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Abstract: Electromechanical coupling devices have been playing an indispensable role in modern
engineering. Particularly, flexoelectricity, an electromechanical coupling effect that involves strain
gradients, has shown promising potential for future miniaturized electromechanical coupling devices.
Therefore, simulation of flexoelectricity is necessary and inevitable. In this paper, we provide
an overview of numerical procedures on modeling flexoelectricity. Specifically, we summarize a
generalized formulation including the electrostatic stress tensor, which can be simplified to retrieve
other formulations from the literature. We further show the weak and discretization forms of the
boundary value problem for different numerical methods, including isogeometric analysis and mixed
FEM. Several benchmark problems are presented to demonstrate the numerical implementation. The
source code for the implementation can be utilized to analyze and develop more complex flexoelectric
nano-devices.

Keywords: flexoelectricity; numerical methods; modeling

1. Introduction

In recent years, huge attention in various research areas, such as material science, mechanical
engineering and chemistry, has been paid to flexoelectricity [1,2], an electromechanical coupling
phenomenon in all dielectric materials (regardless the material symmetry). It describes the induced
electric polarization due to strain gradients. Despite the small coefficients as compared to its
counterpart, piezoelectricity, flexoelectric effect has gained more attention and is appreciable thanks
to the miniaturized trend, where many electromechanical systems are operated at submicron or
nano length scale, leading a tremendous increase in the strain gradient. Due to size effects from
strain gradients, flexoelectricity holds promise in micro/nano-electromechanical systems such as
sensors [3–5], actuators [6,7] and nano-energy harvesters [8–13]. It can also explain physical phenomena
such as strain gradient-driven polarity control [14–16], flexo-photovoltaic effects [17] and flexo-caloric
effects [18]. Interested readers are referred to other excellent review articles about flexoelectricity for
more details [19–22].

To our best knowledge, the first continuum theory for flexoelectricity in dielectric solid was
proposed by Maranganti et al. [23], who considered both direct and converse flexoelectric effect
in the internal energy that takes strain, strain gradient, polarization and polarization gradient as
independent variables. As noted in their work, the formulation can be considered as a complement
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for the polarization-gradient theory proposed by Mindlin [24] and later on by Sahin and Host [25].
Based on their formulation, Sharma’s group further studied the enhancement of flexoelectricity in
nano-structures [26–30]. It should be remarked that, in the above-mentioned formulation, the electric
force, which is the divergence of the Maxwell stress, was not taken into account. The consideration of
Maxwell stress may be important in nano-dielectric solid, as pointed out by Hu and Shen [31], who
utilized the physical variation principle proposed by Kuang [32–35] so that the electrostatic stress
appears naturally from the minimization of the electric enthalpy. The significance of the Maxwell
stress was also discussed in the unified energy formulation of continuum magneto-electro-elasticity in
the work of Liu [36,37].

Nonetheless, by virtue of the non-locality, i.e., strain gradient or polarization gradient,
flexoelectricity in a solid dielectric is governed by a fourth-order partial differential equation. Therefore,
modeling flexoelectricity is mostly simplified to a 1D model or problems with simple geometries with
axisymmetry (such as a cylinder or a disk) or plate. As in strain gradient elasticity, the difficulty in fully
multi-dimensional modeling for flexoelectricity arises from the C1 continuity in the approximation
of the displacement field. This issue was solved firstly by Abdollahi et al. [38] using the local
maximum-entropy (LME) meshfree method. Analogous to strain gradient elasticity, mixed FEM
was also adopted to solve flexoelectric problems by Mao et al. [39,40]. Isogeometric analysis (IGA)
is also a robust approach to flexoelectricity, as in [41–44], thanks to its straightforward handling of
higher-order continuity. Alternatively, the Argyris triangular element can also be used as a remedy to
the C1 requirement, as in the work of Yvonnet and Liu [45]. More recently, in a similar spirit to IGA
approach, Codony et al. [46] proposed the immersed boundary method on hierarchical B-Spline for
flexoelectricity problems with higher efficiency. Besides, flexoelectric effect and the associated damage
behavior were also approached with peridynamics method by Roy and Roy [47].

As the research field of flexoelectricity is rapidly developing, the need of numerical simulations
is apparently inevitable. However, there has not been a review on the computational aspects of
flexoelectricity yet. Therefore, in this paper, we aim to provide an overview as well as detailed
procedure on modeling flexoelectricity. Different numerical methods, including isogeometric analysis,
mixed FEM and meshfree, are employed to solve the boundary value problem. The remainder of
the paper is structured as follows. In Section 2, motivated by the existence of the Maxwell stress
tensor in dielectric solid, we summarize the physical variational principle in which the electrostatic
stress tensor appears naturally as the minimization of the electric enthalpy from the work of Hu and
Shen [31]. Furthermore, we present an alternative formulation, derived from the electric Gibbs free
energy (but with different independent variables), which also results in the electrostatic stress tensor.
Noticeably, the two formulations can be considered as a generalized formulation, for which, when the
electrostatic stress is omitted, the strong forms from previous literature can be retrieved. Consequently,
we obtain the weak forms from Galerkin method for different numerical approaches. Details on the
numerical implementation of the discretization forms can be found in Section 3 together with source
code wherever possible. Several numerical examples to validate as well as illustrate the numerical
implementation are presented in Section 4.

2. Ground Work Formulation

2.1. Physical Variational Principle

Hu and Shen [31] extended the variational principle from Toupin [48] by the physical variational
principle proposed by Kuang [32–35] to derive the governing equations for flexoelectricity, in which
the Maxwell’s stress is taken into account. We briefly summarize the theory and formulation in this
section. Assuming the internal energy as a function of strain εij, strain gradient εij,k, polarization Pi
and polarization gradient Pi,j,

U
(

εij, εij,k, Pi, Pi,j

)
=

1
2

aijPiPj +
1
2

bijkl Pi,jPk,l +
1
2

cijklεijεkl + dijkPiε jk + fijklεijPk,l + hijkl Piε jk,l +
1
2

gijklmnεij,kε lm,n, (1)
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from which the constitutive relations are obtained as

σij =
∂U
∂εij

= cijklεkl + dijkPk + fijkl Pk,l (2a)

τijk =
∂U

∂εij,k
= hijkl Pl + gijklmnε lm,n (2b)

Ei =
∂U
∂Pi

= aijPj + dijkε jk + hijklε jk,l (2c)

Vij =
∂U
∂Pi,j

= bijkl Pk,l + fijklεkl , (2d)

where σij, Ei, τijk and Vij are the (local) stress, electric field, higher-order stress and higher-order
electric field, respectively, while aij, bijkl , cijkl , dijk, fijkl , and hijkl are the material tensors [32]. In other
words, the variation of internal energy can be written as

δU = σijδεij + τijkδεij,k + EiδPi + VijδPi,j. (3)

The energy density is the sum of the internal energy and the internal of the Maxwell self-field [24]

W = U +
1
2

ε0φ,iφ,i, (4)

in which the electric Maxwell self-field can be defined as the gradient of the electric potential φ

EMS
i = −φ,i. (5)

Next, we can define the electric enthalpy as

H = W − EiDi = U − 1
2

ε0φ,iφ,i + φ,iPi (6)

We consider a dielectric solid occupying a volume v bounded by a surface a that separates from the
surrounding environment v′ (considered to be air in this study). Taking v∗ = v + v′, the equilibrium of
such system in the the isothermal process can be defined by the variational principle

δ
∫

v∗
H dv∗ = δW, (7)

where W is the external work done by body force fi, external electric field Eext
i and free charge ρ f on

the solid body and traction t̄i, double-traction τ̄i, surface charge σ∗ and higher-order electric field v̄i on
the surface boundary. Hence, its variation δW is defined as

δW =
∫

v
(

fiδui + Eext
i δPi

)
dv +

∫
aσ tiδui da +

∫
aτ τ̄iD̃n(δui)da +

∫
aV v̄iδPi da−

∫
aφ σ∗δφ da−

∫
v ρ f δφ dv , (8)

in which the operator D̃n is explained in the following section.
Within physical variational principle approach, variation of the electric enthalpy can be further

expressed as [32–35].

δ
∫

v∗
H dv∗ =

∫
v∗

δH dv∗ +
∫

v∗
Heδuk,k dv∗ , (9)

where He = 1
2
(
EiPi + VijPi,j

)
is the energy deducted from the total energy minus the pure deformation

energy. Moreover, the migratory variation is the essential feature of physical variational principle,
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in the sense that the virtual displacement not only produces the strain variation but also causes electric
potential and polarization variations, such as [31]

δφ = δφφ + δuφ = δφφ + φ,iδui, (10a)

δφ,i = δφφ,i + δuφ,i = δφφ,i + φ,ijδuj, (10b)

δPi = δPPi + δuPi = δPPi + Pi,jδuj, (10c)

δPi,j = δPPi,j + δuPi,j = δPPi,j + Pi,jkδuk = δPPi,j + Pi,kjδuk, (10d)

where δφ(◦) and δP(◦) are the variations produced by the (local) variation of the electric potential and
polarization, respectively, whereas δu(◦) is the migratory variation caused by the virtual displacement.
Subsequently, by substituting Equation (10) into Equation (9) with the use of Equations (6) and (3)
and employing Gauss divergence theorem, through a lengthy but straightforward manipulation,
the variation of the electric enthalpy can be re-expressed as [31]

δ
∫

v
H dv =

∫
v

[
−σij,j + τijm,mj − σES

ij,j

]
δui dv

+
∫

a

{[
σij − τijm,m + σES

ij

]
nj +

[
D̃t

l (nl)nmnjτijm − D̃t
j
(
nmτijm

)]}
δui da

+
∫

a
τijmnmnjD̃n(δui)da

+
∫

v

(
Ei −Vij,j + φ,i + Eext

i
)
δPi dv +

∫
a

VijnjδPi da

−
∫

v
(−ε0φ,i + Pi),iδφ dv +

∫
a
(−ε0φ,i + Pi)niδφ da , (11)

where ni is the normal vector. D̃t
k(◦) = (δkl − nknl) ∂,l(◦) and D̃n = nl∂,l(◦) are the tangential and

normal surface differential operators, respectively, which emerges from the treatment of the variation
of displacement gradient δui,j on the boundary (see also [31,49]). Notably, in the above equation, as a
direct result of the variational process, the generalized electrostatic stress σES

ij appears as

σES
ij = −VkjPk,i +

1
2
(EkPk + Vkl Pk,l)δij − Djφ,i +

(
−1

2
ε0φ,kφ,k + φ,kPk

)
δij

= σM
ij + τM

ijm,m, (12)

with σM
ij and τM

ijm,m the Maxwell stress and the electrostatic stress corresponding to the strain and
polarization gradients, respectively, defined as

σM
ij =

1
2

EkPkδij − Djφ,j + φ,i +

(
−1

2
ε0φ,kφ,k + φ,kPk

)
δij (13a)

τM
ijm,m = −VkjPk,j +

1
2

Vkl Pk,l . (13b)

Upon substituting Equations (11) and (8) into Equation (7) and utilizing the arbitrariness of δui, δφ

and δPi, we can obtain the governing equations and the boundary conditions with the remark that
mechanical displacement and polarization do not exist in the surrounding air environment
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(
σij − τijm,m + σES

ij

)
,j
+ fi = 0, in v (14a)

σES
ij,j = 0, in v’ (14b)

Vij,j + EL
i − φ,i + Eext

i = 0, in v (14c)

−ε0φ,ii + Pi,i = ρ f , in v (14d)

φ,ii = 0, in v’ (14e)

Dirichlet boundary conditions

ui = ūi, on au (15a)

φ = φ̄, on aφ (15b)

D̃n(ui) = ui,lnl = ūi,lnl , on au,n (15c)

Pi = P̄i, on aP (15d)

Neumann boundary conditions(
σij − τijm,m + [[σES

ij ]]
)

nj + D̃t
l (nl)nmnjτijm − D̃t

j
(
nmτijm

)
= ti, on aσ (16a)

τijmnmnj = τ̄i, on aτ (16b)

ni(−ε0[[φ,i]] + Pi) = −σ∗, on aσ∗ (16c)

Vijnj = v̄i, on aV (16d)

2.2. Alternative Formulation

The above boundary value problem is formulated from the total energy density U whose strain
εij, strain gradient εij,k, polarization Pi and polarization gradient Pi,j are independent variables.
Alternatively, we can also choose the electric Gibbs free energy (which is identical to the electric
enthalpy in isothermal system), whose independent variables are strain εij, strain gradient εij,k, electric
field Ei and electric field gradient Ei,j [38,40,50]:

G
(

εij, εij,k, Ei, Ei,j

)
= −1

2
κijEiEj −

1
2

bijklEi,jEk,l +
1
2

cijklεijεkl − eijkEiε jk −
1
2

µijkl(Ekεij,l − εijEk,l) (17)

Consequently, the constitutive relations are given as

σij =
∂G
∂εij

= cijklεkl +
1
2

µijklEk,l (18a)

τijk =
∂G

∂εij,k
= −1

2
µijklEl (18b)

Di = −
∂G
∂Ei

= κijEj +
1
2

µijklεk,l (18c)

Qij =
∂G

∂Ei,j
= bijklEk,l −

1
2

µijklεkl , (18d)

where σij, Di, τijk and Vij are the (local) stress, electric displacement, higher-order stress and
higher-order electric displacement, respectively, while κij, bijkl , cijkl , eijk and µijkl are material
tensors [38]. These relations also imply that the variation of electric Gibbs free energy can be
expressed as

δG = σijδεij + τijkδεij,k − DiδEi + QijδEi,j, (19)
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which then can be used to determine the equilibriums from variational principle

δ
∫

v∗
G dv∗ = δW, (20)

where W is again the external work, but instead of having the contribution of the external electric
field and higher-order electric field as in the previous formulation, higher-order surface charges q̄ are
prescribed on the boundary, so that its variation δW reads

δW =
∫

v
(

fiδui + Eext
i δPi

)
dv +

∫
aσ tiδui da +

∫
aτ τ̄iD̃n(δui)da +

∫
aQ q̄D̃n(δφ)da−

∫
aφ σ∗δφ da−

∫
v ρ f δφ dv . (21)

By analogy with Equation (10), migratory variation of electric field and electric field gradient are
obtained as

δEi = δφEi + δuEi = −δφφ,i + Ei,pδup = −δφφ,i + Ep,iδup, (22a)

δEi,j = δφEi,j + δuEi,j = δφEi,j + Ei,jpδup = δφEi,j + Ei,pjδup (22b)

Now, substituting Equation (22) into Equation (20) with the use of Equation (19) and employing Gauss
divergence theorem, the physical variational the electric Gibbs free energy can be obtained

δ
∫

v
G dv =

∫
v

(
−σij,j + τijk,kj − σM

ij,j − τM
ijm,mj

)
δui dv

+
∫

a

(
σijnj − τijk,knj + σM

ij nj + τM
ijm,mnj + D̃t

l (nl)nmnjτijm − D̃t
j
(
nmτijm

))
δui da

+
∫

a
τijknknjD̃n(δui)da +

∫
v

(
−Di,i + Dij,ji

)
δφ dv

+
∫

a

(
Dini − Dij,jni + D̃t

l (nl)ninjQij − D̃t
i (Qijnj)

)
δφ da +

∫
a

QijninjD̃n(δφ)da , (23)

where σM
ij and τM

ijm,m are the Maxwell stress and the higher-order electrostatic stress that are direct
results of the variational process and expressed as

σM
ij = EiDj −

1
2

EkDkδij (24a)

τM
ijm,m = Ei,kQkj −

1
2

Ek,lQklδij. (24b)

Note that Equations (24a) and (13a) are identical. Finally, by substituting Equations (23) and (21) into
Equation (20), we can obtain the governing equations and boundary condition as(

σij − τijm,m + σES
ij

)
,j
+ fi = 0, in v (25a)

σES
ij,j = 0, in v’ (25b)(

Di −Qij,j
)

,i = ρ f , in v (25c)(
Di −Qij,j

)
,i = φ,ii = 0, in v’ (25d)

Dirichlet boundary conditions

ui = ūi, on au (26a)

φ = φ̄, on aφ (26b)

D̃n(ui) = ui,lnl = ūi,lnl , on au,n (26c)

D̃n(φ) = φ,lnl = φ̄,lnl , on aφ,n (26d)
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Neumann boundary conditions(
σij − τijm,m + [[σES

ij ]]
)

nj + D̃t
l (nl)nmnjτijm − D̃t

j
(
nmτijm

)
= ti, on aσ (27a)

τijknknj = τ̄i, on aτ (27b)

[[Di −Qij,j]]ni + D̃t
l (nl)ninjQij − D̃t

i (Qijnj) = −σ∗, on aσ∗ (27c)

Qijninj = q̄, on aQ (27d)

In the above equations, although it is not trivial, we need to bear in mind that in vacuum
displacement and polarization do not exist; hence, the quantity Di − Qij,j is degenerated to −φ,i in
vacuum, which also causes the jump [[Di −Qij,j]] on the boundary aφ.

For the sake of clarity, we compare the two formulations in Table 1. Let us denote the strong
form derived from the internal energy U and the electric Gibbs energy G in Sections 2.1 and 2.2 as
P-formulation and E-formulation, respectively. As compared to the classical (local) theory, in both
formulations, strain gradient ∇ε results its conjugate variable, double stress τijk, to be cast in the
balance of linear momentum as well as surface traction and surface higher-order traction. In addition
to the classical Dirichlet boundary condition, the displacement gradient in the normal direction is also
specified on the boundary. In the same manner, the electric field gradient dependence in electric Gibbs
energy of E-formulation causes its conjugate variable, higher-order electric displacement Qij, to appear
in the modification of Gauss law and surface charge. The electric potential gradient in normal direction
is also specified on the boundary. On the other hand, in P-formulation, when polarization gradient is
considered, its conjugate variable Vij enters the intramolecular force balance equation and higher-order
surface polarization, while the Gauss law and surface charge condition are unchanged as compared to
classical theory. Moreover, as mentioned above, both formulations give identical Maxwell stress tensor
σM

ij , whereas the higher-order Maxwell stress are given in their corresponding electric independent

variables. It is worth noting that the electrostatic stress tensor σES
ij in vacuum is reduced to

σES
ij = σM

ij = ε0

(
EiEj −

1
2

EkEkδij

)
, (28)

which is the usual Maxwell stress tensor in electromagnetism.
Furthermore, we remark that different formulations from the literature can be deduced from

the generalized ones presented here. For instance, in the absence of electrostatic stress σES
ij and the

polarization gradient Pi,j (in P-formulation) or the electric field gradient Ei,j (in E-formulation), we can
retrieve the strong form given by Sharma [30], Mao [39], Abdollahi [38], Deng [40] and Nguyen [43].
We summarize the two reduced formulations in Table 2. It should also be noted that, in P-formulation,
when the external electric field is also omitted, the intramolecular force balance is reduced to EL

i = φ,i
or the usual relation between electric field and electric potential Ei = −φ,i can be retrieved and the
strong form of two formulations are identical. To this end, which formulation to be used for numerical
computation is simply a matter of choice, as the weak form of both formulations are identical and can
be written as∫

v
[
σijδui,j + τijmδui,jm + (ε0Ei + Pi)δφ,i

]
dv =

∫
v fiδui dv +

∫
aσ tiδui da−

∫
v ρ f δφ dv−

∫
aσ∗ σ∗δφ da (29)

for P-formulation and∫
v

(
σijδui,j + τijmδui,jm + Diδφ,i

)
dv =

∫
v

fiδui dv +
∫

aσ
tiδui da−

∫
v

ρ f δφ dv−
∫

aσ∗
σ∗δφ da (30)

for E-formulation. Note that Equation (29) will be solved with respect to displacement and electric
potential fields. Hence, the electric polarization needs to be expressed in terms of the electric potential
by utilizing the constitutive relation in Equation (2c), i.e., Pi = a−1

ij φ,j − a−1
ij djklεkl − a−1

ij hjklmεkl,m.
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On the other hand, as the electric field Ei = −φ,i is an independent variable in E-formulation, it
is straightforward to solve for the displacement and electric potential fields from Equation (30).
Therefore, in the following sections, we employ different numerical methods to solve the weak form in
Equation (30) of simplified E-formulation. When full formulations (Table 1) are chosen, the electric
Gibbs free energy is still more favorable. In this case, the expression of the electric polarization in
terms of electric potential is done in both domain and surface integrals. In other words, the application
of the surface polarization in the P-formulation is equivalent to that of the potential normal derivative
in E-formulation.

Table 1. Comparison of strong form. Li = D̃t
l (nl)nmnjτijm − D̃t

j

(
nmτijm

)
, M = D̃t

l (nl)ninjQij −
D̃t

i (Qijnj).

U(ε, P,∇ε,∇P) G(ε, E,∇ε,∇E)

Balance

Momentum in v
(

σij − τijm,m + σES
ij

)
,j
+ fi = 0

(
σij − τijk,k + σES

ij

)
,j
+ fi = 0

Maxwell in v′ σES
ij,j = 0 σES

ij,j = 0

Gauss law in v −ε0φ,ii + Pi,i = ρ f
(

Di −Qij,j

)
,i
= ρ f

Intramolecular force [24] Vij,j + EL
i − φ,i + Eext

i = 0
Gauss law in v′ φ,ii = 0 φ,ii = 0

Dirichlet BCs

Displacement on au ui = ūi ui = ūi
Electric potential on aφ φ = φ̄ φ = φ̄

Displacement normal derivative on au,n ui,lnl = ūi,lnl ui,lnl = ūi,lnl
Potential normal derivative on aφ,n φ,lnl = φ̄,lnl

Surface polarization on aP Pi = P̄i

Neumann BCs

Surface traction on aσ

(
σij − τijm,m + [[σES

ij ]]
)

nj + Li = ti

(
σij − τijk,k + [[σES

ij ]]
)

nj + Li = ti

Surface charge on aσ∗ ni
(
−ε0[[φ,i]] + Pi

)
= −σ∗ [[Di − Dij,j]]ni + M = −σ∗

Higher-order traction on aτ τijmnmnj = τ̄i τijmnmnj = τ̄i
Higher-order surface charge on aQ Qijninj = q̄

Higher-order electric field on aV Vijnj = v̄i

Table 2. Comparison of reduced strong form. Li = D̃t
l (nl)nmnjτijm − D̃t

j

(
nmτijm

)
, M =

D̃t
l (nl)ninjQij − D̃t

i (Qijnj).

U(ε, P,∇ε) G(ε, E,∇ε)
References [30,39] References [38,40,43]

Balance

Momentum in v
(

σij − τijm,m + σES
ij

)
,j
+ fi = 0

(
σij − τijk,k + σES

ij

)
,j
+ fi = 0

Gauss law in v −ε0φ,ii + Pi,i = ρ f
(

Di −Qij,j

)
,i
= ρ f

Intramolecular force [24] Vij,j + EL
i − φ,i + Eext

i = 0
Gauss law in v′ φ,ii = 0 φ,ii = 0

Dirichlet BCs

Displacement on au ui = ūi ui = ūi
Electric potential on aφ φ = φ̄ φ = φ̄

Displacement normal derivative on au,n ui,lnl = ūi,lnl ui,lnl = ūi,lnl

Neumann BCs

Surface traction on aσ

(
σij − τijm,m + [[σES

ij ]]
)

nj + Li = t̄i

(
σij − τijk,k + [[σES

ij ]]
)

nj + Li = t̄i

Surface charge on aσ∗ ni
(
−ε0[[φ,i]] + Pi

)
= −σ∗ [[Di − Dij,j]]ni + M = −σ∗

Higher-order traction on aτ τijmnmnj = τ̄i τijmnmnj = τ̄i

3. Computational Modeling

The modeling of flexoelectricity is to solve the boundary value problem described in Table 2 or
to minimize the weak forms (Equation (29) or Equation (30)). To do this numerically, the existence
of strain gradient entails the chosen numerical methods must ensure at least C0-continuity of the
second-order derivatives of the displacement field by means of higher-order (at least C1-continuity)
shape functions. In the following, we summarize the numerical methods that have been employed in
flexoelectricity, including meshless, mixed FE and IGA.
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3.1. Meshfree Method

Some of the initial prominent works on computational evaluation of flexoelectric structures is
by adopting a meshfree method using local maximum entropy (LME) approximants, as was done by
Abdollahi et al. [38]. The meshfree formulation is validated by comparing the analytical and numerical
energy conversion factor in a one-dimensional problem. Inspired by the experimental works of Ma and
Cross, the LME based meshfree method is adopted to analyze a two-dimensional pyramid structure
in [38] and a three-dimensional pyramid structure in [50]. The converse flexoelectricity that leads
to strain due to indentation of atomic force microscopy tip onto a SrTiO3 sample is experimentally
studied and simulated using LME-based meshfree method in [51]. Besides the works on LME, Bo
He et al. [52] presented analysis of 2D flexoelectric structures by element free Galerkin method which
uses moving least square (MLS) approximants. Nevertheless, more works on flexoelectricity using
meshfree methods are still required, as both MLS and LME shape functions lack Kronecker delta
property, which leads to additional treatment on imposing Dirichlet boundary conditions. Moreover,
in the multi-material problem that possesses material interfaces, some special techniques such as
domain partitioning [53], Lagrange multiplier [54] and Jump function [55] are utilized to capture
material discontinuities. On the other side, the higher-order Dirichlet boundary condition has not been
mentioned in the meshfree approach in flexoelectricity.

3.2. Mixed Finite Element Method

The mixed finite element method offers the advantage of capturing C1 continuity in the domain
by utilizing C0 finite elements. The first work on utilizing mixed finite element was by Mao et al. [39]
for analyzing flexoelectric plate and crack in periodic flexoelectric structure, in which they proposed
a mixed FE element denoted as I9-87. The formulation for flexoelectricity adopted in [39] is based
on P-formulation and so the electrical degrees of freedom include polarization in addition to electric
potential. The mechanical DOFs comprise displacements and relaxed displacement gradients and
kinematic constraints are imposed by Lagrange multipliers. Mixed FE was also implemented for
E-formulation by the authors of [40,56,57]. Nanthakumar et al. [56] adopted a nine-noded quadrilateral
element with 54 DOFs to analyze and optimize two-dimensional flexoelectric structures. Deng et al. [40]
presented two triangular elements, T37 and T45, and two quadrilateral elements, Q47 and Q59.
A hexahedral element was presented by Deng et al. [57], who utilized the mixed FE to analyze a
micro-pyramid structure.

The main advantage of mixed FE is its simplicity in imposing higher-order Dirichlet boundary
conditions due to the displacement gradient degrees of freedom; hence, it can be directly implemented
in FE commercial software. Moreover, due to its C0-approximation, mixed FEM can be used to alleviate
the modeling of interface and composite flexoelectric structure. However, the method suffers one
major drawback: expensive computational cost due to the many degrees of freedom per element,
especially in 3D.

3.3. IGA Approach

Due to the flexibility of manipulating continuity of the basis functions, IGA has been used
in solving flexoelectricity problems for topology optimization [41], soft dielectric material [42]
and semiconductor [44]. In those works, NURBS basis functions are chosen to approximate both
geometry and field variables (displacement and electric potential fields). By using knot insertion
technique [58,59], the desired continuity order of NURBS basis functions can be obtained, as shown in
Figure 1. Moreover, by controlling the continuity, IGA approach can be used to model interface [42],
in which the geometrical approximation across the interface is C0-continuity while C1-continuity is
required in the domains as usual. Besides, in topology optimization works [41], the voids are assumed
to be solid material whose density is much smaller than the host material; however, C1 continuity is
imposed across the void–solid phase. A more general treatment for modeling discontinuity across the
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internal boundary can be adopted from the works in [60–62]. The approach has been applied for porous
media, composites, multi-field and multi-material problems. In these works, the interface element
has been applied to construct C0-continuous interpolation along both sides of the redefined interface.
The element enables the possibility in enforcing the boundary condition via adding mechanical traction
defined by a constitutive relation at the internal discontinuity into the equilibrium equation.
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0
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(a)
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1
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(b)

Figure 1. (a) C0 continuity quadratic NURBS basis functions from knot vector Ξ =

{0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1}; and (b) C1 continuity quadratic NURBS basis functions from knot
vector Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}

Perfect interfaces result in continuous displacement and traction fields along the interface, i.e.,

[[ui]] = 0 (31a)

[[ti]] = 0, (31b)

where [[]] indicates the jump. Such conditions of weakly-discontinuity displacement can be
implemented with suitable enrichment functions as in XFEM [63,64]. Moreover, in strain gradient
elasticity problems, additional continuity conditions associated with higher-order terms such as
displacement normal derivative and double traction [65,66]

[[ui,lnl ]] = 0 (32a)

[[τijmnmnj]] = 0, (32b)

should be satisfied along the interface. Furthermore, the interfaces in microstructure problems are
often considered to be imperfect (displacement and/or traction fields are not continuous along the
interface) [67,68]. However, these imperfect interface models are limited to local elasticity and do
not consider strain gradients. Although the interface element was applied for mechanical problems,
the same concept can be inherited and applied for multi-field problems such as piezoelectric and
flexoelectric composites.

It is worth discussing the imposition of the boundary conditions in IGA approach. While the
Dirichlet boundary condition can be imposed by means of least-square method [69] due to the lack
of Kronecker-delta property of NURBS basis functions, the displacement gradients conditions can be
applied by imposing constraint on displacement degrees of freedom with Lagrange multipliers. This
idea is often used in solving strain-gradient elasticity [70] but has not been discussed in flexoelectricity
modeling works. Numerical implementation of the displacement gradients conditions is shown in the
next section.

In the reduced formulations without consider electric field or polarization gradient, the electric
potential gradient or surface polarization needs not to be imposed. However, for modeling flexoelectric
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transducers, it is necessary to model the electrode on the surface of the structure by imposing the
equipotential condition. This can be done by utilizing the Lagrange multiplier, as we show in the
next section. Note that the equipotential has not been used in previous works on flexoelectricity
using IGA. It should be remarked that recently Codony et al. [46] proposed the immersed boundary
method on hierarchical B-spline for flexoelectricity problems with higher efficiency in terms of complex
domain shapes smf boundary conditions handling. Moreover, the non-local conditions on non-smooth
boundary (which we have neglected) was also treated.

In Table 3, we present a comparison of different numerical methods on some special features
in flexoelectricity modeling, including continuity handling, computational cost (via degrees of
freedom per element), the ability to enforce higher-order Dirichlet boundary conditions and material
discontinuity approximation. Each numerical method comes with pros and cons and should be
considered based on the desired application. For instance, mixed FE is more suitable for a simplified
2D flexoelectric problems, whereas flexoelectric domains consisting of voids or inclusions can be
modeled with meshless methods.

3.4. Implementations

In this section, we present the computation procedure of IGA and mixed FE approaches to
solve problems governed by flexoelectricity, which can serve as a numerical tool for simulating
the nano-energy harvesters, sensors or actuators. For the reasons mentioned above, we consider
the simplified E-formulation in Table 2, which was also the choice of the authors of [38,40], hence
reasonably suitable for comparison and validation.

Mixed FEM

The requirement of C1 continuous basis functions due to the fourth-order PDEs of flexoelectricity
excludes (or at least complicates) the use of classical Lagrange polynomials. too ensure C1 continuity
displacement gradients, ψ are introduced in the formulation and the kinematic constraint, ψ = ∇u,
is imposed using Lagrange multipliers. The weak form of mechanical and electrostatic equilibrium
is obtained by finding the u ∈

{
u = ū on au, u ∈ H1(v)

}
, ψ ∈

{
ψ = ψ̄ on au,n, ψ ∈ H1(v)

}
, φ ∈{

φ = φ̄ on aφ, φ ∈ H1(v)
}

, λ ∈ L2(v), and similarly ffiu ∈
{

ffiu = 0 on au, ffiu ∈ H1(v)
}

, δψ ∈{
δψ = 0 on au,n, δψ ∈ H1(v)

}
, δφ ∈

{
δφ = 0 on aφ, δφ ∈ H1(v)

}
and δλ ∈ L2(v), such that,

δΠ =
∫

Ω
(σ : ε(δu) + τ̂

...η̂(δψ)− D · E(δφ)) dΩ +
∫

Ω
λ : (δψ−∇δu)dΩ

+
∫

Ω
(ψ−∇u) : δλdΩ−

∫
ΓN

δu · t̄ dΓ−
∫

Ω
δu · b dΩ = 0

(33)

∫
Ω

ε(δu) : C : ε(u) dΩ−
∫

Ω
ε(δu) : e · E(φ) dΩ−

∫
Ω

η̂(δψ)
... h · E(φ) dΩ

+
∫

Ω
η̂(δψ)

... g
... η̂(ψ)dΩ−

∫
Ω

E(δφ) · e : ε(u) dΩ−
∫

Ω
E(δφ) · h

... η̂(ψ) dΩ

−
∫

Ω
E(δφ) · κ · E(φ) dΩ +

∫
Ω

δψ : λ dΩ−
∫

Ω
∇δu : λ dΩ−

∫
Ω

δλ : ∇u dΩ

+
∫

Ω
δλ : ψ dΩ =

∫
ΓN

δu · t̄ dΓ +
∫

Ω
δu · b dΩ

(34)

where τ̂ = ∂U
∂η̂ and η̂ is the third-order tensor related to relaxed displacement gradient ψ as η̂ =

1
2 (ψjk,i + ψik,j). The constraint ψ = ∇u is imposed in a weighted residual manner by including
δ
∫

Ω(ψ−∇u) : λdΩ in Equation (33).
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Table 3. Comparison of different numerical methods. (a) and (b) indicate quadratic elements in 2D and 3D, respectively.

Meshfree IGA Mixed FEM

Continuity Depends on kernel functions Knot manipulation Nodal displacement gradient

D.o.f Depends on domain of influence 27 (a) or 108 (b) 54 (Q54, [56]); 37 (T37), 47 (Q47), 45 (T45), 59 (Q59) [40]; 233 (3D) [57]

Higher-order Dirichlet BCs - Lagrange-multiplier Direct imposition

C0 Interface modeling Lagrange-multiplier, Enriched functions Multi-patch -
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A nine-noded isoparametric element was proposed by Nanthakumar et al. [56]. The degrees of
freedoms are u1 and u2 at all nodes, relaxed displacement gradients ψ11, ψ12, ψ21 and ψ22 at the four
corner nodes and electric potential φ at the four corner nodes. In addition to these DOFs, the element
has four Lagrange multipliers λ11, λ12, λ21 and λ22 at the four corner nodes. The flexoelectric element
is shown in Figure 2. The biquadratic shape functions, Nq, are used to interpolate the displacement
DOFs u1 and u2 . Bilinear shape functions, Nl , are used to interpolate the relaxed displacement
gradients, Lagrange multipliers and electric potential, φ. The finite element approximation is as
shown below,

uh(x) =
9

∑
i=1

Nq
i ui ; ψh(x) = ∑

i=1,3,5,7
N l

i ψi ;

φh(x) = ∑
i=1,3,5,7

N l
i φi ; λh(x) = ∑

i=1,3,5,7
N l

i λi

(35)

δuh(x) =
9

∑
i=1

Nq
i δui ; δψh(x) = ∑

i=1,3,5,7
N l

i δψi ;

δφh(x) = ∑
i=1,3,5,7

N l
i δφi ; δλh(x) = ∑

i=1,3,5,7
N l

i δλi

(36)

1 2 3

4

567

8

9

Figure 2. A nine-noded flexoelectric element. DOFs at circles are u1 and u2; at squares are ψ11, ψ12, ψ21,
ψ22 and φ; and at triangles are λ11, λ12, λ21, and λ22.

Substituting Equations (35) and (36), into Equation (34) yields the following expression in terms
of nodal DOFs:

δuT
(∫

Ω
BT

u CBu dΩ
)

u + δuT

∫
Ω

BT
ueT Bφ dΩ

φ + δψT
(∫

Ω
HT hT Bφ dΩ

)
φ

+ δψT
(∫

Ω
HT g HdΩ

)
ψ + δφT

∫
Ω

BT
φeBu dΩ

 u + δφT
(∫

Ω
BT

φh H dΩ
)

ψ

− δφT
(∫

Ω
BT

φκBφ dΩ
)

φ− δuT
(∫

Ω
BT

ψuN l dΩ
)

λ + δψT
(∫

Ω
N l T

N l dΩ
)

λ

− δλT
(∫

Ω
N l T

Bψu dΩ
)

u + δλT
(∫

Ω
N l T

N l dΩ
)

ψ = δuT
(∫

ΓN

Nq t̄ dΓ
)
+ δuT

(∫
Ω

Nqb dΩ
)

(37)
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where Bu =


∂Nq

∂x 0
0 ∂Nq

∂y
∂Nq

∂y
∂Nq

∂x

, Bφ =

[
∂Nl

∂x
∂Nl

∂y

]
, H =



∂Nl

∂x 0 0 0
0 0 0 ∂Nl

∂x
0 1

2
∂Nl

∂x
1
2

∂Nl

∂x 0
∂Nl

∂y 0 0 0

0 0 0 ∂Nl

∂y

0 1
2

∂Nl

∂y
1
2

∂Nl

∂y 0


, Bψu =


∂Nl

∂x 0
0 ∂Nl

∂x
∂Nl

∂y 0

0 ∂Nl

∂y


The algebraic equations to be solved to obtain displacement and electric potential in a flexoelectric
structure are, 

Kuu 0 Kuφ Kuλ

0 Kψψ Kψφ Kψλ

Kφu Kφψ −Kφφ 0
Kλu Kλψ 0 0




u
ψ

φ

λ

 =


Fu

0
0
0

 (38)

Kuu =
∫

Ω
BT

u CBudΩ ;

Kuφ =
∫
Ω

BT
u eT Bφ dΩ = KT

φu ;

Kuλ = −
∫

Ω
BT

ψuNλdΩ = KT
λu

Kψφ =
∫

Ω
HThBφdΩ = KT

φψ

Kψψ =
∫

Ω
BT

ψgBψdΩ

Kψλ =
∫

Ω
N lT

NλdΩ = KT
λψ

Kφφ =
∫

Ω
BT

φκBφdΩ ;

Fu =
∫

Γ
NqT t̄dΓ +

∫
Ω

Nqb dΩ

3.5. IGA Approach

Within the Galerkin method, both the trial and test functions are approximated by NURBS
basis functions

u(e) = Nuũ, δu(e) = Nuδũ, (39a)

φ(e) = Nφφ̃, δφ(e) = Nφδφ̃, (39b)

in which Nu and Nφ are the matrices containing the local NURBS basis functions of element e defined as

N i
u =

Ni 0 0
0 Ni 0
0 0 Ni

 , Nu =
[

N1
u N2

u . . . Nn
u

]
, (40a)

Nφ =
[

N1 N2 . . . Nn

]
, (40b)
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where Ni is the NURBS basis function at control point ith and n is the number of control points of
an element. In the above equation, ũ, φ̃, δũ and δũ are the nodal control variables associated with
displacement and electric potential of the trial and test functions, respectively, which can be written in
matrix form as

ũ =
[
ũ1

x ũ1
y ũ1

z . . . ũn
x ũn

y ũn
z

]T
, (41)

δũ =
[
δũ1

x δũ1
y δũ1

z . . . δũn
x δũn

y δũn
z

]T
, (42)

φ̃ =
[
φ̃1 φ̃2 . . . φ̃n

]T
, (43)

δφ̃ =
[
δφ̃1 δφ̃2 . . . δφ̃n

]T
(44)

The approximation of strain field ε = [ε11 ε22 ε33 2ε23 2ε13 2ε12]
T , electric field E = [E1 E2 E3]

T , strain

gradient ∇ε =
[

∂ε
∂x

∂ε
∂y

∂ε
∂z

]T
and electric field gradient ∇E =

[
∂E
∂x

∂E
∂y

∂E
∂z

]T
can be obtained by using

differential operators Bu,Bφ,Hu and Hφ on Equation (39) such that

ε(e) = Buũ, δε(e) = Buδũ, (45a)

E(e) = Bφφ̃, δE(e) = Bφδφ̃, (45b)

∇ε(e) = Huũ, δ∇ε(e) = Huδũ, (45c)

∇E(e) = Hφφ̃, δ∇E(e) = Hφδφ̃, (45d)

in which Bu, Bφ, Hu and Hφ contain the first- and second-order partial derivative of the NURBS basis
functions, respectively, defined as

Bi
u =



∂Ni
∂x 0 0
0 ∂Ni

∂y 0

0 0 ∂Ni
∂z

0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂z 0 ∂Ni

∂x
∂Ni
∂y

∂Ni
∂x 0


, Bu =

[
B1

u B2
u . . . Bn

u

]
, Hu =


∂B1

u
∂x

∂B2
u

∂x . . . ∂Bn
u

∂x
∂B1

u
∂y

∂B2
u

∂y . . . ∂Bn
u

∂y
∂B1

u
∂z

∂B2
u

∂z . . . ∂Bn
u

∂z

 (46)

Bi
φ =

−
∂Ni
∂x

− ∂Ni
∂y

− ∂Ni
∂z

 , Bφ =
[

B1
φ B2

φ . . . Bn
φ

]
, Hφ =


∂B1

φ

∂x
∂B2

φ

∂x . . .
∂Bn

φ

∂x
∂B1

φ

∂y
∂B2

φ

∂y . . .
∂Bn

φ

∂y
∂B1

φ

∂z
∂B2

φ

∂z . . .
∂Bn

φ

∂z

 (47)

Note that matrices Hu and Hφ contain second-order derivative with respect to the physical coordinate
of the basis functions. The details are presented in Appendix A. Now, based on the discretized finite
elements, the weak form in Equation (30) can be re-expressed as

⋃ne
e=1

[∫
v(e)
(
δεTσ + δ∇εTτ − δET D

)
dv =

∫
v δuT f dv +

∫
aσ,(e) δũT t̄ da +

∫
v φ̃

T
ρ f dv−

∫
aφ,(e) δφ̃

T
σ̄∗ da

]
. (48)

Finally, by substituting Equations (39) and (45) into Equation (48) and utilizing the arbitrariness
of the test functions, a system of linear equations can be obtained as[

Kuu Kuφ

Kφu Kφφ

] [
ũ
φ̃

]
=

[
f u
f φ

]
, (49)
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where the stiffness matrices and force vectors are computed as

Kuu =
ne⋃

e=1

∫
v(e)

BT
u cBu dv , (50a)

Kuφ =
ne⋃

e=1

∫
v(e)

(
−BT

u eBφ − HT
u µBφ

)
dv , (50b)

Kφu =
ne⋃

e=1

∫
v(e)

(
−BT

φ eT Bu − BT
φ µT Hu

)
dv , (50c)

Kφφ =
ne⋃

e=1

∫
v(e)
−BT

φκBφ dv , (50d)

f u =
ne⋃

e=1

(∫
v

NT
u f dv +

∫
aσ,(e)

NT
u t̄ da

)
, (50e)

f φ =
ne⋃

e=1

(∫
v

NT
u ρ f dv +

∫
aφ,(e)
−NT

φ τ̄ da
)

. (50f)

Note that the flexoelectric tensor µ for cubic symmetry crystal κ is given as

µ =

µ11 µ12 µ12 0 0 0 0 0 0 0 0 µ44 0 0 0 0 µ44 0
0 0 0 0 0 µ44 µ12 µ11 µ12 0 0 0 0 0 0 µ44 0 0
0 0 0 0 µ44 0 0 0 0 µ44 0 0 µ12 µ12 µ11 0 0 0

 (51)

The symmetry of the flexoelectric tensor can be found in [71,72]. For cubic crystal, the non-zero
components of flexoelectric tensor are µ1111, µ1221 and µ1122 while other coefficients with cycling
indices are equal (e.g., µ1221 = µ1331) and with odd number of indices are zeros (e.g., µ1112 = 0) [73].
In matrix notation, the coefficients µiiii, µjiij and µiijj are denoted as µ11, µ12 and µ44, respectively [38].

4. Numerical Examples

4.1. Hollow Cylinder

In this first numerical example, we consider an infinitely long hollow cylinder subject to
mechanical displacement and electric potential at the inner and outer surface, as depicted schematically
in Figure 3a. Taking advantage of the axisymmetry, a quarter of the hollow cylinder is modeled as
shown in Figure 3b, in which symmetry boundary conditions are enforced at x1 = 0 and x2 = 0.
This problem is an oft-used benchmark in gradient elasticity [74,75], and has been extended to
flexoelectricity [39,40]. In our work, we adapt both internal energy U from [39] and electric Gibbs
energy G from [40] as follows

U =
1
2

λε jjεkk + µε jkε jk +
1
2

l2
(

λε jj,iεkk,i + 2µε jk,iε jk,i

)
+ f̂12ε jj,iPi + 2 f̂44εij,iPj +

1
2

αPiPi (52)

and

G =
1
2

λε jjεkk + µε jkε jk +
1
2

l2
(

λε jj,iεkk,i + 2µε jk,iε jk,i

)
− µ12ε jj,iEi − 2µ44εij,iEj −

1
2

κEiEi, (53)

where λ and µ are the two Lamé parameters, l is the length scale, µ12 and µ44 are two non-zero
flexoelectric coefficients, and f̂1 and f̂2 are two flexoelectric coupling coefficients that related to the
flexoelectric coefficients by the susceptibility χ = κ/ε0− 1 such that µ12 = χ f̂12, µ44 = χ f̂44, α and κ are
the reciprocal susceptibility and dielectric permittivity, also related to one another by the susceptibility.
These material parameters can be found in Table 4. Furthermore, due to the geometry and boundary
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condition, the displacement as well as the electric potential depend only on the radial r of the hollow
cylinder such as

ur(r) = c1r + c2
1
r
+ c3 I1

(
r
l0

)
+ c4K1

(
r
l0

)
, (54a)

φ(r) = c5 ln(r) + c6 +
µ11

κ

(
dur

dr
+

ur(r)
r

)
, (54b)

where l2
0 = l2 +

µ2
11

(λ+µ)κ
, I1 and K1 are the modified Bessel functions of the first and second kind,

respectively. The coefficients c1, c2, c3, c4, c5, c6 are determined from the boundary conditions

ur

∣∣∣∣
r=ri

= uri , ur

∣∣∣∣
r=ro

= uro , (55a)

φr

∣∣∣∣
r=ri

= φri , φr

∣∣∣∣
r=ro

= φro , (55b)

τrrr

∣∣∣∣
r=ri

= τrrr

∣∣∣∣
r=ro

= 0 (55c)

For numerical modeling, both formulations in Table 2 are solved with IGA, henceforth denoted as
IGA(P) and IGA(E) for the formulation obtained from electric enthalpy and Gibbs energy, respectively.
In addition, we also demonstrate results from second formulation with mixed FEM.

For the IGA approach, we employ 25 × 25 second-order NURBS basis functions that have
C1 continuity to model a quarter of the hollow cylinder, as shown in Figure 3b, and impose
additional symmetric boundary condition on the left and bottom edges. While the homogeneous and
inhomogeneous Dirichlet boundary conditions are trivial to impose [69], the boundary conditions for
the displacement gradients require constraining the degrees of freedom associated with the boundary
control points and their neighbors. For instance, the symmetry boundary conditions on the bottom
edge in Figure 3b read

u2

∣∣∣∣
x2=0

= 0, (56a)

u1,2

∣∣∣∣
x2=0

= 0, (56b)

u2,1

∣∣∣∣
x2=0

= 0, (56c)

where Equation (56c) is automatically fulfilled as a result of Equation (56a). To impose Equation (56b),
the nodal parameters (associated with the displacement in x1 direction ux1) of the two bottom layer
of control points are identical, i.e., ubottom

x1
= uadjacent-bottom

x1 . This can be implemented by utilizing
Lagrange multipliers. On the other hand, the displacement gradient boundary conditions can be
imposed effortlessly for the mixed FEM with the nodal displacement gradient.

Table 4. Material parameter for the problem depicted in Figure 3a.

Y ν l µ12 µ44 κ

139× 109 Pa 0.3 2× 10−6 m 1× 10−6 C/m 1× 10−6 C/m 1× 10−9 F/m
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(a) Schematic of a hollow cylinder.
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(b) IGA discretization

Figure 3. Schematic of an infinitely long hollow cylinder, where the inner and outer radii are ri = 10µm
and r0 = 20µm, respectively. The inner surface is imposed by radial displacement uri = 0.045µ m
and grounded, i.e., φri = 0 V, whereas the radial displacement uro = 0.05µm and electric potential
φro = 1 V are applied on the outer surface. Symmetry boundary conditions are enforced, such that
u1
∣∣
x1=0 = u1,2

∣∣
x1=0 = u2,1

∣∣
x1=0 = 0 and u2

∣∣
x2=0 = u1,2

∣∣
x2=0 = u2,1

∣∣
x2=0 = 0.

Figure 4 presents numerical results of displacement and electric potential obtained from three
approaches, showing good agreement between them. For a closer look, numerical results of radial
displacement uR, electric potential φ, radial strain εrr and circumferential strain εθθ along the radial
direction with angle θ = 45◦ are presented and compared with the analytical solutions in Figure 5.
Excellent agreement between the numerical and analytical results can be seen.

4.2. Cantilever Beam

In this example, we consider a 2D cantilever beam subjected to a point load on the right-end and
having two different electrode configurations, which serve as a demonstration for a nanogenerator [38].
As depicted in Figure 6, the beam is constrained at the left-end, whereas two different electrode
configuration are set up for two electrical boundary conditions. In Type-1 boundary condition,
the electrode at the right-end of the beam is grounded, i.e., the electrical potential φ is prescribed
as zero. In Type-2 condition, an electric potential difference is applied between the top and bottom
electrode, e.g., the electric potential on the top is fixed to zero, whereas the bottom is induced to
have an unknown equipotential V, which is solved by utilizing Lagrange multiplier. The material
parameter in this study is single barium titanate (BaTiO3) crystal adopted from [38] and presented in
Table 5. The mechanical deformation can be transform into electrical energy via the electromechanical
coupling effect in the nanogenerator. The performance of this energy conversion can be evaluated by
the electromechanical coupling factor keff given as the ratio between the electrostatic energy Eelec and
the elastic energy Eelas

keff =
Eelec
Eelas

=
1
2

∫
v E · κ · E dv

1
2

∫
v ε · C · ε dv

, (57)

Consequently, the normalized piezoelectric constant is defined as

ē =
keff

kpiezo
, (58)

where kpiezo is obtained as keff without considering the flexoelectric effect. Physically, the normalized
piezoelectric constant indicates the enhancement of flexoelectric effect on the energy conversion.
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Figure 7 demonstrates the normalized piezoelectric constant ē as the normalized thickness h̄ =

−e31h/µ12 varies under Type-1 configuration. The numerical results in the simplified case, where only
κ33 and µ12 are non-zeros to mimic the 1D problem, are compared to the analytical solution where

keff =

√
e2

31+12(µ12/h)2

κ33Y and excellent agreement is shown, which illustrates the great enhancement of

flexoelectricity with the decrease in beam thickness. In addition, this enhancement can also be seen in
the full 2D model, which is also in good agreement with the work of Abdollahi et al. [38].
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Figure 4. Distribution of radial displacement and electric potential.
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Figure 5. Comparison of the exact and numerical results for radial displacement ur, electric potential φ,
radial strain εrr and circumferential strain εφφ as functions of radius r.
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Figure 6. (a) Schematic of a hollow cylinder. Two different types of electrical boundary condition are
imposed. The upper figure describes Type-1 boundary where zero electric potential is imposed on
the right edge. Type-2 boundary is demonstrated in the lower figure where zero electric potential is
applied on the top edge and an unknown equipotential (due to the electrode) on the bottom edge. (b)
IGA discretization (top) and mixed FEM discretization (bottom).

Table 5. Material parameters for the problem depicted in Figure 6.

Y ν e31 µ12 κ11 κ33 F

100× 109 Pa 0.37 -4.4 C/m2 1× 10−6 C/m 11×10−9 F/m 12.48×10−9 F/m 100×10−6 N
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Figure 7. Effective normalized piezoelectric constant obtained with Type-1 boundary condition.

We further investigate the difference in the normalized effective piezoelectric constant ē with
two different electrical boundary conditions and present the numerical results in Figure 8. In both
boundary condition setups, as the beam thickness decreases, the normalized effective piezoelectric
constant increases, which is expected due to the size effect nature of flexoelectricity. Notably, Type-1
boundary condition seems to be more effective than Type-2. Furthermore, both IGA and mixed
FEM approach give the same prediction on the performance of two boundary condition types. For
a closer look, we present the electric potential distribution for two electrical boundary conditions
computed from IGA and mixed FEM in Figure 9 with the height and length of the beam being
h = 1.2468× 10−7 (m) and L = 10h, respectively. The results from the two methods are in agreement.
For Type-1 boundary condition, the electric potential difference is highest at the left end of the beam,
where strain gradient is largest. As for the Type-2 boundary condition, the induced electric potential at
the top electrode is around −9 µV.

0 1 2 3 4 5 6 7 8
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0.5

1

1.5

2
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h̄

ē

 

 

IGA-Open circuit

IGA-Close circuit
Mixed FEM-Open circuit
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Figure 8. Effective piezoelectric constant under different electrical boundary conditions.
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(a) IGA-Type-1 boundary-φ (b) IGA-Type-2 boundary-φ

(c) Mixed FEM-Type-1 boundary-φ (d) Mixed FEM-Type-2 boundary-φ
Figure 9. Electric potential distribution under Type-1 and Type-2 electrical boundary conditions.

Additionally, we also carried out a three-dimensional simulation of a cantilever beam under
Type-2 electrical boundary condition by using IGA. The 3D beam is assumed to have square
cross-section, where the width is equal to the height h. The length of the beam as well as the applied
force on the right surface are unchanged as in the two-dimensional case. Figure 10 shows the
induced electric potential. A similar response has been observed as in 2D case, where largest electric
potential is at the left end. Nevertheless, the electric potential at the top electrode has the value of 3.21 V.

0.3191

2.7161

-2.078e+00

5.113e+00
phi

(a) Electric potential

0.3191

2.7161

-2.078e+00

5.113e+00
phi

(b) Electric potential of the middle surface.
Figure 10. Electric potential of a 3D bending flexoelectric beam.

We also study the converse flexoelectric effect from the electrical boundary condition. While the
mechanical point load is omitted, a uniform electric field with magnitude |E| = 8 MV/m is applied
by setting the electric potential to be V = −8h (MV) on the bottom electrode. In this case, the beam
behaves as an actuator and induces bending curvature, which is shown in Figure 11b. The calculated
curvature of the bending beam due to converse flexoelectric effect is in good agreement with both
numerical results from [38] and the experimental ones from Bursian and OI [76]. Further investigation
on the distribution of electric field in the thickness direction of the beam is shown in Figure 11a,
which is also in agreement with the result from [38]. Non-uniform distribution of electric field can be
observed, especially at the region near the top and bottom edge of the beam, which yields high electric
field gradient and consequently induces deformation. Note that the considered flexoelectric beams do
not account for the resistive load [10] or the rectifying circuit [77,78]. In [77], a piezoelectric structure is
analyzed along with its circuit connections. In addition, in [78], comparisons between the charge type
Hamiltonian and voltage type Hamiltonian are performed to identify the output power and voltage
of the piezoelectric energy harvester. Development of a fully combined flexoelectric generator and
interface circuit might be of significance in the future.
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Figure 11. Beam under electrical load.

4.3. Truncated Pyramid

This section presents the numerical results of a two-dimensional truncated pyramid under
compression with different type of boundary conditions, as adopted from [38]. Figure 12 depicts
the schematic of a truncated pyramid whose top surface is grounded with zero electric potential,
whereas the bottom surface is attached with an electrode that results in the equipotential condition on
it. Two mechanical boundary conditions are considered, namely the rigid boundary condition where
the bottom surface is constrained in x2 direction and the top surface is subjected to uniform load F,
and the flexible boundary condition where both the bottom and top surfaces are subjected to uniform
compression load F. For numerical modeling, the problem is discretized by quadratic C1-continuity
NURBS basis functions, as shown in Figure 12b as well as by mixed FEM as in Figure 12c.

(a) Schematic of a truncated pyramid.

0 0.5 1 1.5 2

x 10
−3

0

2

4

6

x 10
−4

x1

x
2

 

 

Element edge

Control Points

(b) IGA discretization

(c) Mixed FEM discretization
Figure 12. Schematic and IGA discretization of a truncated pyramid.

Numerical results of electric potential φ and compression strain εyy for the rigid boundary
condition from IGA and Mixed FEM are presented in Figure 13 and for flexible boundary condition
from IGA are shown in Figure 14. Good agreement can be observed between the two methods as
well as with the reference results [38]. In rigid model, our IGA and mixed FEM approaches predict
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the equipotential of bottom electrode to be 2.7 and 2.5 mV, respectively, while the reference result is
2.6 mV [38]. Similarly, in flexible model, the bottom equipotential is 5.7 mV, agreeing with the value of
5.6 mV from [38].

Additionally, a three-dimensional version of the truncated pyramid is also studied. The geometric
parameters are kept as in 2D case, so that the top and bottom surfaces now have dimension of a1 × a1

and a2 × a2, respectively. The flexible boundary condition is considered, where the applied force
F is identical from the 2D case. The numerical result from IGA is shown in Figure 15. As can be
seen in Figure 15c, the electric potential in 3D model is very similar to that of 2D model. However,
the induced potential on the top electrode is now 6.918 V, three orders of magnitude greater than the
result predicted from 2D model.
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Figure 13. Rigid boundary condition.
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Figure 14. Flexible boundary condition.



Energies 2020, 13, 1326 25 of 29

 

 

Element edge

Control Points

(a) IGA mesh

2.306

4.6121

1.043e-08

6.918e+00
phi

(b) Electric potential φ

2.306

4.6121

1.043e-08

6.918e+00
phi

(c) Electric potential φ

Figure 15. 3D pyramid.

5. Discussion

Since its discovery, flexoelectricity bears significance because of its potential to aid developing
novel electromechanical coupling devices. To fully utilize this effect, both experimental and simulation
approaches are necessary. In view of simulation, in this paper, we provide a generalized formulation
of flexoelectricity as the extension from gradient elasticity. Remarkably, the boundary value problems
that involve fourth-order PDE in flexoelectricity, necessitating C1 continuity, are obtained from electric
enthalpy as well as electric Gibbs free energy. To overcome the high-order continuity, we employ
isogeometric analysis and mixed finite element, where detailed implementations are reported. We
solved benchmark problems using these methods on 2D and 3D flexoelectric problems. The source
codes are provided and can be used to study more complex problems.
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Appendix A. Second-Order Derivative of NURBS Basis Functions

The computation of second-order derivative with respect to the physical coordinate of the basis
functions can be achieved by first noticing that the first-order derivative of the basis functions with
respect to the parametric coordinate is computed from the Jacobian matrix

∂Ni
∂ξ

∂Ni
∂η

∂Ni
∂ζ

 =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ




∂Ni
∂x

∂Ni
∂y

∂Ni
∂z

 (A1)

Next, by taking the second-order derivative with respect to the parametric coordinate and re-arranging,
the second-order derivative with respect to the physical coordinate is determined from
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