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Abstract: This study proposes a methodology to develop adaptive operational strategies of
customer-installed Energy Storage Systems (ESS) based on the classification of customer load
profiles. In addition, this study proposes a methodology to characterize and classify customer load
profiles based on newly proposed Time-of-Use (TOU) indices. The TOU indices effectively distribute
daily customer load profiles on multi-dimensional domains, indicating customer energy consumption
patterns under the TOU tariff. The K-means and Self-Organizing Map (SOM) sophisticated clustering
methods were applied for classification. Furthermore, this study demonstrates peak shaving and
arbitrage operations of ESS with current supporting polices in South Korea. Actual load profiles
accumulated from customers under the TOU rate were used to validate the proposed methodologies.
The simulation results show that the TOU index-based clustering effectively classifies load patterns
into ‘M-shaped’ and ‘square wave-shaped’ load patterns. In addition, the feasibility analysis results
suggest different ESS operational strategies for different load patterns: the ‘M-shaped’ pattern fixes a
2-cycle operation per day due to battery life, while the ‘square wave-shaped’ pattern maximizes its
operational cycle (a 3-cycle operation during the winter) for the highest profits.

Keywords: energy storage system (ESS); time-of-use (TOU) tariff; energy management in smart grid;
peak shaving operation; arbitrage operation; customer load clustering

1. Introduction

Smart grid circumstances employ various Internet of Thing (IoT) devices to provide efficient
energy management for electric power consumers [1]. A smart meter is a representative IoT device that
measures electrical energy data of customers in real time and transmits these data through network
communication. Thus, the smart meter in a smart grid is utilized to collect electric load profiles of
clients and enables electric power suppliers to identify the energy information of their clients [2,3].
In South Korea, the Korea Electric Power Corporation (KEPCO) acquires the electric load profiles of its
customers and provides various electric energy statistics based on the accumulated load data through
the ‘i-Smart’ platform [4].

The efficient analysis of customer load profiles can be effectively utilized to optimize energy
management for all types of electricity customers. Clustering approaches are frequently used to
efficiently analyze and classify different types of customer load profiles. Several studies have introduced
methodologies to classify load profiles accumulated from different customer types. Motlagh et al.
classified residential customers using characteristics of the time series load [5]. Chico et al. characterized
and classified load profiles of non-residential customers using machine learning-based clustering
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algorithms [6]. Lee et al. classified the electric power consumption characteristics of industrial
customers using the standard industry classification code in South Korea [7]. Bidoki et al. applied
different clustering algorithms based on K-means, weighted fuzzy mean K-means, modified follow
leader (MFTL), self-organizing map (SOM), and layer algorithm to classify load curves of different
types of customers, and the results from comparing the clustering performances utilized to determine
the adaptive clustering algorithms [8]. Zhou et al. proposed the five-stage process model based on
K-means, SOM, Fuzzy c-average (FCM), and hierarchical clustering algorithms to analyze the impact
of electric power suppliers and their consumers in smart grid circumstances [9]. Abubaker classified
load profiles achieved from electricity consumers in the Tulkarm district based on the K-means
algorithm [10].

These clustering-based approaches for analyzing customer load profiles can be applied to
the development of effective strategies for energy management in smart grid circumstances. The
representative strategy utilizes the Energy Storage System (ESS) installed for electricity consumers [11].
The ESS is a device that enables the storage of electrical energy during off-peak times and supplies
the stored energy at the requested time to reduce electricity costs for the customer. The South Korean
government had established a long-term roadmap and supporting policies to increase the penetration
level of ESS, and, consequently, South Korea has been positioned as the second largest nameplate
capacity of ESS since 2016 [12].

Several studies have proposed methodologies to optimize and develop operational strategies of
ESS with consideration of the installation purposes and circumstances of the ESS. A pioneering study
of applying the storage system to power utility showed optimization of the storage capacity based on
the feasibility analysis of peak shaving [13]. Ehsan et al. developed charge and discharge scheduling
of ESS based on the load forecasting model and state of charge (SOC) trajectory [14]. This approach
shaved the peak load and smoothed the load connected with renewable energy sources. Pimm et al.
proposed a method to determine the maximum peak shaving of household ESS using the Monte Carlo
analysis, and the results confirmed the capacity to reduce the household peak demand by 50% [15].
Karmiris et al. estimated the optimal size of ESS based on the capabilities of its peak shaving operation
and scheduled adaptive charging and discharging scenarios using statistical analysis [16]. Dejvises
et al. proposed a mathematical modeling for ESS to minimize daily peak loads for customers, and
this approach showed a 7.4% reduction of the daily peak load with a 9.9% increase of its daily load
factor [17]. Reza et al. introduced the gradient-based heuristic optimization algorithm to calculate
the optimal charge and discharge schedule of ESS for maximizing the expected profit from the ESS
operation [18]. Kang et al. developed the operational strategy for customer-installed ESS to participate
in the Demand Response (DR) program in South Korea [19]. They also provided guidelines to facilitate
ESS participation in the DR program. Cha et al. proposed an algorithm considering system marginal
price (SMP) and renewable energy certification (REC) weight for the economical optimal scheduling of
ESS [20].

Previous researches have verified that customer-installed ESS and its supporting policies of
government and utility levels are feasible for electricity customers that use the Time-of-Use (TOU) tariff
structure. In addition, the literature has also indicated that optimization of ESS operational strategies
should be differentiated depending on the energy demand (electrical load) pattern of its installation
site as well as consideration of the customer tariff and the battery constraints. The literature has also
verified that the clustering of customer load profiles can be effectively utilized to optimize energy
management for different types of electricity customers. Thus, this study proposes a methodology
to develop adaptive operational strategies of customer-installed ESS in accordance with classified
results of load profiles for customers using the TOU tariff structure. In addition, this study proposes a
methodology to characterize and classify the load profiles based on newly proposed TOU indices. The
TOU indices enable the effective distribution of daily customer load profiles on multi-dimensional
domains, indicating characteristics of the customer’s energy consumption pattern under the TOU
tariff. The K-means and Self-Organizing Map (SOM) sophisticated clustering methods are applied for
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classification. Furthermore, this study demonstrates benefits of peak shaving and arbitrage operations
of customer-installed ESS with current supporting polices in South Korea. The proposed methodologies
are validated by simulations based on actual load profiles accumulated by industries and commercial
buildings. The simulation results show that TOU index-based clustering effectively classifies load
patterns into ‘M-shaped’ (industries) and ‘square wave-shaped’ load patterns (commercial buildings).
In addition, the feasibility analysis results suggest different operational strategies of ESS for different
clusters grouped together by a similar load pattern.

The rest of this paper is organized as follows. Section 2 proposes the TOU indices and the
classification methodologies based on the proposed TOU indices. Section 3 introduces the ESS
supporting polices in South Korea and operational algorithms of customer-installed ESS, including
peak shaving and arbitrage operations. Section 4 simulates the proposed methodologies based on
the actual TOU customer load profiles and performs a feasibility study to derive an optimized ESS
operational strategy. Finally, the paper is concluded in Section 5.

2. Clustering

2.1. TOU Indices

This paper proposes new TOU indices developed based on seasonal and temporal characteristics
of the TOU tariff structure in South Korea for efficient classification of customers’ load profiles. The
KEPCO offers a TOU tariff structure for industrial and commercial customers, which charges differently
in different seasons of the year and different classifications in a day. Table 1 shows the daily TOU
rate schedules separated by two seasons: non-winter (spring, summer, and fall) and winter. For each
season, the 24-hour schedule on weekdays is classified into three different levels of electric power
consumption: off-peak, mid-peak, and on-peak load. The on-peak load is substituted by the mid-peak
load on Saturdays. The only off-peak load is chargeable on Sundays and national holidays. In addition,
the TOU tariff depends on the demand charge rate (Cdemand) and the usage charge rate (Cusage).

Table 2 shows two examples of a TOU tariff: Industrial Service B (High-Voltage B) and General
Service B (High-Voltage A) [21]. The tariff is classified into Industrial and General depending on the
customer type. The Service B indicates that the customer’s contract demand is above 300 kW. The
voltage connected to the grid decides the High-Voltage such as 3.3–66 kV for High-Voltage A and
154 kV for High-Voltage B. The selectable options of this tariff indicate that a relatively higher Cdemand
consists of a lower Cusage, and, thus, customers could choose a suitable option depending on their
consumption patterns. The comparison between Industrial and General in Table 2 shows an identical
structure with small variations of Cdemand and Cusage depending on options. This indicates that the
energy demand pattern can be one of the determinative factors to develop adaptive strategies of energy
management for customers.

Table 1. Daily TOU rate schedules [21].

Classification Spring, Summer and Fall
(Mar.1~Oct.31)

Winter
(Nov.1~Feb.28)

Off-peak load 23:00~09:00 23:00~09:00

Mid-peak load
09:00~10:00
12:00~13:00
17:00~23:00

09:00~10:00
12:00~17:00
20:00~22:00

On-peak load 10:00~12:00
13:00~17:00

10:00~12:00
17:00~20:00
22:00~23:00
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Table 2. Examples of a TOU tariff [21].

Classification Cdemand [KRW/kW] Cusage [KRW/kWh]
Time Period Summer Spring/Fall Winter

Industrial
Service B,

High-Voltage B

Option I 6630
Off-peak load 60.0 60.0 67.0
Mid-peak load 112.3 82.3 112.3
On-peak load 193.5 112.6 168.5

Option II 7380
Off-peak load 56.2 56.2 63.2
Mid-peak load 108.5 78.5 108.5
On-peak load 189.7 108.8 164.7

Option III 8190
Off-peak load 54.5 54.5 61.6
Mid-peak load 106.8 76.9 106.8
On-peak load 188.1 107.2 163.0

General
Service B,

High-Voltage A

Option I 7220
Off-peak load 61.6 61.6 68.6
Mid-peak load 114.5 84.1 114.7
On-peak load 196.6 114.8 172.2

Option II 8320
Off-peak load 56.1 56.1 63.1
Mid-peak load 109.0 78.6 109.2
On-peak load 191.1 109.3 166.7

Option III 9810
Off-peak load 55.2 55.2 62.5
Mid-peak load 108.4 77.3 108.6
On-peak load 178.7 101.0 155.5

The monthly electric charge (Cmonth) of industrial and commercial customers is calculated as
follows [21]:

Cmonth = 1.137×
{
Cdemand[KRW/kW] × Ppeak[kW] + Cusage[KRW/kWh] × Penergy[kWh]

}
, (1)

where Ppeak is the annually highest value of the customer load profile, Penergy is the energy consumption
of the customer, and 1.137 indicates 10% of VAT and 3.7% of the Electric Power Industry Basis Fund.

Based on this tariff structure, this study proposes TOU indices consisting of an off-peak index
(Io f f−peak), mid-peak index (Imid−peak), and on-peak index (Ion−peak). These are calculated as follows:

Io f f−peak =
(
ho f f−peak/24 hours

)
× Pavg, o f f−peak, (2)

Imid−peak =
(
hmid−peak/24 hours

)
× Pavg,mid−peak, (3)

Ion−peak =
(
hon−peak/24 hours

)
× Pavg, on−peak, (4)

where ho f f−peak, hmid−peak and hon−peak each are the time duration of off-peak (10 hours), mid-peak
(8 hours), and on-peak (6 hours). Pavg,o f f−peak, Pavg,mid and Pavg,peak are the average levels of electric
power consumption during off-peak, mid-peak, and peak load times, respectively. The TOU indices
show the power consumption rates according to the TOU time schedule and compares the daily
total power consumption between the daily load profiles. Therefore, TOU indices can be classified
according to the customer load pattern, which they are expected to utilize to establish an effective ESS
control strategy.

2.2. Evaluation Parameter

For internal evaluation of clustering, the Davies-Bouldin Index (DBI) and the Silhouette Index (SI)
are used to determine an optimal number of clusters [22]. DBI indicates the ratio of the cohesion in
a cluster to the separation between different clusters. The cohesion observes the distance between a
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center point of a cluster and the data of the corresponding cluster, and the separation calculates the
distance between the center points of different clusters. DBI is calculated as follows [23]:

DBI =
1
N

N∑
i=1

maxi, j

d(xi, ci) + d
(
x j, c j

)
d
(
ci, c j

) , (5)

where N is the number of clusters, d
(
ci, c j

)
is the distance between the center points of cluster i and

cluster j, d(xi, ci) is the average distance between the center point of cluster i and the data of the cluster
i, d

(
x j, c j

)
is the average distance between the center point of cluster j and the data of the cluster j.

SI observes the average distance between the nth data and the other data in the identical cluster
and the average distance between the nth data and all data of different clusters. It is calculated as
follows [24]:

SI =
1
k

k∑
n=1

σ2(n) − σ1(n)
max

{
σ1(n), σ2(n)

} , (6)

where k is the number of all data, σ1(n) is the average distance between the nth data and the other data
of the identical cluster, and σ2(n) is the smallest value of the average distances between the nth data
and all data of the other clusters.

The lower DBI and higher SI values expect higher cohesion in the selected cluster and higher
separation of the other clusters. Thus, this study observes the changes of DBI and SI according to the
changes of the cluster number, and the optimal number of the cluster is decided when the value of
subtracting DBI from SI is the highest for satisfying both the lowest DBI and the highest SI.

The Adjusted Rand Index (ARI) is used to externally evaluate clustering performance through
similarities between the clustering results and the target cluster. This verifies the similarities between
the target cluster Xi and the clustering result S j based on the number of matching data r. ARI is
proposed to improve the Rand Index (RI), the ratio of the number of correct data pairs to the number
of all possible data pairs [25]. Table 3 shows a contingency table for comparing between the target
cluster Xi and the clustering result S j. ri j is the number of matching data between Xi and S j. ri. is the
number of data in Xi, and r. j is the number of data in S j. First of all, RI is calculated as follows [25]:

RI = (n1 + n2)/(n1 + n2 + n3 + n4), (7)

where n1 is the number of pairs are included in the same class in Xi and in the same cluster in S j, n2

is the number of pairs are included in different classes in Xi and in different clusters in S j, n3 is the
number of pairs are included in the same class in Xi and in different clusters in S j, and n4 is the number
of pairs are included in different classes in Xi and in the same cluster in S j. This ranges from 0 to 1, and
1 is considered as the best performance. ARI modifies the limitations of RI such as no constant value
of the expected value of the RI and the upper limit approaches as increasing the number of clusters,
which is calculated as follows [25]:

ARI =
RI − E[RI]

max(RI) − E[RI]
=

∑
i, j

(
ri j
2

)
−

[∑
i

(
ri.
2

)∑
j

(
r. j
2

)]/( r
2

)
1
2

[∑
i

(
ri.
2

)
+

∑
j

(
r. j
2

)]
−

[∑
i

(
ri.
2

)∑
j

(
r. j
2

)]/( r
2

) . (8)

The clustering performance based on ARI can be evaluated as ‘excellent’ when ARI ≥ 0.9, ‘good’
when 0.8 ≤ ARI < 0.9, ‘moderate’ when 0.65 ≤ ARI < 0.8, and ‘poor’ when ARI < 0.65 [26].
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Table 3. Notation for comparing the target cluster Xi and the clustering result S j.

Xi

Sj
S1 S2 S3 · · · Sj Sums

X1 r11 r12 r13 · · · r1 j r1.

X2 r21 r22 r23 · · · r2 j r2.

X3 r31 r32 r33 · · · r3 j r3.

...
...

...
...

...
...

Xi ri1 ri2 ri3 · · · ri j ri.

Sums r.1 r.2 r.3 · · · r. j r..

2.3. Clustering Methodology

This paper distributes daily load profiles of customers based on the TOU indices in a
multi-dimensional manner. These index-based distributions are classified into three different day types:
Weekdays (Non-winter), Weekdays (Winter), and Saturdays. The weekdays need to be separated into
non-winter and winter according to the seasonal classification of the TOU tariff structure as described
in Table 1. Saturdays are also separately observed since the tariff substitutes the on-peak load with the
mid-peak load. Sundays and holidays are excluded since the tariff only applies to the off-peak rate.

The distributed data on weekdays (non-winter and winter) and on Saturdays are classified by
using sophisticated clustering methods: K-means and Self-Organizing Map (SOM). First, the K-means
algorithm is one of the most frequently utilized approaches for clustering. Given a dataset of A and a
cluster set B = {B1, B2, · · · , Bk}, this algorithm obtains the minimum distance between input data and
center points of the clusters, calculated as follows [27]:

argmin
B

k∑
i=1

∑
n∈Bi

‖an − ci‖
2, (9)

where an is the nth input data in A and ci is the center point of nth cluster in B.
This study also utilizes SOM, a clustering technique based on Artificial Neural Networks (ANNs).

The SOM algorithm classifies data into the nearest neurons by calculating the distance between the
data input of the input layer and the neurons of the output layer [28]. First, the Euclidean distance
between the input data and the weight of output neuron is achieved to determine the nearest neuron
as the winner neuron W, calculated as follows [29]:

W = arg

 min
1≤

.
i j≤mn

{
‖ωi j(t) − x(t)‖

}. (10)

where ωi j(t) is the output neuron vector at the number of iterations t, and x(t) is the input data. The
determined winner neuron W is updated by the following steps [29]:

ωi j(t + 1) = ωi j(t) + gW,i j(t)
[
x(t) −ωi j(t)

]
, (11)

gW,i j(t) = ε(t)·exp

−‖ρW − ρi j‖
2

2α2(t)

, (12)

where gW,i j(t) is the Gaussian neighborhood function, ρ is the coordinate position of the neuron, ε(t)
is the learning rate, and α(t) is the width of the neighborhood radius.
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3. Customer-Installed ESS

3.1. Supporting Policies

The Korean government and KEPCO have established ESS supporting policies to encourage
customers to install ESS to stabilize the national electric power system and to reduce and stabilize
greenhouse gas emissions [30]. These policies are classified into demand and usage charge discounts.
The demand charge discount compensates for the monthly contribution of ESS discharge during
on-peak hours. This monthly contribution (PESS. on−peak ) is calculated as follows [21]:

PESS, on−peak =
EESS,disc, on−peak − EESS,char, on−peak

Dm
, (13)

where EESS,disc, on−peak and EESS,char, on−peak are the sum of discharge and charge energy of ESS,
respectively, during the on-peak load hours on weekdays of the corresponding month, and Dm

is the number of the weekdays of the corresponding month. Finally, the KEPCO offers to subtract
PESS, on−peak from Ppeak of the Equation (1), and, consequently, customers save their demand charge
on the monthly electricity bill. The usage charge discount provides a 50% discount of the customers’
usage charge when ESS charges its energy during off-peak load hours [21].

3.2. Operational Algorithm

The operational algorithm of customer-installed ESS is divided into a peak shaving operation
and an arbitrage operation. The peak saving operation reduces an annual peak load of customers
with discharge of their ESS. This algorithm sets the peak reference based on consideration of ESS
capabilities of energy storage and charge/discharge rates, and the ESS maintains the annual peak to
not exceed the peak reference. The arbitrage utilizes differences of energy usage charge rates. This
algorithm saves the customers’ energy usage charge by charging their ESS during the hours of the
relatively lower usage charge rate and then discharging the energy during the hours of the relatively
higher usage charge rate [29]. The daily charge-discharge cycles for the arbitrage operation can be
selected to a single cycle (1-cycle) or multiple cycles depending on the TOU schedules. The South
Korean TOU tariff structure is divided into on-peak (highest rate), mid-peak, and off-peak (lowest
rate) load hours as described in Table 2. According to the rate schedules in Table 1, the daily maximal
arbitrage cycle is two on weekdays in non-winter (morning off-peak and on-peak discharging and
afternoon mid-peak and on-peak discharging) and three on weekdays in winter (morning off-peak
charging and on-peak discharging, afternoon mid-peak and on-peak discharging, and night mid-peak
and on-peak discharging).

Figure 1 shows a flowchart of the operational strategy of customer-installed ESS using the peak
shaving and arbitrage operations with different daily charge-discharge cycles in South Korea. These
strategies commonly prioritize peak shaving operations compared to arbitrage operations, since
the demand charge saving from peak shaving is more efficient than the energy charge saving from
arbitrage [31]. Dozens of days are usually expected to exceed the peak reference during a year. For
these days, the single-cycle operation performs the only peak shaving as shown in Figure 1a. However,
the multi-cycle operations can choose the full peak shaving or the combined operation of the early peak
shavings and the late arbitrages when late arbitrages are available after finishing the peak shaving as
described in Figure 1b,c. For the other days not exceeding the peak reference, the ESS only performs the
arbitrage operation. For these days, the multi-cycle operations can choose merely the 2-cycle operation
for all weekdays (Figure 1b) or the 2-cycle for weekdays in non-winter and the 3-cycle for weekdays in
winter (Figure 1c).
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Figure 1. A flowchart of the operational strategy of ESS under the TOU tariff structure in South Korea:
(a) 1-cycle, (b) 2-cycle, and (c) 3-cycle arbitrage.

Figure 2 shows examples of daily charges and discharges of ESS installed in an industrial customer.
The daily load pattern of this customer shows the typical M-shaped pattern, and the total capacity of
the ESS is assumed to be 10% of the customer annual peak load with a 1C-rate capability. First of all,
the ESS always charges its energy during the earliest off-peak load hours, the cheapest usage charge
duration, for all three cases. In Figure 2a, the ESS discharges the charged energy for the peak shaving
operation when the customer load exceeds the peak reference both in the morning (10:00 ~ 12:00) and
afternoon (13:00 ~ 17:00). Figure 2b shows the combined operation of peak shaving and arbitrage on
a weekday in winter. On this day, the ESS discharges to handle the customer load that exceeds the
peak reference between 11:00 and 12:00, and it discharges the remaining energy during the second
term of on-peak load hours (17:00 ~ 20:00) for the arbitrage operation. In addition, the ESS performs
an additional arbitrage operation that charges the energy during mid-peak load hours (20:00 ~ 22:00)
and discharges the energy during the third term of on-peak load hours (22:00 ~ 23:00). Figure 2c
shows the arbitrage operation with 2-cycle on a weekday in non-winter. The ESS operates its first
discharging during the morning on-peak load hours (10:00 ~ 12:00). In addition, it also performs the
second charging during mid-peak load hours (12:00 ~ 13:00) and the corresponding discharging during
the afternoon on-peak load hours (13:00 ~ 17:00). Figure 2d demonstrates the arbitrage operation
with 3-cycle on a weekday in winter. The first discharging is identical to the 2-cycle arbitrage, but the
second cycle is performed by charging during the mid-peak load hours (12:00 ~ 17:00) and discharging
during the afternoon on-peak load hours (17:00 ~ 20:00). In addition, the ESS charges during the night
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mid-peak (20:00 ~ 22:00) and then discharges during the last on-peak (22:00 ~ 23:00) for the third
arbitrage cycle.
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Figure 2. Examples of Daily ESS operations: (a) only peak shaving, (b) combined operation of peak
shaving and arbitrage, (c) only arbitrage with 2-cycle, and (d) only arbitrage with 3-cycle.
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4. Simulation

4.1. Load Profile

The simulation utilizes actual load profiles accumulated by four different customers (Customers A,
B, C, and D) using the TOU tariff structure. These load profiles are 15-minute-based data measurements
by KEPCO from January 1 to December 31, 2016. In addition, the load profiles are normalized by their
peak load for effective comparison of the customers. Figure 3 shows normalized seasonal average
load profiles for Customers A, B, C, and D for (a) weekdays (non-winter), (b) weekdays (winter),
(c) Saturdays, and (d) Sundays and holidays. In the case of weekdays, the daily averaged loads of
Customers A and B show the ‘M-shaped’ pattern, the representative profile of manufacturing industries,
while the daily averaged loads of Customers C and D show the ‘square wave-shaped’ pattern, the
typical profile of commercial buildings. Customers A and B use Industrial Service B (High-Voltage B,
Option II) and Customers C and D use General Service B (High-Voltage A, Option II).Energies 2020, 13, x FOR PEER REVIEW 10 of 16 
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4.2. Clustering Result

4.2.1. K-means

The internal evaluation parameters based on the K-means approach are observed to determine
the optimal cluster number. Table 4 shows DBI, SI, and DBI-SI values by increasing the cluster number
from 2 to 5. The optimal cluster number is selected to be 2, since the cluster number 2 shows the highest
values of SI-DBI for Weekdays (non-winter), Weekdays (winter), and Saturdays. Figure 4 shows the
clustering result of the K-means approach when the cluster number is 2. This demonstrates that most
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data from Customers A and B are classified into Cluster 1, otherwise, most data from Customers C
and D are classified into Cluster 2 for Weekdays (Non-winter), Weekdays (Winter), and Saturdays.
Table 5 shows the ARI-based external evaluation of K-means when the cluster number is 2. The total
ARI value is calculated to 0.919, which can be evaluated as the ‘excellent’ clustering result. Figure 5a
describes the separated data distributions of Clusters 1 and 2 for Weekdays (Non-winter) with 0.890 of
the ARI value, which can be evaluated as the ‘good’ result. The results of Weekdays (Winter) show
the relatively lower ARI value (0.797) compared to that of Weekdays (Non-winter). This is due to the
relatively closer center points between Clusters 1 and 2 as described in Figure 5b, and, consequently,
the failure rate of clustering is relatively increased. For Saturdays, Figure 5c indicate a significant
separation between the two clusters with the highest ARI values (0.942).

Table 4. Internal evaluation indices at different cluster numbers based on K-means.

Classification Index Cluster Number
2 3 4 5

Weekdays
(Non-winter)

DBI 0.739 0.704 0.814 0.861
SI 0.725 0.676 0.642 0.604

SI-DBI −0.014 −0.027 −0.172 −0.257

Weekdays
(Winter)

DBI 0.530 0.672 0.795 0.850
SI 0.792 0.761 0.658 0.595

SI-DBI 0.262 0.089 −0.137 −0.255

Saturdays
DBI 0.561 0.659 0.654 0.700
SI 0.800 0.741 0.717 0.675

SI-DBI 0.238 0.082 0.063 −0.026Energies 2020, 13, x FOR PEER REVIEW 11 of 16 
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Table 5. External evaluation results of K-means.

Method Weekdays
(Non-winter)

Weekdays
(Winter) Saturdays Total

K-means 0.890 0.797 0.942 0.919

4.2.2. SOM

This study observes DBI, SI, and SI-DBI values based on the SOM approach by varying the cluster
dimension (2 × 1, 3 × 1, 4 × 1, 2 × 2, and 5 × 1) summarized in Table 6. Similar with the K-means
approach, the optimal cluster dimension for SOM is selected as 2 × 1, the highest values of SI-DBI
for all three cases. Figure 5 shows the SOM-based clustering result when the cluster dimension is
2 × 1. The SOM clustering results similarly shows the K-means-based clustering results, which groups
Customers A and B into Cluster 1 and Customers C and D into Cluster 2. Table 7 shows the ARI-based
external evaluation of SOM when the cluster dimension is 2 × 1. These results show the similar pattern
of the K-means results in Table 4: the highest on Saturdays and the lowest on Weekdays (Winter).
In addition, the total result of the SOM (0.922) shows a slightly improved performance compared to
that of the K-means (0.919). Finally, the ARI-based external evaluation of both the K-means and SOM
indicates an acceptable clustering performance.

Table 6. Internal evaluation indices at different cluster numbers based on the SOM.

Classification Index Cluster Number
2 × 1 3 × 1 4 × 1 2 × 2 5 × 1

Weekdays
(Non-winter)

DBI 0.739 0.809 0.777 0.777 0.821
SI 0.725 0.620 0.657 0.657 0.622

SI-DBI −0.014 −0.189 −0.119 −0.119 −0.199

Weekdays
(Winter)

DBI 0.530 0.671 0.724 0.724 0.847
SI 0.792 0.761 0.716 0.716 0.585

SI-DBI 0.262 0.089 −0.008 −0.008 −0.262

Saturdays
DBI 0.561 0.626 0.629 0.629 0.673
SI 0.800 0.777 0.760 0.760 0.681

SI-DBI 0.238 0.151 0.131 0.131 0.008

Table 7. External evaluation results of SOM.

Method Weekdays
(Non-winter)

Weekdays
(Winter) Saturdays Total

K-means 0.891 0.798 0.944 0.922
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4.3. Feasibility Study

This study performs simulations for feasibility analysis of Customers A, B, C, and D to find their
optimized ESS operational strategies. All simulations estimate that the customers have installed ESS
with a capacity of 10% of their annual peak demand and a capability of 1 C-rate [19]. The ESS efficiency
is assumed to be 91% for charging and 99% for discharging, and, consequently, the charge-discharge
round-trip efficiency is calculated as approximately 90% [19]. The ESS is assumed to be a lithium-ion
battery type with a life of 4000 cycles [32]. Thus, the battery lifespan is calculated as approximately
13 years with a 7.5% annual degradation for the single-cycle operation. However, the lifespan is
reduced for the multi-cycle operation: approximately 7.2 years with a 13.75% annual degradation
for a 2-cycle operation and 6.6 years with a 15% annual degradation for a 3-cycle operation. The ESS
installation cost is selected to 500,000 [KRW/kWh], and its annual maintenance is considered to be
3% of the installation cost with 4.5% of the discount rate [33]. The supporting policies described in
Section 3.1 are considered.

All simulations observe a net present value (NPV) for the feasibility analysis of each case, calculated
as follows [34]:

NPV = −I0 +
T∑

t=1

Bt −Ot

(1 + r)t , (14)
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where t(= 1, 2, · · · , T) is the life span of the installed ESS, I0 is the ESS installation cost, Bt is the expected
saving of the customer’s electricity charge, Ot is the operation and maintenance costs, and r is discount
rate. In addition, this study separately observes the expected unit saving [KRW/kWh] by the peak
saving operation (CPBps) and by the arbitrage operation (CPBar).

Table 8 summarizes the feasibility analysis results of Customers A, B, C, and D for their different
cycle operations (1-cycle, 2-cycle, and 3-cycle). The results indicate that the multi-cycle (2-cycle and
3-cycle) operations expect relatively higher unit savings (CPBps and CPBar) and NPVs for all customers.
This is due to the increased cycles not only improving their usage charge savings by increasing the
arbitrages but also allowing a greater cut of their annual peaks, which increases savings in demand
charges. In addition, the increased cycles also improve the monthly contribution (PESS. on−peak ) of the
supporting policy in Equation (12).

However, the results show different feasible solutions depending on the different clusters. First,
the customers corresponding to Cluster 1 (Customers A and B) show a relatively higher improvement
of the unit savings of the peak saving (CPBps) between single- and multi-cycle operations compared
to the customers corresponding to Cluster 2 (Customers C and D). This indicates that the M-shaped
pattern of Cluster 1 expects a relatively deeper peak shaving from the multi-cycle operation compared
to the square-wave shaped patten of Cluster 2. In addition, Customers A and B (Cluster 1) show
the highest NPV for a 2-cycle arbitrage while Customers C and D (Cluster 2) show the highest NPV
for a 3-cycle arbitrage. This is due to the M-shaped pattern of Cluster 1 expecting relatively lower
unit savings from the arbitrage operation (CPBar) for both 2- and 3-cycle arbitrages compared to the
square-wave shaped patten of Cluster 2. Thus, these results suggest that the 2-cycle arbitrage is enough
for Cluster 1 with consideration of the battery’s life cycle, and the maximal cycle arbitrage is expected
to maximize profits of the customer-installed ESS for Cluster 2.

Table 8. Feasibility analysis results of the customer-installed ESS.

Customer PPeak
[KRW/kWh]

BATcp
[KRW/kWh]

CPBps
[KRW/kWh]

CPBar
[KRW/kWh]

NPV
[KRW]

Cluster 1

Customer A 11,328 1133
1-cycle 56,595 1-cycle 126,759 292.77M

multi-cycle 90,081 2-cycle 210,597 840.26M

3-cycle 241,111 826.68M

Customer B 20,803 2080
1-cycle 57,596 1-cycle 125,998 295.36M

multi-cycle 86,761 2-cycle 209,024 1086.78M

3-cycle 231,770 1022.84M

Cluster 2

Customer C 2120 212
1-cycle 79,611 1-cycle 139,975 88.22M

multi-cycle 86,894 2-cycle 263,263 202.97M

3-cycle 309,743 206.63M

Customer D 4314 431
1-cycle 63,491 1-cycle 139,375 92.86M

multi-cycle 63,703 2-cycle 251,561 282.88M

3-cycle 298,041 302.58M

5. Conclusions

This study proposes a methodology to develop the optimized operational strategy of
customer-installed ESS depending on the cluster derived from the classification of load profiles
under the TOU tariff structure. In addition, this study also proposes a methodology to characterize and
classify the customer load profiles based on the newly proposed TOU indices consisting of off-peak,
mid-peak, and on-peak indices. These indices enable the effective distribution of daily customer
load profiles on multi-dimensional domains, indicating characteristics of the power consumption
rates according to the TOU tariff schedule. Sophisticated clustering methods (K-means and SOM) are
applied for classification. Furthermore, this study demonstrates the operational algorithms for the
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peak shaving and arbitrage of customer-installed ESS and the expected benefits for customers under
the TOU tariff with current supporting polices in South Korea.

The proposed methodologies are validated by simulations based on actual load profiles
accumulated from two different industries (Customers A and B) and two different commercial
buildings (Customers C and D). The TOU index-based clustering results of both the K-means and
SOM show an effective classification between the cluster of the ‘M-shaped’ load pattern (Customers A
and B) and the cluster of the ‘square wave-shaped’ load pattern (Customers C and D). In addition, the
feasibility analysis results suggest different operational strategies of ESS for different clusters. Daily
2-cycle operations are suggested for the customers included in the cluster of the ‘M-shaped’ load
patterns (Cluster 1) due to consideration of the battery’s life cycle. However, the customers included in
the cluster of the ‘square wave-shaped’ load pattern (Cluster 2) are required to employ daily maximal
cycle operations (3-cycle operations) of ESS to maximize savings of customer electricity costs.

This research provides an early-stage methodology to develop adaptive solutions for multiple
customers based on the clustering of the customer load profiles. The proposed methodologies will be
advanced with extended load profiles, including more diverse patterns acquired from increased number
of customers. This effort will contribute to the development of more advanced strategies of energy
management improving profits of customer-installed ESS. In addition, the proposed methodologies
and analysis results in this study are expected to provide guidelines to establish and modify related
policies of government, utility, and aggregator levels.
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