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Abstract: This paper proposes a new mass estimation for a vehicle system, utilizing the characteristics
of engine torque local convex minimum, where the mass can be estimated based on the driving forces
and the longitudinal accelerations only. Fundamentally, this approach generally requires no other
information about an aerodynamic effect, a road grade, or a rolling friction, which is usually demanded
by the existing well-known longitudinal dynamics and adaptive filter-based estimation methods.
The effectiveness of the proposed approach was evaluated and validated by both TruckSim/Simulink
co-simulation and actual field test data. It is found that the proposed estimation technique is more
favorable for a situation where the vehicle is exposed to low-speed regions. In addition to this new
mass estimation strategy, other new and current existing methods were explored and are reviewed
here. Moreover, this study suggested a guideline for a hybrid-type mass estimation strategy to predict
a mass by combining a new method with an existing one for every speed.

Keywords: vehicle mass estimation; (Extended) Kalman filter; recursive least square; detection
algorithm; vehicle longitudinal dynamics

1. Introduction

It is very important to identify vehicle inertial parameters accurately in designing a vehicle control
system. In most cases, the performance of an active safety system is, in general, guaranteed based on
the assumption that the inertial parameters are already known or defaulted as unloaded conditions.
However, this may not be applicable for a heavy truck undergoing unloaded and loaded up to almost
double the Gross Vehicle Weight (GVW) frequently. In this regard, references [1,2] proposed the
recursive least squares approach, forgetting for online estimation of vehicle mass and road grade. Here,
we address that using multiple forgetting factors improves the transient and steady-state perspectives
of estimation performance. Commonly, the existing mass estimation techniques rely on longitudinal
dynamics, along with state estimation algorithms, such as the recursive least squares algorithm (RLS) [3]
and Kalman filter (KF) [4]. Based on perturbation theory, Fathy [5] simplifies the mass estimation
model with the differential equation of longitudinal dynamics. A robust parameter algorithm for
the vehicle mass and driving resistance estimation has been proposed by [6], and it overcomes the
drawbacks of outliers and insufficient excitation. To further improve the accuracy and robustness
of the mass estimation, a torque observer was also applied into the system [7]. Moreover, in the
literature [8–13], many have studied the method, simultaneously estimating the mass and road grade.
Furthermore, reference [14] used an extended KF to estimate both mass and road grade. A Markov
chain Monte Carlo method was applied to estimate vehicle inertial parameters [15]. The author of [16]
presents a Global Positioning System (GPS) based vehicle mass and road grade estimation technique.
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Furthermore, reference [17] proposed more advanced estimation scheme with visual and acoustic data.
Based on remotely collected video and audio data deducing a vehicle’s position, engine torque-induced
frame twist, and engine speed, the vehicle’s mass-to-spring constant ratio can be calculated so that
the vehicle mass can be obtained. Furthermore, reference [18] analyzed the system error of vehicle
longitudinal dynamics in RLS estimation approach and addressed that, if the error is considered in an
estimate, the estimation error can be reduced. However, most of the current mass estimation techniques
require the parameters of longitudinal dynamics, such as aerodynamic parameters, rolling resistance
coefficient, and so on, which are quite cumbersome to be measured accurately and possibly determined
with some errors. The usage of such inaccurate parameters in the longitudinal dynamics consequently
causes the significant estimation errors. In this regard, this study presents a new mass estimation
approach based on a longitudinal dynamic model with the minimum system parameters. Specifically,
this new mass estimation method utilizes the characteristics of vehicle behavior subject to engine
torque local convex minimum, where the mass can be estimated based on driving force (i.e., a pure
torque (force) delivered by an Engine to driving wheel) and longitudinal acceleration only, thereby,
demanding no other information about an aerodynamic force, a road grade, or a rolling friction. This
paper is organized as follows. Section 2 presents a new vehicle mass estimation strategy based on
an engine torque local convex minimum characteristic. Sections 3–5 explore other new estimation
methods and review the existing ones. The conclusion subsequently follows in Section 6.

2. Vehicle Mass Estimation Using the Characteristics of Engine Torque

This section proposes a new mass estimation for a vehicle system, utilizing the characteristics of
engine torque local convex minimum, where the mass estimation can be possibly performed based
on the driving force and the longitudinal acceleration only, without any other information about the
forces acting on a vehicle system.

According to the forces shown in Figure 1, the longitudinal dynamics of a vehicle is given by the
following equations:

max = FD − Faero − Fgrade − Frolling (1)

FD =
Tei1i2η

re f f .
, Faero =

1
2
ρCDAv2, Fgrade = mgsinθ, Frolling = µmgcosθ (2)

where FD, Faero, Fgrade, and Frolling are a driving force, an aerodynamic force, a force due to road grade,
and a rolling resistance, respectively; m is the vehicle mass. Other variables, Te, i1, i2, η, and re f f ., are
an engine torque, a final gear ratio, a transmission gear ratio, the efficiency of power train, and the
effective radius of tire, respectively. The parameters ρ, CD, A, v, θ, and µ are the air density, a drag
coefficient, a frontal projected area, a longitudinal velocity, a road grade, and rolling friction coefficient.
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The total gear ratio is also obtained by the following equation:

i1i2 = C
re f f n

v
(3)

where C and n are a constant and an engine rotational speed. It is a benefit for us to use Equation (2)
since it requires no information about a gear shift status, as long as v and n are available.

Next, let’s consider the longitudinal vehicle dynamics for the two consecutive times, denoted by t
and t − 1:

max.t = FD.t − Faero.t. − Fgrade.t − Frolling.t (4)

max.t−1 = FD.t−1 − Faero.t−1. − Fgrade.t−1 − Frolling.t−1 (5)

If we assume that the road grade and friction are not varied from the previous time, t − 1 to the
current one t, the conditions Fgrade.t ≈ Fgrade.t−1 and Frolling.t ≈ Frolling.t−1 are possibly feasible.

Together with the above conditions, subtracting Equation (4) from Equation (5) yields the following:

m (ax.t − ax.t−1) = FD.t − FD.t−1 + (Faero.t. − Faero.t−1.) (6)

Moreover, for the low-speed regions, the effect of aerodynamic forces (the last terms in Equation (6))
is relatively small, and the condition Faero.t. ≈ Faero.t−1. can especially be made near the local convex
minimum of engine torque. This point of view is discussed in the Appendix A.

Consequently, incorporating Faero.t. ≈ Faero.t−1. into Equation (6) becomes Equation (7):

m =
FD.t − FD.t−1

ax.t − ax.t−1
=

∆FD.t/t−1

∆ax.t/t−1
(7)

Equation (7) indicates that the mass estimation can be achieved without identifying any data
and information related to other forces, Faero, Fgrade, and Frolling, when the vehicle experiences the local
convex minimum of engine torque in the low speed regions. This means that this mass estimation
strategy proposed here is relatively convenient and compact compared to other existing approaches
usually relied on the fully expressed longitudinal dynamics, Equation (1).

2.1. Extraction of Multiple Local Convex Region from Engine Torque Data

To achieve the mass estimation based on Equation (7), it is crucial to detect the minimums in the
local convex regions of engine torque, Te, available via Controller Area Network (CAN). Therefore,
this section presents the simple detection algorithm for the convex minimum of the given data. The
following three circular buffers accepting the five consecutive engine torques (Te), the driving forces
(FD), and the longitudinal accelerations (ax) were employed for further design.

Etorque.t =
[

Te.t−4 Te.t−3 Te.t−2 Te.t−1 Te.t
]

(8)

Fx.t =
[

FD.t−4 FD.t−3 FD.t−2 FD.t−1 FD.t
]

(9)

ax.t =
[

ax.t−4 ax.t−3 ax.t−2 ax.t−1 ax.t
]

(10)

Figure 2 illustrates how the data of each buffer are managed. Specifically, when new data are
conveyed to each circular buffer, the data corresponding to the first index in each buffer are removed, the
remaining data (i.e., 2nd through 5th data) fill the first four array of each buffer in the sequential order,
and the newly arrived data then occupy the last array of each buffer. This procedure is continuously
repeated, as long as the estimation process is active.
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Figure 2. Circular buffers for data management and the minimum in local convex region of engine torque.

Next, from the data stored into circular buffer, the minimum value of convex region for Etorque.t can
be found according to Equation (11). At the moment when Equation (11) is satisfied, the corresponding
driving force and the longitudinal acceleration data stored in the 2nd and 3rd array of circular buffer will
be the candidate data for a further process and distinguished from others by adding an upper-subscript
asterisk (as shown in Equation (12)):

arg min
1≤i≤5

Etorque(i) = 3 (11)

F∗D.t−3 , F∗D.t−2, a∗x.t−3 and a∗x.t−2 (12)

In other words, the data in Equation (12) that correspond to the prior moment right before the
minimum in convex region (i.e., Te.t−3) and the one to be captured as the minimum (i.e., Te.t−2), will be
submitted to next step of vehicle mass estimation.

The entire mass estimation process is described in Figure 3, and it can be seen from the given flow
that the data management, the convex minimum detection, and the Kalman estimation are processed
in sequential order. The details of the Kalman estimation are presented in the next section.
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2.2. Kalman-Filter-Based Mass Estimation

The data captured by the detection algorithm in Section 2.1 are now available for the mass
estimation. However, before feeding such data to the Kalman filter, the fidelity and quality of the
selected sensor data must be examined.

Although the estimation via an adaptive filter is capable of managing the abnormality of sensor
data to some extent, it is essential that the infidelity data should be least involved, to guarantee an
accurate estimation performance.

To meet such a need, the following conditions should be enforced:

a ∗x.t−3
∗
x.t−2 ∗D.t−2

∗
D.t−3D.maxD.minx.maxx.min (13)

|a∗x.t−2 − a∗x.t−3| < γ, |F∗D.t−2 − F∗D.t−3| < τ (14)

where ax.min, ax.max, FD.min, FD.max, γ, and τ are constant thresholds quantified based on simulation
results and actual field test data. Specifically, while Equation (13) indicates the minimum and maximum
boundary of driving forces and accelerations, Equation (14) is used to prevent the involvement of
radically changed two consecutive datasets jumping into the estimation.

In addition, since the estimation approach is fundamentally derived based on pure longitudinal
vehicle dynamic model, the following conditions are also required, in order to maintain the validity of
longitudinal dynamics,

δmin ≤ δ ≤ δmax, Pbraking ≈ 0,
∣∣∣ay

∣∣∣ < ε1,
∣∣∣∣ .
θ
∣∣∣∣ < ε2, max[λLF,λRF,λRF,λRR] ≤ λmin (15)

where δ, Pbraking, ay,
.
θ, and λi are the steering-wheel angle, brake master cylinder pressure, lateral

acceleration, yaw rate, and each wheel slip ratio, which can be obtained by ABS/ESP. As done before,
δmin, δmax, ε1, ε2, and λmin are constant thresholds determined based on simulation results and actual
field test data. The conditions in Equation (15) indicate non-excessive steering, non-braking, small
lateral, and yaw motions of the vehicle body, as well as insignificant wheel slips.

Considering the conditions of Equations (14) and (15), the trusted data is redefined with an
additional subscript, K, to each variable, as follows:

STrust = {a∗x.t−3.K, a∗x.t−2.K, F∗D.t−2.K, F∗D.t−3.K} ∈ <
4 (16)

Finally, the data in Equation (16) is used in the actual estimation via the Kalman filter.
Next, let’s consider the following prediction dynamics based on Equation (7):

(∆FD)k/k−1 = mk−1/k−1(∆ax)k

mk/k−1 = mk−1/k−1
(17)

where the subscripts k − 1/k − 1 and k/k − 1 indicate the prior state and the current predicted one.
Moreover, (∆ax)k = |a

∗
x.t−2.K − a∗x.t−3.K| is obtained by Equation (16).

Defining the predicted state vector of the Kalman filter as Xk/k−1 =
[
(∆FD)k/k−1 mk/k−1

]T
∈

<
2×1 and the previous one as Xk−1/k−1 =

[
(∆FD)k−1/k−1 mk−1/k−1

]T
∈ <

2×1, and rearranging (17)
for the 1st order form, gets the following:

Xk/k−1 = AkXk−1/k−1. (18)
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Ak =

[
0 (∆ax)k
0 1

]
∈ <

2×2 (19)

Consequently, the predicted error covariance and the innovation in update stage are given by the
following equations:

Pk/k−1 = AkPk−1/k−1Ak + Qk ∈ <
2×2. (20)

yk = zk −HkXk/k−1 = ∆FT.K − (∆FT)k/k−1 ∈ <. (21)

where Qk is the covariance of process noise. Moreover, Hk =
[

1 0
]
∈ <

1×2 and
∆FD.sensor = F∗D.t−2.K − F∗D.t−3.K are obtained by (16).

The optimal Kalman gain is now provided by the following:

Kk = Pk/k−1Hk
T[HkPk/k−1Hk

T + Rk]
−1
∈ <

2×1 (22)

The updated state and covariance estimates are obtained by the following:

Xk/k = Xk/k−1 + Kkyk ∈ <
2×1 (23)

Pk/k = (I−KkHk)Pk/k−1 ∈ <
2×2 (24)

Finally, based on the datasets detected by Equation (11) and filtered by Equation (13) through
Equation (15), the mass estimation can be accomplished via Equation (18) through Equation (24).

2.3. Simulation and Actual Test-Data-Based Estimation Results

In this section, based on TruckSim/Simulink and actual field test data, the estimation performances
are discussed, to investigate the effectiveness of the proposed mass estimation strategy. The
target truck selected was the H-Mega Truck, shown in Figure 4; it can load up to approximately
5 tons (medium-duty).
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Before proceeding, to investigate the validity of Equation (7), in Figure 5, we presented the
absolute difference between two consecutive longitudinal velocities, |dv| =

∣∣∣vt+1 − vt
∣∣∣, based on actual

test data. The red circles in Figure 5 represent the detected point via Equation (11), which is at the
local convex minimums of an engine torque. Compared to other |dv|, the value of detected point is
relatively small, which is usually less than 0.02 km/h, resulting in the assumption Faero.t. ≈ Faero.t−1. for
Equation (7) is possibly doable near the local convex minimums of an engine torque.
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Figure 6 presents the estimates for four different cases, 5420, 6420, 7420, and 8420 kg, using
TruckSim/Simulink co-simulation. Figure 6a represents the scenario of longitudinal velocities for four
situations, and Figure 6b indicates the estimates for the given vehicle masses. The dotted lines in
Figure 6b are the true mass of vehicle for each case. Here, it should be mentioned that the initial

state Xk/k−1 =
[
(∆FD)k/k−1 mk/k−1

]T
∈ <

2×1 of the Kalman filter (i.e., at a time t = 0) is randomly
assigned. It is observed from Figure 6b that the estimates well agree with true ones and the estimation
actively occurs below 18 km/h, which is the low-speed region. In addition, the estimation strategy
utilizes the moment satisfying Equation (7); thus, it is valuable to explore the performance for the
different data handling sampling times. Figure 7 shows the estimation performances based on several
sampling frequencies (1000, 200, 100, and 50 Hz). According to the results, the 1000 or 50 Hz sampling
frequency slightly degrades the estimation performance, while 100 Hz guarantees the estimation
performance with some error. Therefore, the suitable sampling frequency is 200 Hz; thus it has been
used in an actual vehicle field test.
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Figure 8 shows the estimates for three different road grades; 0 deg. (i.e., flat), 3 deg. and 6 deg.
Figure 8a,b indicates the results of the case m = 6420 kg, while Figure 8c,d represents the outcomes for
the case m = 7420 kg. Due to the characteristic of a given estimation approach, it should predict the
given actual masses, regardless of road grades. According to Figure 8, we can see that the estimates
capture the given actual mass for three different cases. Hence, compared to estimation mechanisms in
other existing approaches [1–15], it is of tremendous benefit to predict the unknown mass, without
perceiving the information of a road grade.
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Figure 8. Estimation performances for three different road grades based on TruckSim simulation
(6420 kg for (a,b); and 7420 kg for (c,d)).

Furthermore, Figure 9 shows the estimation results of unloaded truck based on two different
actual field test datasets. Figure 9a,c,e indicates the case that the vehicle has been accelerated from 0 to
90 km/h, within 30 s, while Figure 9b,d,f describes the situation where it is exposed to the low speeds
(i.e., from 0 to 30 km/h, for 100 s). Figure 9c,d shows the detection performance for the local convex
minimum of engine torque. Here, the circle dots indicate the detected ones (i.e., satisfying Equation (11)
only), and the circle-asterisk dots are detected and actually used for the Kalman estimation (i.e., defined
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in Equation (16)). As shown in Figure 9e,f, it is found that the errors between estimates and true
ones are respectively 134 and 30 kg. As shown in the results in Figures 6–8, the proposed estimation
strategy mostly takes advantages from the data belonging to the range of low speeds; thus, the driving
scenario shown in Figure 9a hardly produces suitable data to secure a desired performance. In other
words, a particular driving situation may not generate sufficient favorable raw data for the successful
estimation. However, since the case in Figure 9b particularly contains more favorable situation (i.e., low
speeds) for an estimation process, the error becomes insignificant. Furthermore, Figure 10 describes
the estimation results of a fully loaded truck for two different driving scenarios. Estimates tend to be
very similar to those obtained from unloaded trucks. It is apparently exhibited from Figures 9 and 10
that a more accurate estimation can be guaranteed if the data in low-speed regions are presented in the
estimation process. Here, we proposed a new mass estimation method and evaluated its effectiveness.
According to the results presented here, it is found that the performance of the given estimation
approach is beneficial for the situation where the vehicle is exposed to the low-speed region and
degraded otherwise.
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3. Vehicle Longitudinal Velocity Based Mass Estimation

In addition to the new approach discussed in Section 2, this section describes how to estimate
vehicle mass based on the longitudinal vehicle velocity and EKF (Extended Kalman Filter). This
approach can be used under the circumstances where the acceleration of the vehicle is not available for
mass estimation. Here, we do not consider the effect of road grade. Therefore, under the assumption
that the vehicle is driven on the “zero” grade road, discretizing Equation (1) with a sampling time, ∆t,
yields the following:

m
vk − vk−1

∆t
=

Tei1i2η
re f f .

−
1
2
ρCDAvk−1

2
− µmg (25)

where k − 1 and k are the previous time step and the current one.
Rearranging Equation (25) produces the following:

vk = vk−1 +
∆t
m

[
FD.k −

1
2
ρCDAvk−1

2
]
− µg∆t (26)

where FD.k = Tei1i2η/re f f ..
Based on Equation (26), the prediction model for both the velocity and the mass can be derived

as follows:
vk/k−1 = vk−1/k−1 +

∆t
mk−1/k−1

[
FD.k −

1
2
ρCDAvk−1/k−1

2
]
− µg∆t (27)
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mk/k−1 = mk−1/k−1 (28)

Defining estimate state vector as Xk/k−1 =
[

vk/k−1 mk/k−1

]T
∈ <

2×1 and using the Jacobian for
the set of nonlinear system Equations (27) and (28), the error covariance is as follows:

Pk/k−1 = AkPk−1/k−1Ak + Qk ∈ <
2×2 (29)

Ak =

 ∂vk/k−1
∂vk−1/k−1

∂vk/k−1
∂mk−1/k−1

0 1

 ∈ <2×2 (30)

where ∂vk/k−1
∂vk−1/k−1

= 1− ∆tρCDAvk−1/k−1
mk−1/k−1

and ∂vk/k−1
∂mk−1/k−1

= − ∆t
mk−1/k−1

2

[
FD.k −

1
2ρCDAvk−1/k−1

2
]
.

The rest of the procedure for the update is given by the following equations:

yk = zk −HkXk/k−1 = (v)sensor − vk/k−1 (31)

Kk = Pk/k−1Hk
T[HkPk/k−1Hk

T + Rk]
−1
∈ <

2×1 (32)

Xk/k = Xk/k−1 + Kkyk ∈ <
2×1 (33)

Pk/k = (I−KkHk)Pk/k−1 ∈ <
2×2 (34)

where Hk =
[

1 0
]
∈ <

1×2.
The performance of the velocity-based mass estimation approach was evaluated through TruckSim

simulation and actual test data, and the results are presented here. Figure 11 includes the estimated
results for four different situations: 5420, 6420, 7420, and 8420 kg. It is found that the estimates
mutually agree with the actual mass at speeds above 30 km/h, and the deviation between the estimates
and the actual ones with large overshoots can be obviously recognized below 30 km/h. Furthermore,
Figures 12 and 13 show the estimates for actual test data. As predicted by the simulation results in
Figure 11, under the driving scenario where the velocity is below 30 km/h, the estimates never reach the
true ones (see Figures 12a and 13a). However, the outcomes in Figures 12b and 13b exhibit the desired
estimation performances for the circumstance involving high speeds. It is clear that the performance of
this approach is quite opposed to the trend captured by new approach presented in Section 2.
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Speeds; (b) Mass estimates.
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Figure 12. Mass estimation results of V-based approach for two different scenarios based on actual
filed test data (5760 kg). (a) Mass estimate in low speeds; (b) Mass estimate in high speeds.
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Figure 13. Mass estimation results of V-based approach for two different scenarios based on actual
filed test data (9760 kg). (a) Mass estimate in low speeds; (b) Mass estimate in high speeds.

4. Predefined-Particle-Mass-Based Mass Estimation

This study also discusses the “rigorous and brutal (Monte Carlo)” method to use the predefined
mass particles for predicting vehicle mass. Sometimes, the estimation performance of an adaptive
filter, such as the Kalman filter or RLS, is not reliable or robust for the particular cases. However, the
‘Monte Carlo’ style copes well with the complicate estimation problem, although the computational
load is quite consumed. Hence, we have applied this approach to mass estimation in very elementary
but powerful manner.

Again, neglecting Fgrade, Equation (1) becomes the following:

ax.k =
1
m

Fa_net.k − µg (35)

where Fa_net.k = Tei1i2η/re f f . − 0.5ρCDAvk−1
2.

Creating the set of assumed particles for mass, we get the following:

m =
{
mi ∈ <

∣∣∣mi = m0 + ∆m · i, 0 ≤ i ≤ N − 1
}

(36)

where mi, m0, and ∆m are, respectively, the particle mass, base-line mass, and an incremental mass.
Moreover, N is the total number of particles.

Based on the particle masses in Equation (36), the corresponding set of acceleration can be
generated by Equation (35):

ax.k.i =
1

mi
Fa_net.k − µg for 0 ≤ i ≤ N − 1 (37)
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By comparing the sets of acceleration in Equation (37) with the actual acceleration obtained via a
sensor, the most minimum of m can be found for every time step, such that we obtain the following:

ωk.i = (ax.k)sensor − ax.k.i for 0 ≤ i ≤ N − 1 (38)

ik∗ = arg min
0≤i≤N

ωk.i (39)

where ik∗ is the index for the minimum among ωk.i (0 ≤ i ≤ N) for the k-th time step.
For each time step, the estimates of mass are recursively updated by Equation (40):

m̃k =
k− 1

k
m̃k−1 +

1
k
·mik∗ (40)

where mik∗ is a particle mass corresponding to the index ik∗ in Equation (39). The derivation of
Equation (40) is given in the Appendix A.

It should be noted that the computational load of this approach is burdensome, as the number
of particles, mi, increases. However, it should be mentioned that the accuracy of estimation can be
improved by employing a larger number of particles.

The performance of the particle-mass-based estimation approach was discussed here. Figure 14
includes the estimated results for four different cases: 5420, 6420, 7420, and 8420 kg. It is clear that the
estimates mutually agree with the actual ones right above 20 km/h. Furthermore, Figures 15 and 16
show the estimates for both actual tests, unloaded and fully loaded cases. Although we observe
the transient responses, such as peaks and deviations in the low-speed regions from both cases in
Figures 15 and 16, the estimates arrive near the true ones in the range of high speed.
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Figure 15. Mass estimation results of PM-based approach for actual filed test data (5760 kg). (a) Mass
estimates in low speeds; (b) Mass estimates in high speeds.
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5. Recursive Least Square Based Mass Estimation

This section reviews the well-known mass estimation approach, RLS (Recursive Least Square),
and evaluates its performance based on the simulation and actual test.

Disregarding the road grade, according to Equation (1),

Fa_net.k = m(ax.k + µg), (41)

where Fnet.k = Tei1i2η/re f f . − 0.5ρCDAvk−1
2.

The linear regression model for predicting yk = Fa_net.k at the k-th time step is followed by
Equation (42):

yk = ϕk · θk ∈ < (42)

where ϕk = ax.k + µg is a regressor obtained by a sensor (here, µ is assumed to be known), and θk = m
is an unknown parameter to be estimated.

The estimates for the unknown are recursively updated by Equation (43):

Lnew.k =
Pk−1ϕ(k)[

λ+ Pk−1ϕ(k)
2
] ∈ < (43)

Pk = [1− Lnew.k ·ϕ(k)]
Pk−1

λ
∈ < (44)

θk = θk−1 + Lnew.k
[
(Fa_net.k)sensor −ϕ(k)θk−1

]
∈ < (45)

whereλ is a positive forgetting factor, ranging from 0 to 1, and (Fa_net.k)sensor = Tei1i2η/re f f . −0.5ρCDAv2

which is available via CAN data.
The performance of the RLS-based mass estimation approach was explored here. Figure 17 shows

the estimates for 5420, 6420, 7420, and 8420 kg. It is apparently shown that the estimates accomplish
the mutual agreement with the true ones at above 20–30 km/h. Moreover, Figures 18 and 19 describe
the estimates for given actual test data. Like the tendencies of both V-based and PM-based approaches
discussed in the Section 3 through Section 4, predicting the true mass in high speed, the RLS-based
approach presented here shows its excellence in the high-speed region.
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Figure 19. Mass estimates results for two different scenarios (actual filed test data/9760 kg). (a) Mass
estimates in low speeds; (b) Mass estimates in high speeds.

6. Conclusions

This study primary focuses on a new vehicle mass estimation that utilizes the characteristics of
engine torque local convex minimum (where the mass can be estimated based on driving forces and
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longitudinal accelerations only) and deals with other various mass estimation approaches. The new
approach proposed here has the great advantage of estimating vehicle mass without perceiving other
effective resistance forces in the aspect of a pure longitudinal dynamics. In addition, based on both
simulations and actual field tests, it is found that the new method is suitable to predict the vehicle mass
for the situation in which the vehicle is exposed to low speeds. On the other hand, other approaches
(V-based/PM-based/RLS based) demonstrated a better estimation performance when it was involved
with intermediate- and high-speed regions. Therefore, we can suggest that combining the new one
with V-based, PM-based, or RLS-based approaches possibly yields an excellent estimation strategy
to cope with all possible ranges of vehicle speed. This hybrid concept is briefly outlined here and
specified in Figure 20, which logically synthesizes two individually estimated masses according to
the ranges of longitudinal velocity (this will be our next research). Additionally, the simple synthesis
of two individual mass estimates (calculated by msyn = a(v) ·mETQ + b(v) ·mRLS) was illustrated in
Figure 21b, based on two separate estimates (shown in Figure 21a), using a synthesis weight function
in Figure 22. Merging the two distinct estimates via the synthesis weight function, we can obtain the
better estimates in the entire range of vehicle speeds by eliminating the transient part of low-speed
regions. This concept will be thoroughly investigated in our next research study. Finally, it is hoped
that this work can provide insight for one who is majorly concerned with achieving an accurate mass
estimation for a heavy truck, especially for low speed.
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Appendix A

The condition Faero.t. ≈ Faero.t−1. can be made near the local convex minimum of engine torque.
Revisiting Equation (4), we can see the following:

max.t = FD.t − Faero.t. − Fgrade.t − Frolling.t (A1)

Specifically,

max.t =
Tei1i2η

re f f .
−

1
2
ρCDAvx.t

2
− µmgcosθ−mgsinθ (A2)

Assuming that the road grade is close to 0 deg. (i.e., θ = 0), (A2) becomes the following:

max.t =
Tei1i2η

re f f .
−

1
2
ρCDAvx.t

2
− µmg (A3)

Considering the absolute ratio of Equation (A3) for two consecutive times, t − 1 and t are given by
the following equation:

|max.t|

|max.t−1|
=
|ax.t|

|ax.t−1|
=

∣∣∣FD.t −
1
2ρCDAvx.t

2
− µmg

∣∣∣∣∣∣FD.t−1 −
1
2ρCDAvx.t−1

2 − µmg
∣∣∣ (A4)

Here, the subscript t − 1 is the prior moment right before the minimum of convex region, and t is
the time to capture the minimum of convex region, as shown in Figure A1.

At the low-speed regions, the aerodynamic forces 1/2ρCDAvx.t
2 and 1/2ρCDAvx.t−1

2 in
Equation (A4) are insignificant to other forces. Therefore, we get the following:

|ax.t|

|ax.t−1|
=

∣∣∣FD.t −
1
2ρCDAvx.t

2
− µmg

∣∣∣∣∣∣FD.t−1 −
1
2ρCDAvx.t−1

2 − µmg
∣∣∣ ≈

∣∣∣FD.t − µmg
∣∣∣∣∣∣FD.t−1 − µmg
∣∣∣ (A5)
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Since the driving force (i.e., Tei1i2η/re f f .) is proportional to an engine torque, Te, the last part of
Equation (A5) meets the following inequality:

|ax.t|

|ax.t−1|
=

∣∣∣FD.t − µmg
∣∣∣∣∣∣FD.t−1 − µmg
∣∣∣ < 1 (A6)
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On other hand, the accelerations of vehicle at the time steps t − 1 and t are approximated by
the following:

ax.t ≈
vx.t − vx.t−1

∆t
and ax.t−1 ≈

vx.t−1 − vx.t−2

∆t
(A7)

The absolute ratio of two entities in (A7) yields is calculated as follows:

|vx.t − vx.t−1|

|vx.t−1 − vx.t−2|
=
|ax.t∆t|
|ax.t−1∆t|

=
|ax.t|

|ax.t−1|
(A8)

Finally, by combining Equation (A8) with Equation (A6), we can conclude the following:

|ax.t|

|ax.t−1|
=
|vx.t − vx.t−1|

|vx.t−1 − vx.t−2|
=

∣∣∣FD.t − µmg
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∣∣∣ < 1⇒ |vx.t − vx.t−1| < |vx.t−1 − vx.t−2| (A9)

Equation (A9) implies that the velocity difference |vx.t − vx.t−1| at the local convex minimum region
is relatively smaller than other |vx.t−1 − vx.t−2|. Therefore, it is possible that Faero.t. ≈ Faero.t−1. for the time
steps, t − 1 and t, in the local convex.

Moreover, the derivation of (40) is presented here. Considering the average of mass for k − 1th
and kth time step, we get the following:

m̃k =
∑k

j=1
m j

N j

k
and m̃k−1 =

∑k−1

j=1
m j

N j

k− 1
(A10)

Subtracting one from another yields the following:

m̃k − m̃k−1 =
∑k

j=1
m j

N j

k
−

∑k−1

j=1
m j

N j

k− 1
(A11)

Consequently,

m̃k − m̃k−1 =
∑k−1

j=1
m j

N j

k
+ mk

1
k
−

∑k−1

j=1
m j

N j

k− 1
(A12)

m̃k − m̃k−1 =
[1

k
−

1
k− 1

]∑k−1

j=1
m jN j + mk

1
k

(A13)
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m̃k − m̃k−1 = −
[1

k

]∑k−1

j=1
m j

N j

k− 1
+ mk

1
k

(A14)

m̃k =

[
k− 1

k

]
m̃k−1 + mk

1
k

(A15)

References

1. Vahidi, A.; Druzhinina, M.; Stefanopoulou, A.; Peng, H. Simultaneous Mass and Time-Varying Grade
Estimation for Heavy-Duty Vehicles. In Proceedings of the American Control Conference, Denver, CO, USA,
4–6 June 2003.

2. Vahidi, A.; Stefanopoulou, A.; Peng, H. Recursive least squares with forgetting for online estimation of
vehicle mass and road grade: Theory and experiments. Veh. Syst. Dyn. 2005, 43, 31–55. [CrossRef]

3. Feng, Y.; Xiong, L.; Yu, Z.; Qu, T. Recursive least square vehicle mass estimation based on acceleration
partition. Chin. J. Mech. Eng. 2014, 27, 448–459. [CrossRef]

4. Eriksson, A. Implementation and Evaluation of a Mass Estimation Algorithm. Master’s Thesis, Kungliga
Tekniska Högskolan, Stockholm, Sweden, 2009.

5. Fathy, H.K.; Kang, D.; Stein, J.L. Online Vehicle Mass Estimation Using Recursive Least Squares and
Supervisory Data Extraction. In Proceedings of the American Control Conference, Seattle, WA, USA,
11–13 June 2008.

6. Altmannshofer, S.; Endisch, C. Robust Vehicle Mass and Driving Resistance Estimation. In Proceedings of
the American Control Conference Boston Marriott Copley Place, Boston, MA, USA, 6–8 July 2016.

7. Ghosh, J.; Foulard, S.; Fietzek, R. Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer; SAE
Technical Paper 2017-01-1590; SAE: Warrendale, PA, USA, 2017.

8. Mahyuddin, M.N.; Na, J.; Herrmann, G.; Ren, X.; Barber, P. Adaptive observer-based parameter estimation
with application to road gradient and vehicle mass estimation. IEEE Trans. Ind. Electron. 2014, 61, 2851–2863.
[CrossRef]

9. Sun, Y.; Li, L.; Yan, B.; Yang, C.; Tang, G. A hybrid algorithm combining EKF and RLS in synchronous
estimation of road grade and vehicle’ mass for a hybrid electric bus. Mech. Syst. Signal Process. 2016, 68–69,
416–430. [CrossRef]

10. Kidambi, N.; Harne, R.L.; Fujii, Y.; Pietron, G.M.; Wang, K.W. Methods in Vehicle Mass and Road Grade
Estimation. SAE Int. J. Passeng. Cars Mech. Syst. 2014, 7, 981–991. [CrossRef]

11. Mcintyre, M.L.; Ghotikar, T.J.; Vahidi, A.; Song, X.; Dawson, D.M. A two-stage lyapunov-based estimator for
estimation of vehicle mass and road grade. IEEE Trans. Veh. Technol. 2009, 58, 3177–3185. [CrossRef]

12. Wang, Z.; Qin, Y.; Gu, L.; Dong, M. Vehicle System State Estimation Based on Adaptive Unscented Kalman
Filtering Combing with Road Classification. IEEE Access 2017, 5, 27786–27799. [CrossRef]

13. Kim, S.; Shin, K.; Yoo, C.; Huh, K. Development of algorithms for commercial vehicle mass and road grade
estimation. Int. J. Automot. Technol. 2017, 18, 1077–1083. [CrossRef]

14. Lei, Y.; Fu, Y.; Liu, K.; Zeng, H.; Zhang, Y. Vehicle mass and road grade estimation based on extended kalman
filter. Trans. Chin. Soc. Agric. Mach. 2014, 45, 9–13.

15. Miller, E.; Konan, A.; Duran, A. Bayesian Parameter Estimation for Heavy-Duty Vehicles; SAE Technical Paper
2017-01-0528; SAE: Warrendale, PA, USA, 2017. [CrossRef]

16. Bae, H.S.; Ryu, J.; Gerdes, J.C. Road Grade and Vehicle Parameter Estimation for Longitudinal Control Using
GPS. In Proceedings of the IEEE Conference on Intelligent Transportation Systems, Oakland, CA, USA,
25–29 August 2001.

17. McKay, T.R.; Salvaggio, C.; Faulring, J.W.; Sweeney, G.D. Sweeney, Remotely detected vehicle mass from
engine torque-induced frame twisting. Opt. Eng. 2017, 56, 063101. [CrossRef]

18. Lin, N.; Zong, C.; Shi, S. The Method of Mass Estimation Considering System Error in Vehicle Longitudinal
Dynamics. Energies 2019, 12, 52. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00423110412331290446
http://dx.doi.org/10.3901/CJME.2014.03.448
http://dx.doi.org/10.1109/TIE.2013.2276020
http://dx.doi.org/10.1016/j.ymssp.2015.08.015
http://dx.doi.org/10.4271/2014-01-0111
http://dx.doi.org/10.1109/TVT.2009.2014385
http://dx.doi.org/10.1109/ACCESS.2017.2771204
http://dx.doi.org/10.1007/s12239-017-0105-6
http://dx.doi.org/10.4271/2017-01-0528
http://dx.doi.org/10.1117/1.OE.56.6.063101
http://dx.doi.org/10.3390/en12010052
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Vehicle Mass Estimation Using the Characteristics of Engine Torque 
	Extraction of Multiple Local Convex Region from Engine Torque Data 
	Kalman-Filter-Based Mass Estimation 
	Simulation and Actual Test-Data-Based Estimation Results 

	Vehicle Longitudinal Velocity Based Mass Estimation 
	Predefined-Particle-Mass-Based Mass Estimation 
	Recursive Least Square Based Mass Estimation 
	Conclusions 
	
	References

