap allows obtaining the highest turbine efficiency, but it leads to a
significant imbalance of the torque distribution between the upwind and the downwind part of
the turbine;

� The Fish Tail Gurney flap configuration (both-sided GF with an inclination angle of 45◦) provides
a lower increment of the turbine power coefficient compared to the one-sided Gurney flap, but it
results in a more balanced torque output.

Further developments of the present model could consider higher dimensionality of the model
itself, viz., increasing the number of variables considered in the surrogate model. Additional variables
that could be considered are, for example, the airfoil type, additional Gurney flap angles relative to the
chord, or combination of differently shaped Gurney flaps in inward or outward pointing directions.
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