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Abstract: European buildings are producing a massive amount of data from a wide spectrum of
energy-related sources, such as smart meters’ data, sensors and other Internet of things devices,
creating new research challenges. In this context, the aim of this paper is to present a high-level
data-driven architecture for buildings data exchange, management and real-time processing.
This multi-disciplinary big data environment enables the integration of cross-domain data, combined
with emerging artificial intelligence algorithms and distributed ledgers technology. Semantically
enhanced, interlinked and multilingual repositories of heterogeneous types of data are coupled with
a set of visualization, querying and exploration tools, suitable application programming interfaces
(APIs) for data exchange, as well as a suite of configurable and ready-to-use analytical components that
implement a series of advanced machine learning and deep learning algorithms. The results from the
pilot application of the proposed framework are presented and discussed. The data-driven architecture
enables reliable and effective policymaking, as well as supports the creation and exploitation of
innovative energy efficiency services through the utilization of a wide variety of data, for the effective
operation of buildings.

Keywords: big data; energy management; energy-efficient buildings; data-driven architecture;
decision support; energy services

1. Introduction

As the world’s urban population increases by more than 2.5 billion, especially to urban areas by
2050, the construction of new, energy-efficient buildings and cities will be essential to the transformation
of the economy [1]. Moreover, the building and construction sector must decarbonize by 2050 to meet
the goals of the Paris Agreement [2,3].

The current energy performance of the building sector is poor [4]. In the European Union (EU),
with buildings accounting for nearly 40% of its energy consumption, the building sector should play a
key role in effective climate policy [5,6]. A number of European directives and initiatives are setting
strict objectives on member states, such as the Energy Performance of Buildings Directive (EPBD) [7],
the Energy Efficiency Directive [8] and the amending Directive on Energy Efficiency as part of the ‘Clean
energy for all Europeans package’ [9], as well as the ecodesign directive [10] and the energy labelling
regulation [11], providing consistent EU-wide rules for improving the environmental performance of
products (e.g., household appliances) [12].

The needs for a variety of buildings value chain (BVC) stakeholders should be seamless integrated
within a comprehensive energy transition framework, in order to guarantee its sustainability and
resilience along the buildings’ life cycle (from its conceptualization to its refurbishment or demolition).
Energy is consumed at each of these buildings’ steps, sometimes is locally generated at prosumer
level and can be analyzed from different perspectives or scales (building, district, city, regional or
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national scale), depending on the level of granularity required and the BVC stakeholder that should
be involved.

The constantly increasing momentum of big data and their related technologies constitutes an
unprecedented market opportunity for improving the energy efficiency along the building sector
and its lifecycle and for better managing energy consumption and generation at building level.
More and more data are being generated within buildings nowadays, due to the increasing adoption
of leading-edge information and communication technologies (ICTs), such as Internet of things
(IoT), artificial intelligence (AI), distributed ledger technology (DLT)/blockchain and big data; hence,
contributing to move forward towards a smart building landscape [13].

Buildings data are heterogeneous, often dispersed in non-interoperable silos, with varying
resolution, mostly asynchronous and are stored in different formats (raw or processed) at various
locations [14]. Individual devices and functional units generate thousands of terabytes data annually
and building-related stakeholders must handle millions of terabytes of data [15], which continues to
increase over time. Accordingly, next generation building management systems will be processing
overwhelming amounts of heterogeneous data. Appropriate management of buildings data clearly
requires a big data original approach where it becomes necessary to process large volume and varieties
of both real-time and historical data to extract meaningful information in order to make data-driven
decisions [16].

These trends—combined with AI, namely the new ‘engine’ of the Fourth Industrial Revolution and
IoT infrastructure management enablers—constitute a catalyst towards conceptualizing and generating
innovative applications and services for energy management and energy-efficient buildings. It becomes
of utmost importance to create an open interoperable scalable data-driven framework [17] able to
manage in a fully scalable and interoperable way the implementation of policy objectives—hence
to generate win-win situations—which may enable the adoption of novel business models by
buildings-related existing stakeholders and/or opening up new opportunities for BVC stakeholders.

The aim of this paper is to present a high-level data-driven architecture for buildings data exchange,
management and real-time processing. This multi-disciplinary big data environment enables the
integration of cross-domain data, combined with emerging AI algorithms and distributed ledgers
technology. Semantically enhanced, interlinked and multilingual repositories of heterogeneous types
of data are coupled with a set of visualization, querying and exploration tools, suitable application
programming interfaces (APIs) for data exchange, as well as a suite of configurable and ready-to-use
analytical components that implement a series of advanced machine learning (ML) and deep learning
(DL) algorithms. The results from the pilot application of the proposed framework are presented
and discussed. The collected data can be processed to create different business cases considering the
interaction of different stakeholders and scales. More specifically, the data-driven architecture enables
reliable and effective policymaking, as well as support the creation of innovative applications through
the utilization of a wide variety of data, for the safe and effective operation of buildings.

The rest of the paper is organized as follows. In Section 2, a literature review is presented
concerning the exploitation of big data technologies in energy, smart grid and building domain.
In Section 3, the high-level data-driven architecture for buildings is thoroughly presented. Section 4 is
devoted to the pilot application. In Section 5, innovative energy efficiency applications related to the
buildings sector and its lifecycle are described. In Section 6, the contributions and conclusions of the
current study are discussed respectively.

2. Scalable Big Data Management

Data processing through ML techniques are fundamental for the data analytics aiming to improve
the accuracy of the developed algorithms and systems based on intelligent adaptive systems [18].
It leverages on a variety of ML, statistical and AI-based algorithms and models, including clustering,
correlation, classification, categorization, regression, feature extraction, with a view to extract valuable
yet actionable information from the dataset [19,20] and enable informed decision-making.
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ML techniques are further classified into supervised, unsupervised, semi-supervised and
reinforcement learning techniques based on the nature of the learning "signal" or "feedback" available
to a learning system. Most big data analytics and AI techniques for smart buildings are based on
conventional (supervised or unsupervised) ML/DL algorithms, which operate in a context specific way
and hence do not provide enough support for cross-stakeholder transfer learning, AI-based learning
models reusability and fast cross-domain applications adaptation [21].

Supervised learning includes Bayesian classification methods, regression techniques, lazy learners,
decision trees and support vector machines. These methods have been used in analyzing building
operational data [22,23], for short, medium and long-term energy prediction in distinct building
environment [24]. To accurately capture the complicated relationships between input and output
variables, the supervised learning techniques adopted are typically of high complexity, such as artificial
neural networks [25], deep neural networks [26], support vector machines [27,28] and decision-tree
based ensembles [29,30]. For buildings with complex and unstable occupancy schedules and energy
use patterns, multiple linear regression and support vector machine methods can achieve a high
accuracy with fast computation speed [31].

In the past, smart grid, smart buildings and big data are usually reported separately and the
analysis of the big data in smart grid / buildings is rarely reported. Zhou et al. reviewed the big
data-driven smart energy management which mainly illustrates the architecture and industrial applied
energy management tools [32]. Support vector machines have been used as well for fault detection
in power grids [33]. Moreover, research projects have investigated ML methods with supervised
techniques for wind turbines power generation [34,35].

Unsupervised learning explores the intrinsic data structures, associations and correlations.
Miller et al. [36] and Fan et al. [37] presented a review of unsupervised data analytics for building
energy performance big data. The research of Lapalu et al. focused on the unsupervised mining of
activities for smart home prediction [38]. Unsupervised ML algorithms for developing personalized
behavior models using activity data have been presented [39]. dynamic programming, Monte Carlo
methods and temporal difference methods can be exploited for solving a reinforcement learning
problem. In semi-supervised learning, learning accuracy is improved by combining large amount of
labelled data with a typically small amount of unlabeled data. Semi-supervised energy modelling for
smart buildings / homes was used [40,41].

Supervised learning and training of ML algorithms is a very challenging process as building
managers and stakeholders are reluctant to share data, which are necessary to train ML algorithms.
If not properly handed, ML models may reveal inappropriate details of the sensitive data, since
models are known to implicitly memorize details during training and inadvertently reveal them during
inference [42,43]. A solution to the problem is to adopt differential privacy, which is considered as
the by default standard in privacy preserving ML modelling. The first learning algorithms adapted
to provide differential privacy with respect to their training data were often linear and convex [44].
More recently, successful developments in deep learning called for differentially private stochastic
gradient descent algorithms, some of which have been tailored to learn in federated settings [45].
Differentially private selection mechanisms like GNMax [46] are commonly used in hypothesis testing,
frequent item set mining and as building blocks of more complicated private mechanisms.

In the domain of buildings, different tools exist for energy performance assessment and prediction
as well as for buildings simulation [47]. On the one hand, tools like Leap [48] and AleaSoft [49]
include a limited set of AI methods, which rely on expert knowledge to ensure appropriate use.
On the other hand, simulation tools are used to model different aspects of building management
like building physics; thermal building models; heating, ventilation and air conditioning (HVAC)
systems or building control systems use typically static data and do not allow integration of dynamic
information [50]. Another important aspect is that buildings data analytics at the moment include
mostly descriptive and diagnostic models, hence very few predictive and prescriptive applications
have been made available.
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As the key objective of data analytics is to provide preventive solution, predictive models become
more and more necessary to forecast operating conditions and future decisions [51]. Prescriptive
analysis, on the other hand, are designed for providing longer term insights to utilities in making
strategic operational and investment planning.

The challenges that also arises here, is the fact that training data-driven models needs a considerable
amount of data and can take time to converge to an optimal policy [22]. Cross-context transfer learning
is explored as a solution, aiming to minimize number of days of training data needed to achieve a policy
with a certain accuracy. In that respect, there are some initial attempts to utilize transfer learning in the
smart energy domain, in particular addressing the problem of building energy consumption [52,53].
On the other hand, forecasting algorithms are often based on static predictive modelling which leverage
on AI-based learning and are not able to capture and assess when a given model is not anymore able to
capture the modelled context and/or to reconstruct the missing and/or poor data quality.

3. High-Level Architecture for Building Data

The proposed framework relies on a decentralized architecture, where data are stored locally at
“building-edge” layer and are exposed in a privacy-aware manner at the AI layer run in a centralized
cloud. This hybrid approach is expected to increase trust in data sharing among stakeholders and
subsequently increase models’ accuracy by raising the amounts of data available for AI-based learning.

The high-level architecture is presented in Figure 1.

Energies 2020, 13, x FOR PEER REVIEW 4 of 18 

 

mostly descriptive and diagnostic models, hence very few predictive and prescriptive applications 

have been made available. 

As the key objective of data analytics is to provide preventive solution, predictive models 

become more and more necessary to forecast operating conditions and future decisions [51]. 

Prescriptive analysis, on the other hand, are designed for providing longer term insights to utilities 

in making strategic operational and investment planning. 

The challenges that also arises here, is the fact that training data-driven models needs a 

considerable amount of data and can take time to converge to an optimal policy [22]. Cross-context 

transfer learning is explored as a solution, aiming to minimize number of days of training data 

needed to achieve a policy with a certain accuracy. In that respect, there are some initial attempts to 

utilize transfer learning in the smart energy domain, in particular addressing the problem of building 

energy consumption [52,53]. On the other hand, forecasting algorithms are often based on static 

predictive modelling which leverage on AI-based learning and are not able to capture and assess 

when a given model is not anymore able to capture the modelled context and/or to reconstruct the 

missing and/or poor data quality. 

3. High-Level Architecture for Building Data 

The proposed framework relies on a decentralized architecture, where data are stored locally at 

“building-edge” layer and are exposed in a privacy-aware manner at the AI layer run in a centralized 

cloud. This hybrid approach is expected to increase trust in data sharing among stakeholders and 

subsequently increase models’ accuracy by raising the amounts of data available for AI-based 

learning.  

The high-level architecture is presented in Figure 1. 

 

Figure 1. High-level data-driven architecture for buildings. 

This distributed scalable data governance module facilitates data sharing among building 

stakeholders to maximize the value of AI-based analytics at upper layers. More specifically, the 

proposed framework consists of three main pillars:  

Figure 1. High-level data-driven architecture for buildings.

This distributed scalable data governance module facilitates data sharing among building
stakeholders to maximize the value of AI-based analytics at upper layers. More specifically, the
proposed framework consists of three main pillars:

1. The Governance Layer, encompassing modules related to data collection, semantic annotation
and distributed storage.

2. The Processing Layer, including ML and DL models.
3. The Analytics Layer, providing a set of analytics tools.
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The aim is to increase accuracy of AI-based services for buildings, by training a large set of ML/DL
models utilizing a rich data set of heterogeneous dispersed static and dynamic data and enable data
analysis and visualization as well as scenario analysis and simulation at different scales in time and
geographical level addressing needs from different stakeholders.

3.1. Infrastructure/Asset/Components

A large share of big data is related to energy consumption and production data in buildings.
Moreover, off-domain data, such as EC databases (e.g., EU Building Stock Observatory, De-risking
Energy Efficiency Platform, EU Energy Poverty Observatory, etc.), building stock auditing, energy
performance certificates, energy performance contracts, weather and climate data, geometry data
(e.g., from building information modelling), geographical imagery, multimedia unstructured data
sources, financial data on energy efficiency investments, socioeconomic data, social media, energy
end-user’s characteristics and comfort levels, etc. whereas suitably integrated, may allow novel energy
analytics to provide BVC stakeholders with more robust actionable insights, as well as to enable
analytics driven improved decision-making.

A wide range of data analysis techniques (including among others optimization, forecasting,
classification and clustering) can be applied on the aforementioned amounts of (big) data, supporting the
design of new data-driven applications for BVC stakeholders, such as national and local governments,
network operators and suppliers, energy service companies (ESCOs), building managers and facilitators,
construction and renovation sector, investors and financiers, policy makers and researchers.

Data are provided through suitable data service providers. Connectors encapsulate the capability
of federating interoperable data sets and/or interoperable data platforms. External off-grid data sets
and resources may be federated and integrated, including weather data, etc.

3.2. Data Services and Semantic Enrichment

The data services and semantic enrichment (governance) layer provides the necessary middleware
to act as a mediator between data users (applications and tools) and data providers who may
want to decide case by case whether to disclose their data or not. State of the art solutions
(i.e., blockchain/DLT/smart contracts with off-chain data) are used to guarantee traceability, provenance
tracking and accountability. The components at the governance layer allow the integration,
pre-processing, semantic annotation and querying of heterogeneous data. It integrates the following
main components related to data and semantic interoperability:

• At the bottom, an interoperability service module is in charge of facilitating data sharing from
different sources and/or platforms belonging to different actors in the energy and non-energy
ecosystem, such as smart meters, sensors, IoT devices, building management systems (BMSs),
systems (TBMs), building automation and control systems (BACs), energy performance contracts,
energy performance certificates, legacy systems. It is based on open standards, open APIs
(e.g., NGSI-LD CIM APIs [54]) and open data models (e.g., FIWARE Smart Energy Reference
Architecture [55], Building Information Modeling (BIM) [56], Smart Appliances REFerence
(SAREF) [57]). Interfaces to other third-party energy and non-energy datasets/data platforms
willing to federate/integrate with the proposed framework are provided, with a view to allowing
the incremental population of the platform’s data hub.

• Data Cleansing Curation and Formatting Module is an umbrella term for tasks that span from
simple data pre-processing, such as restructuring, predefined value substitutions and reformatting
of fields (e.g., dates) to more advanced processes, such as outliers’ detection and elimination
from a dataset, data inconsistencies handling and noise reduction. To better organize the data
collected and facilitate their future use, special ML pre-processing algorithms are developed for
automatically cleansing and formatting it. This includes algorithms for normalizing their values,
handling possible outliers, filling missing observations and dealing with different timestamp
formats. The abovementioned algorithms take into consideration the particular characteristics of
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the data examined, such as their frequency, trend, seasonality, cycle, randomness and empirical
distribution, enhancing that way the quality and the content of the constructed dataset, decreasing
simultaneously the time required for training the algorithms of the toolbox and boosting their
expected performance.

• Access Policy and Anonymization Module: The proposed framework incorporates enforcement
policies mechanisms for data access policy brokerage, hence allowing to address and
programmatically encapsulate (via DLT/smart contracts) specialized and context-based data
hubs access policies brokerage. In order to be able to handle datasets containing sensitive
information, this module also performs anonymization on the data ingestion process to protect
this information, by either complete data removal-suppression, generalization or pseudonymity.

• Data Capturing and Streaming Module aimed to manage dynamically the frequency rate of the
data streaming for the subsequent in-memory processing of the high latency near real time data.
Such component could be tightly connected to the performance of some analytics.

• Data Semantic Enrichment Module is responsible for the semantic annotation and enrichment
of data to facilitate their processing at upper analytics layers. Semantic enrichment uses
well-established vocabularies and schemas related to the domains of energy, buildings, weather
and climate, sensors network (e.g., SAREF4Building [58], BRICK schema [59], HAYSTACK [60],
IFC [61], BACnet [62], LonMark [63]). The Common Data Model serves data interoperability by
ensuring that all data processed by the system adhere to the same standards of semantics based
on a common set of terms, concepts and relations across different data sources.

• On top of the data integration and semantic enrichment components, the platform enables easy
access and querying of data to be exposed in upper analytics layer:

• Reasoning Engine—A Graph Database technology (i.e., AllegroGraph) can be used as a triplestore in
order to persist the dataset semantics and any Resource Description Framework (RDF) information
produced by the Semantic Enrichment Module. On top of that, a Semantic Reasoning Engine, such
as PoolParty Semantic Classifier, Jena or BaseVisor is going to enable the application of semantic
queries on the triplestore to retrieve the semantic information and improve the performance of
reasoning operations to extract new insights. This component exposes intelligent querying and
search capabilities as API to the Virtual Workbench or directly feeds UI and recommender engines
supporting the analytics for designing and developing buildings and related infrastructure.

• Distributed Query Engine: The data retrieval from the distributed data warehouse is performed
by utilizing a high-performance distributed query execution engine, like Presto, Tez or Apache
Druid while also utilizing column-oriented approaches like MonetDB for handling the analytics
workload. Such engines provide the ability to perform complex queries on a distributed Data Lake
in very efficient and high-scalable way. The distributed query execution over a pure memory-based
architecture allows the fast generation of the result-sets required from the analytical processes.

3.3. Big Data Management and AI Services

The Big data management and AI services (Processing) Layer provides a library of reusable
AI-based ML/DL models that are made available with a view to promote quick adaptation and reuse of
ML models along different contexts. The following functional modules are included:

• Classification of data sources: In order for the AI-based analytics to be meaningful, accurate and
easy to construct, their input variables have to be highly correlated and refer to the same time,
place and application. For instance, when constructing a model for predicting the hourly energy
produced by a Photovoltaic (PV) system, the weather forecasts exploited, such as radiation and
temperature forecasts, must all be easy to track and refer to the same geographic location and time.
Given the size and the diversity of the data present, retrieving the most relevant variables becomes
a challenging problem, especially for cases of semi-structured or completely unstructured data.
To deal with this problem, special ML algorithms are exploited to effectively classify the data
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available in terms of domain, type, location, time and frequency. These algorithms consider Natural
Language Processing and Sentiment Analysis techniques to effectively process the description
and the labels provided for each variable and classify them in representative classes based on their
content (domain, type and location). The timestamp being available is also be processed to extract
additional valuable information (frequency and time) and introduce further filters (sub-classes)
that can improve the categorization of the available data and facilitate modelling.

• Dimension reduction: Identifying the most appropriate variables for solving a regression,
classification or clustering problem is a complicated task, especially when lots and diverse data
are present. To cope with this issue, dimension reduction ML algorithms are used to enable
the identification and creation of principal variables, either through feature selection or feature
extraction approaches. Such algorithms have been proven particularly effective when constructing
deep learning models that effectively extract information from large unstructured datasets and
provide solutions in a completely unsupervised way. For instance, Convolution Neural Networks
can be exploited to minimize the pre-processing required for training other ML algorithms, filter
and clear the raw information provided and boost the final performance of the algorithms.

• Training and validation: In order to make sure that the developed algorithms will be accurate and
robust and mitigate the uncertainty present in the whole modelling process, the adoption of proper
training and validation procedures becomes a prerequisite. Depending on the problem examined
and the algorithms tested, different procedures and measures for assessing the performance of
the available alternatives might be required. In this respect, the proposed framework involves a
variety of training and evaluation procedures, as well as advanced criteria for selecting the most
appropriate one per case. Simple holdout tests, cross-validation and random sampling are just
some examples of the validation procedures that are considered, while Classification Accuracy,
Logarithmic Loss, Confusion Matrix, F1 Score and Mean Absolute/Squared Error some of the
indicative performance measures that will accompany them. Note that the type of the problem
being solved (supervised or unsupervised learning / classification, regression or clustering), the
size of the sample data and the objectives of the algorithm (accuracy vs. efficiency) is also taken
into consideration for performing an incremental analysis and determining the selections made.
Moreover, different hyper parameters are examined for each one of the considered algorithms and
the most successive ones are adopted per case to maximize their potential and ensure that they
are properly optimized for the particular training dataset.

• Library of ML algorithms: The Processing Layer provides a variety of advanced ML algorithms
that are supported by diverse and multiple data to support, in a smart way, complex decisions
related to energy management and energy-efficient services. The aim of these services is to
enhance energy systems’ reliability and robustness, mitigate the effect of critical events and power
unavailability, improve the profit-loss function of the power generation units, perform proactive
analytics to track buildings’ performance and decrease the risk of malfunctions and deterioration,
interact and exchange data between different power generation units to provide smart energy
solutions at local level, provide accurate power & capacity forecasting and planning, exploit
smart meter data to enhance energy conservation and promote efficiency, improve energy storage
options and finally, provide powerful descriptive analytics and evaluations. Each algorithm has
different data import requirements, pre-defined based on the type of decision support problem
being supported. However, these requirements are as abstract and generalized as possible, in
order to enable their direct utilization from the majority of the users and parties interested in
their exploitation.

• Model Serving Module: It includes the set of the developed and trained models and constitutes
the building block of the upper layer. These models are fed with both batch and streaming data
coming from the Query Engine and the Data Streaming Module respectively. The models will be
evaluated and refined over several iterations until will be finally used (served).
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3.4. Big Data Analytics Toolbox for Buildings

The Big Data Analytics Toolbox for Buildings (Analytics) Layer exposes AI-based analytics services
to multiple BVC stakeholders, incorporating the following components:

• A Visualizations and Reports Engine, responsible for the visual representation of the stored
data and the results produced from the analytical components. It offers a variety of visual
representations including charts and map visualizations, based on specific Key Performance
Indicators (KPIs).

• A range of innovative Analytics Building Services, such as: (1) Analytics for energy
performance—indoor condition evaluation and intelligent energy management; (2) Analytics for
building systems and infrastructure; (3) Analytics for policy making and policy impact assessment
on building level; (4) Analytics for building efficiency investments.

• A ‘virtual workbench’, to incorporate a variety of assets, including data, third party services,
ML models, computing resources, storage resources as tradable assets. It provides a set of tools
targeting Small-Medium Enterprises (SMEs), developers, researchers and potential innovators,
who design and develop new applications for the buildings sector. The tools at this level constitute
a set of APIs exposing the ML/DL models and data to be tailored on specific circumstances and
context provided by the users.

3.5. Cyber Security and Data Privacy

To establish user authentication and authorization, to secure the non-open data of the transactions
as well as to comply with the European Commission (EC) regulations on Data Protection (GDPR) and
finally, for logging user actions and system events, a security layer is necessary that is vertical in the
proposed architecture, in the sense that it spans and interacts with several building blocks of the latter.

4. Case Study: Scheduling the PV Maintenance

4.1. Methodological Approach

This section presents a case study for the scheduling of the photovoltaic (PV) maintenance,
introducing a decision support systems (DSS) tool. PV maintenance tools are necessary for the
optimization of the return-on-investment and minimization of time to warranty claim in PV installations.
Novel solutions for fault prediction based on data-driven approaches can contribute to the cost-effective
energy management of the buildings. To this end, a decision support tool was developed, aiming at
the monitoring of the PV performance and triggering maintenance actions.

The energy produced by the PV plant is intermittent and is highly dependent on a number of
variables, such as solar irradiance, temperature and other atmospheric parameters (e.g., humidity
and cloud coverage), as well as age of the equipment and operational condition [64]. According to
the literature, there are numerous applications of multiple linear regression (MLR) models for energy
production forecasting, such as hourly PV production estimation [65]. In this context, an MLR model
was adopted, to predict the PV production (ŷ), considering the relation among different variables (xi):

ŷ = ax1 + bx2 + . . .+ kxi + . . .+ xp = y + ε ⇒ ε = ŷ− y (1)

This means that ε will be the deviation between the predicted (ŷ) and actual (y) PV production.
In order to further improve the forecasting performance of the model we calculated 24 different models,
one for each hour of the day [66]. In this regard, we took into consideration more effectively the
particularities of each hour and season.
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4.2. Pilot Appraisal

The presented DSS tool was applied to the campus of Savona, Italy. It closely resembles any
urban district, since it hosts (a) educational buildings, such as offices, classrooms and laboratories;
(b) research centers; (c) private companies; (d) student residences. The smart polygeneration microgrid
contributes to the operation of its electrical and thermal systems [67]. Thanks to this infrastructure, the
site may be considered an example of a “smart urban district”, equipped with distributed generations,
local control and supervision infrastructures [68].

4.2.1. Infrastructure/Asset/Components

The microgrid supervisory control and data acquisition (SCADA) system is used to share
information with the DSS tool via an ftp connection. More specifically, the following weather
forecasting information is acquired on daily basis: outdoor temperature, relative humidity, pressure,
global radiation and rainfall. In addition, the following data streams are shared (Figure 2): Actual solar
radiation; electrical power produced by the PV field; electrical power produced by the grid connected
microturbine; electrical power produced by the dual mode microturbine; thermal power produced by
the grid connected microturbine; thermal power produced by the dual mode microturbine; electrical
power exchanged by the storage; electrical power exchanged with the external network; thermal power
from the boilers; chiller thermal power in input and in output.Energies 2020, 13, x FOR PEER REVIEW 10 of 18 
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4.2.2. Data Governance and Processing

Given that PV production and weather data were collected without any problems worth
mentioning, we exploited a sample of 12 months to analyze energy production. The production was
not standard as it strongly depended on the radiation levels in the field. The mean PV production of
the campus for each hour of the day was also analyzed. Production began to increase at around 7:00
and reaches a peak at 14:00. After this point, production was reduced until sunset, when it reached a
value of zero. In this respect, 15 MLR models were calculated (from 7:00 to 20:59). From 21:00 to 6:59
energy production was not detected and the corresponding prediction values were set to zero.

The estimation of the expected energy to be produced by the PV plant at 07:00–07:59
(PVprod(07:00−07:59)), 16:00–16:59 (PVprod(16:00–16:59)) and 18:00–18:59 (PVprod(18:00–18:59)) is given by
the following formulas:

PVprod(07:00–07:59) = Constant + a ∗ Solar Radiation + b ∗ Solar Radiation2 (2)

PVprod(16:00–16:59) = Constant + a ∗ Solar Radiation + b ∗ SolarRadiation2 + c ∗Humidity (3)



Energies 2020, 13, 1555 10 of 18

PVprod(18:00–18:59) = Constant + a ∗Month + b ∗ Temperature + c ∗Humidity + d
∗SolarRadiation + e ∗Dewpoint + f ∗ SolarRadiation2 (4)

The parameters (a–f) are calculated by linearly correlating the radiation and humidity values with
these of the PV production measured. The polynomial form of the models was chosen to enable its fit
to non-linear patterns and make it more flexible to temporal changes. The regression coefficients of the
MLR models were re-estimated periodically (every two months) using an automated process.

A data-cleansing approach was implemented before the coefficients of the MLR models were
calculated. The removal of the outliers, high leverage points through standardized residuals and the
calculation of the Cook’s distance to the observations were included [69]. Finally, the collinearity and
the p-values/F-statistic were checked, and additional adjustments were performed as necessary.

4.2.3. Data Analytics

Using the DSS tool, an actual action is required by the user (energy manager) only when an
alarm is triggered, due to a detected anomaly in the produced energy values. The proposed approach
provides 95% accuracy, when a deviation (ε) between predicted (ŷ) and actual (y) values is detected
and exceeds the 5% accepted error. Then, an alarm should be sent by the system, in order to notify the
user of the possible need for maintenance of the PV system.

The modelling and the whole forecasting procedure were performed using the R software platform.
R is a software environment and programming language focusing on data manipulation, calculation
and graphical display such as (linear and nonlinear modelling, classical statistical tests, time-series
analysis, classification, clustering, etc.).

4.2.4. Results

Starting from April 2016, the DSS tool was available for the campus. For instance, at the end of
June 2016, when an alarm was triggered for the campus PV, the user verified that an actual problem
affected the system (in particular, the inverter connecting it to the network) by inspecting the values of
the power produced by the PV, which are logged in the microgrid SCADA; the behavior of the power
over time evidenced that the system kept going off-line and restarting due to a fault in the inverter
controller, thus causing the loss of generated energy (Figure 3). In this respect, the user contacted the
inverter maintenance service to solve this malfunction.

The DSS tool has a diagnostic nature, so its impact can be evaluated only in terms of avoided
costs or avoided loss of production. For instance, if the problem affecting the PV inverter was not
detected, supposing a daily production of about 300 kWh for that period and a reduction of the 50%
due to the problem, a loss of about 150 kWh per day would have occurred. The DSS tool intervention
prevented an energy loss of about half the PV production per day. An unmeasurable outcome is how
the managers of the installation run it. For example, within the implementation of the PV maintenance
the DSS users have significantly reduced the visits to the PV installation to check the operation of the
panels for possible errors.
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5. Enabling Data-Driven Applications and Services for Buildings

This multi-scale and multi-stakeholder approach, presented in Section 3, can enable the
development of data-driven applications and services for any stakeholder involved in the BVC.

5.1. Data-Driven Management of Self-Production Systems in Energy Communities

Nowadays, some prosumers have access to data regarding the production of energy from their
Renewable Energy System (RES) self-consumption system and know what they are consuming from
the grid [70]. However, they do not have tools where they can match that data or analyze it or
receive indications on how to better management their energy consumption in accordance with their
production. Energy cooperatives also have members which are in energy poverty and do not know
what they can do to tackle that problem; in general, all members want to have more information on
energy savings [71].

In this context, new applications can be provided to cross data coming from smart meters and
from energy bills with the data from energy performance certificates. With this crossing tools, it will be
possible to match the real consumption of electricity with the energy performance certificate, which are
geo-referenced. More specifically, the aim is to support members of an energy cooperative to better
manage their self-production system (for prosumers) and to improve the energy performance of the
households (for the members with supplier contract).

The outcomes of these tools could also be used by municipalities to better identify people in
energy poverty and to realize how they could help them to tackle that issue. Policy makers could also
use these tools to understand how energy poverty is more located in the country due to the analysis of
real consumption data and adapt and create more policies to better help those people.

5.2. SECAPs Impact Assessment, Implementation and Monitoring

Local and regional authorities during the past decade have been actively engaged in sustainable
energy policy planning [72], with efforts also placed the last couple of years on integrating climate
planning as well, through the initiative of the (Global) Covenant of Mayors for Climate and Energy
(CoM). In this aspect, the authorities produce Sustainable Energy and Climate Action Plans (SECAPs)
that are focusing on the climate resilience of the public infrastructure and services, as well as reduction
of the local authorities’ energy consumption and carbon footprint, through a wide range of actions that
mainly target the municipal lighting and transport sectors and the buildings of the municipal, tertiary
and residential sectors [73].
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The actions included in the SECAPs are a significant data source for activities of business interest
to a wide range of stakeholders, including among others building component manufacturers and
installers, especially concerning renovation activities, such as double glazing and buildings’ insulation
(walls, roofs, floor), RES installers (photovoltaics, solar water heaters, biomass burners etc.), architecture
companies (bioclimatic design), urban planners, street lighting wholesale companies, ESCOs, as well
as civic crowdfunding projects, etc. It is thus clear that a market opportunity is there but needs
data retrieval and classification in user friendly databases, where interested market actors and other
municipalities can easily and quickly navigate around [74].

The challenge is to retrieve these data from SECAPs, as well as monitoring reports, not
only from the CoM, but other databases (e.g., carbonn Climate Registry [75]) or initiatives at the
national level (Lighthouse cities, etc.), analyze and integrate them in apposite sectoral actions at the
local/regional/national level. In this respect, different types of data can be collected and analyzed, using
the data-driven architecture, as follows:

• Data related to the planned actions’ characteristics and specific category: building, street lighting
or transport action, as well as the type of the action (e.g., building insulation, etc.) and more
specific characteristics, such as the envisaged energy savings, envelope design, construction
techniques and materials, size, building type, appliances used, lighting technology etc.

• Data about the envisaged costs, discount rates used, as well as any calculated financial indicators,
such as net present value (NPV), internal rate of return (IRR), etc.

• Data regarding the reduction of the carbon footprint and cross comparison with similar actions
from other plans at the national and European level.

5.3. Next Generation Energy Performance Assessment and Certification

Energy performance certificates (EP certificates) are among the most important drivers of energy
performance of the European building stock [76]. They provide a picture of the current state of the
building stock in terms of energy efficiency and include recommendations to improve the buildings’
energy performance. In each EU country, EP certificates data have been collected using different
energy assessment tools and procedures. They have been stored in disperse databases and in multiple
formats. Moreover, there is not a common vocabulary to define the contents of EP certificates in
different EU countries.

In order to make analyses of EP certificates data cutting across countries and domains, a unique
representation of their content is required. Besides the structured attributes that an EP Certificate
record contains, there are non-structured data provided by energy technicians (usually in natural
language), such as refurbishment measures, building regulations, etc. This information cannot be
processed and structured and, therefore, cannot be used to enrich the EP certificates data [77].

The integration of EP certificates with other data sources (e.g., building regulations, socioeconomic
data, building materials and systems, financial investments, etc.) is fundamental for third parties, in
order to analyze the building stock and take actions to improve it. For instance, to identify a building
typology which is amenable to renovation, to carry out a deep refurbishment plan at the municipal,
regional or even national and trans-national scales. This requires not only to have access to the data,
but to integrate them so that a multidimensional analysis can be performed.

Based on the analyses of the above-mentioned multidimensional, cross-domain and multi-lingual
data, new applications can give rise to new business opportunities for ESCOs, building components
manufacturers, construction companies, etc. Specific data analysis and visualization tools will enable
to meet the requirements of specific beneficiaries.

5.4. Improving the Financeability of Energy Efficiency Investments

The energy efficiency projects are often fragmented, with high transaction costs and fall below the
minimum value that many private financial institutions are willing to consider. The finance community



Energies 2020, 13, 1555 13 of 18

is lacking a tested, evidence-based platform, providing decision makers with support in regard to
the impacts of various investment criteria, risk-aware assessment and performance applied on a pool
of energy efficiency investments [78]. The capability offered by emerging near big data analytics
to integrate cross-domain financial and energy consumption is the key for building the necessary
market confidence in energy efficiency projects and making them an attractive investment asset class.
The availability of comparable, anonymized historical data, pooled from the major market segments
for buildings and corporates and structured along major project characteristics can encourage a greater
energy efficiency investment flow [79].

New data-driven applications, built on the proposed reference architecture, can attract and mobilize
private funding on energy efficiency projects, providing investors/financiers (e.g., commercial/green
investment banks, institutional and insurance funds) and project developers (public/local authorities,
providers of energy companies, ESCOs, construction companies, architects, etc.) with data and
tools, in order to identify sustainable investment pathways and decrease the risk of investing in
energy efficiency.

In this context, different types of data can be exploited, as follows: energy data (energy consumption
before and after the saving measures, avoided CO2 emissions, etc.); financial data (upfront capital
expenditure, total volume of the investment, type and sources of financing, payback period, market
value and many others), enabling a deep understanding of the financial aspects of the investment.;
secondary data (location, type of investment, market segment, type of project promoter and type of
asset or user profile); large databases for energy efficiency investments performance monitoring and
benchmarking, with extensive data on the existing projects in the EU countries, such as De-risking
Energy Efficiency Platform (DEEP) (including more than 5000 projects in buildings).

Extensive processing of these data can be applied, in order to elaborate and categorize financing
instruments and risk mitigation strategies, as well as to identify best practices on private financing
which can be considered as a basis for benchmarking.

5.5. Data-Driven Policy Making and Policy Impact Assessment for Energy-Efficient Buildings

The European Commission (EC) presented its long-awaited vision for a European Green Deal [80]
which, among other objectives, aims at making the continent CO2 neutral by 2050. Among the various
announced initiatives, the EC proposes to work with stakeholders on a new renovation initiative
in 2020, whose aim would be to organize renovation efforts, lifting national regulatory barriers to
renovation and focusing in particular on social housing [81,82].

The public, cooperative and social housing providers are in position to play a leading role in
this transition, as they are already key drivers of the renovation efforts across Europe. However,
the role of the sector in the successful implementation of the future European Green Deal cannot be
overestimated but could benefit from the right policy and financial framework. To this end, extensive
processing of these data can be applied using the data-driven architecture, in order to elaborate and
categorize policy instruments and risk mitigation strategies, as well as to identify best practices on
right policy and financial framework which can be considered as a basis for benchmarking and for
policy implementation and its link to financial mechanisms.

In this respect, an accurate vision of the impact of the implemented policies is offered, enabling
the identification and benchmarking of best practices, which can be replicated in order to achieve the
maximum impact. In turn, the setting of objectives within policies can be facilitated. The reliable
deployment of actions can be induced by linking policy objectives to the specific actions that have been
proven most effective and to the financing mechanisms and business models capable of unlocking them.

6. Conclusions

This paper presented a high-level data-driven architecture that aims to combine existing modern
technological breakthroughs in the areas of the DLTs/blockchain, ML/DL and big data, in order to develop
a new decision-making and data analytics solutions for energy management and energy-efficient
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buildings. The proposed approach realizes a holistic, state-of-the-art AI-empowered framework for
decision-support models, data analytics and visualizations for the building sector.

The proposed framework provides the necessary capabilities for pushing forward scalable big
data management and processing, with a view to reduce some of the major barriers actually hampering
big data and analytics full scale deployment in the emerging smart energy-efficient buildings domain,
i.e., the excessive communication costs and the need for keeping generated data as much as possible
closer to the generation point and the owner.

A library of trained models is introduced, aiming at solving problems that may constitute building
blocks for more complex problems, such as energy prediction, geo-clustering, energy performance
prediction, multi-criteria assessment of building interventions, etc. These advanced data processing and
management methods are combined in view of providing advanced and precise statistical analysis, data
visualization, business intelligence, predictive modelling and multi-criteria decision support systems.

It is expected to have a significant impact on the building sector and its lifecycle, as it will have
the ability to be utilized in a wide range of use cases under different perspectives, including, but
not limited to: monitor and improve the energy performance of buildings; facilitate the design and
development of building infrastructure; support policy making and policy impact assessment; de-risk
investments in energy efficiency.
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