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Abstract: Advanced smart grid technologies enable energy prosumers to trade surplus energy
from their distributed renewable energy sources with other peer prosumers through peer-to-peer
(P2P) energy trading. In many previous works, P2P energy trading was facilitated by blockchain
technology through blockchain’s distributive nature and capacity to run smart contracts. However,
the feature that all the data and transactions on a blockchain are visible to all blockchain nodes may
significantly threaten the privacy of the parties participating in P2P energy trading. There are many
previous works that have attempted to mitigate this problem. However, all these works focused
on the anonymity of participants but did not protect the data and transactions. To address this
issue, we propose a P2P energy trading system on a blockchain where all bids are encrypted and
peer matching is performed on the encrypted bids by a functional encryption-based smart contract.
The system guarantees that the information encoded in the encrypted bids is protected, but the peer
matching transactions are performed by the nodes in a publicly verifiable manner through smart
contracts. We verify the feasibility of the proposed system by implementing a prototype composed of
smart meters, a distribution system operator (DSO) server, and private Ethereum blockchain.

Keywords: smart grid; blockchain; peer-to-peer energy trading; privacy protection; functional encryption

1. Introduction

Distributed renewable energy sources, such as solar panels and wind turbines, are drastically
changing the way electricity is generated and consumed [1,2]. Energy prosumers, i.e., energy consumers
producing their own electrical power, are rapidly proliferating. Advanced smart grid technologies
enable these prosumers to trade surplus energy with other peer prosumers through peer-to-peer
(P2P) energy trading [3]. P2P energy trading is expected to be one of the most important elements
of next-generation power systems [1]. It can provide numerous benefits, such as increasing the
overall efficiency of power systems and reducing power outages. For customers, it may create
a competitive energy market and allow access to alternative energy sources according to their
individual preferences [1].

In many ongoing trials, P2P energy trading is being facilitated by blockchain technology through
blockchain’s distributive nature and capacity to run smart contracts [3,4]. Such trading systems
cannot be fully independent of the existing infrastructure, but the integration of new systems into
conventional centralized energy systems is crucial [4]. An electric power system requires two
fundamental components: the physical system for electricity transmission and the information system
for settlement, balancing, and billing. In the P2P trading context, a blockchain can provide a partial
solution for the latter, such as matching and contracting between sellers and buyers and recording
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all transactions in an immutable way. However, the physical functionality must be provided by the
existing infrastructure. For example, even when two peers agree on an energy trade between them,
there is no way to physically exchange energy if they are away from each other but not mobile. This
situation is entirely different from data transmission in a communication system because power routing
in dynamic routing configurations is very challenging in comparison with data-packet routing [1].
Therefore, prosumers must use the power-distribution lines connected to an existing utility company.
Furthermore, considering that most renewable energy sources are intermittent, prosumers may still
want the stable power source from the utility company, as well as the renewable sources.

In this situation, a utility company serves as both a distribution system operator (DSO), renting
transmission and distribution lines to prosumers for P2P trading, and a load serving entity (LSE)
(i.e., a power retailer providing stable electricity in a traditional way). According to a recent survey
conducted in Reference [3], prosumers preferred established authorities, such as energy suppliers and
the local council, to less stable parties, such as blockchain energy start-ups, as P2P scheme organizers
because P2P trading between prosumers requires numerous safeguards. In addition, although the
type of technology running the scheme was not important to the prosumers, the mention of Bitcoin [5]
caused a significant negative reaction, which was likely due to its extreme price instability [3].
Therefore, it would be desirable that a means for financially settling the energy transactions is
established outside a blockchain. A desirable feature of this approach is that a prosumer’s credit
for produced energy and debit for consumed energy through P2P trading can be managed together
with the energy consumption from the legacy line on a single billing account registered to the utility
company, while a prosumer can remain anonymous to other prosumers. Nevertheless, a blockchain
is still an attractive platform for peer matching and trade negotiations as blockchain transactions are
transparent and cannot be manipulated even by the utility company. We remark that transparency
was valued as the most important characteristic of a local energy trading network in another recent
survey [6]. However, using a blockchain in this way can pose a potential threat to the security of the
utility company. The blockchain will contain all the details of the transactions mediated by the company,
which can reveal a significant portion of the trade secrets of company, such as the size and pattern
of transactions and the company revenue through mediation fees. Even if a private/permissioned
blockchain is used, as in many previous works in relevant literature [3,4,7], every node participating in
the blockchain will learn confidential information about the company.

To address these issues, we aimed at achieving two main goals that, at a first glance, may seem
to conflict with each other: transparency of the peer matching procedure and confidentiality of the
matching information. For this purpose, we proposed a P2P energy trading system on a private
Ethereum blockchain, where all bids are encrypted and peer matching is performed on the encrypted
bids by a functional encryption (FE)-based smart contract. The system guarantees that the information
encoded in the encrypted bids is protected from blockchain nodes, although the peer matching
transactions are performed by the nodes in a publicly verifiable manner through smart contracts.
The prosumers remain anonymous to each other, whereas the utility company knows their identity
for accounting and billing purposes. Moreover, matching peers cannot repudiate their bids after
the matching is complete. Accounting and billing are settled outside the blockchain. We verify the
feasibility of the proposed system by implementing a prototype composed of smart meters, a DSO
server, and a private Ethereum blockchain. According to the experimental results, the entire procedure
for encrypting a bid, uploading this bid to the blockchain, and matching peers on the blockchain were
completed in real time (i.e., in a few seconds). A part of this paper appeared at [8].

2. Preliminaries

2.1. Blockchain and Privacy

A blockchain is a distributed ledger, the integrity of which is ensured through interlinked,
cryptographically signed, and time-stamped blocks that contain transactions [2,9]. The data and
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transactions in blocks are validated by all participants (“nodes”) based on a well-defined consensus
protocol without a trusted third party. Although the blockchain concept originated from Bitcoin [5],
the script language for Bitcoin is too limited to perform general transactions because it is designed
mainly for a single-purpose application (i.e., exchanging Bitcoin cryptocurrency). For example, Bitcoin
does not support the execution of loops or complex programs. Ethereum [10] is the most well-known
solution of this problem. The Ethereum protocol supports a Turing-complete programming language
and enables users to create virtually any form of transaction or application using smart contracts [11,12].
Smart contracts are computer programs that securely reside on the blockchain and automatically
execute the specified function [1,13]. An Ethereum smart contract can be written in the Solidity
language and is created by sending a contract-creation transaction to the blockchain network. Smart
contracts are run on the Ethereum Virtual Machine (EVM), which is maintained by Ethereum nodes
in a decentralized and distributed manner [14]. Because Ethereum supports complex applications,
EVM requires a method of validating the smart contract. To prevent poorly written code, such as
an infinite loop, Solidity uses ‘gas’ as the fundamental unit of computation when running a smart
contract [15]. If the smart contract requires more gas than the gas limit defined at the time of its
deployment, its execution is terminated, thereby avoiding any waste of resources.

Blockchain has the potential to fulfill various requirements for P2P applications; however, it faces
a confidentiality issue [16,17]. Because the design philosophy of a blockchain is to provide integrity
through publicly verifiable transactions, all the data and transactions on the blockchain are visible
to all the participating nodes. Most blockchains, including Ethereum, provide simple anonymity by
generating pseudorandom addresses instead of permanent user IDs. However, the transactions of
the same user can be linked through the address, although his/her real ID is not revealed. There is
a well-known attack wherein an attacker can trace the transmission history to match a pseudorandom
address with a person holding a coin. To solve this problem, mixing services were designed to exchange
a user’s coin with those of other users randomly, so that the original owner of the coin is not identified.
Mixcoin [18] and Coinshuffle [19] are examples of such services. Another approach is to provide
zero-knowledge proof on the blockchain, such as zk-SNARK [20] and BulletProof [21]. Zerocash [22]
and Zether [23] are well-known applications of zero-knowledge proof. However, Zerocash [22] and
Zether [23], as well as mixing services, are limited to the confidential transfer of cryptocurrency,
i.e., ensuring user anonymity when cryptocurrency is transferred. Although zk-SNARK [20] and
BulletProof [21] can have a wider range of applications, they are not designed for directly performing
confidential transactions, but for confidentially verifying the validity of a transaction. The challenge
encountered when implementing a confidential transaction is that users must disclose their data to all
blockchain nodes to perform transactions over the blockchain.

Therefore, a method of performing transactions (i.e., smart contracts) is required without opening
the data to the nodes. Hawk [24] is a framework that builds privacy-preserving smart contracts.
It effectively solved the issue discussed earlier, but by introducing a third party called the manager.
The manager must be involved in every confidential transaction, thus causing transaction execution to
require many interactions between the users and the manager.

2.2. Peer-to-Peer Energy Trading Through Blockchain

Recently, the energy business has been considering decentralized systems owing to the necessity
of energy-sector decentralization and the fact that renewable energy is not suitable for the centralized
legacy system [25,26]. Blockchain meets these demands; thus, there have been many trials of P2P
energy trading based on blockchain technologies. Power Ledger [27] and LO3 Energy’s Brooklyn
Microgrid [28,29] are the best-known projects that use blockchains. Power Ledger is a P2P energy
trading platform that uses blockchains; it was developed in Australia and has expanded its territory
to include India, Japan, and other countries. Brooklyn Microgrid is an energy marketplace for the
residents of Brooklyn, New York. There are other platforms, such as Slock.it [30] and SolarCoin [31],
but they do not address the privacy issue. Additionally, there are P2P energy trading systems for
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specific purposes, such as electric vehicle charging [32] and campus-scale energy auction [33]. However,
the privacy issue was not addressed effectively in these systems, either.

To tackle the privacy threat against P2P energy trading, various approaches have been proposed.
Li et al. [34] and Kang et al. [35] provided pseudonym-based solutions for P2P energy trading on
consortium-based blockchains. Aitzhan and Svetinovic [7] presented a token-based energy trading
system to enable peers to perform anonymous transactions on a Bitcoin-based blockchain. This can
also be categorized as a pseudonym-based approach, where only the identities of peers are protected,
but the transaction data are visible to all blockchain nodes. Gai et al. [36] proposed to prevent linking
attacks and malicious data mining by adding noise to the trading distribution, which is similar to the
well-known smart meter data obfuscation techniques [37–39] to prevent non-intrusive appliance load
monitoring (NIALM) [40]. To be precise, the privacy-preserving mechanism in Reference [36] was to
achieve differential privacy by creating dummy accounts and dividing accounts. Therefore, only the
statistical information for each peer is protected, but the transaction data are not protected. To the best
of our knowledge, there has been no proposal to protect transaction data while performing prosumer
matching on a blockchain.

Finally, blockchains can be used for purposes different from trade negotiation. For example,
Munsing et al. [41] proposed the use of a blockchain to decentralize the optimization of energy
resources. Luo et al. [42] proposed to use a separate agent system for negotiation and a blockchain
only as a transaction settlement mechanism.

2.3. Function-Hiding Inner Product Functional Encryption

Functional encryption (FE) is a special type of encryption scheme that supports operations on
encrypted data [43–45]. In this section, we will explain only the special FE scheme, i.e., function-hiding
inner product encryption (FHIPE) [46–50], although the original FE can provide a wider range of
functions and properties. Let x and y be two vectors, and let E(x) and E(y) be their encryption. Roughly
speaking, the decryption operation takes two ciphertexts E(x) and E(y) as inputs, and produces the
inner product of x and y, which is denoted as 〈x, y〉. This operation can be performed by any party but
reveals no information about either x or y, except 〈x, y〉.

In this study, we use the practical FHIPE scheme, ΠIPE, proposed by Kim et al. in 2018 [50].
This scheme uses pairing-based asymmetric bilinear groups. Therefore, we begin the description of
ΠIPE with some definitions and properties of pairings. Let P ∈ G1 and Q ∈ G2 be generators of G1

and G2, respectively, where G1 and G2 are two distinct groups of prime order q. Let e : G1 ×G2 → GT
be a mapping that maps two group elements from G1 and G2 onto a target group GT . We write the
group operations in G1, G2, and GT multiplicatively. Let the tuple (G1,G2,GT , q, e) be an asymmetric
bilinear group that satisfies the following properties:

• Both the bilinear map e and the group operations in G1, G2, and GT can be computed efficiently.
• Map e satisfies e(P, Q) 6= 1, i.e., e has non-degeneracy.
• Map e is bilinear for all x, y ∈ Zq. In other words, map e satisfies e(Px, Qy) = e(P, Q)xy.

For a group element P ∈ G1 and a row vector v = (v1, . . . , vn), Pv denotes the vector of group
elements (Pv1 , . . . , Pvn) as in Reference [50]. The bilinear map over groups is extended to vectors as
follows:

e(Pv, Qw) = ∏
i=1,...,n

e(Pvi , Qwi ) = e(P, Q)〈v,w〉, (1)

where v = (v1, . . . , vn) and w = (w1, . . . , wn).
Now, we are ready to explain ΠIPE. Many inner product encryption schemes typically

consist of four probabilistic polynomial time (PPT) algorithms: setup, key generation, encryption,
and decryption [46–50]. However, it is more intuitive to use the notations, left and right encryptions,
instead of key generation and encryption, respectively. This notation was already used in Reference [50].
Then, the ΠIPE scheme is defined with four PPT algorithms, Setup, LeftEncrypt,RightEncrypt, and
Decrypt, as follows:
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• Setup(1λ)→ (op, sk): Given a security parameter λ, the setup algorithm Setup outputs the public
parameters op and the secret key sk corresponding to λ. Concretely, Setup samples an asymmetric
bilinear group (G1,G2,GT , q, e), and chooses generators P ∈ G1 and Q ∈ G2. Next, the algorithm
samples the matrix B← GLn(Zq), where GLn(Zq) is the general linear group of (n× n) matrices
over Zq. Then, the algorithm sets the matrix B∗ = det(B) · (B−1)> using det(B), the determinant
of B, and (B−1)>, the transpose matrix of B−1. Finally, the setup algorithm outputs the public
parameters op = (G1,G2,GT , q, e) and the secret key sk = (op, P, Q, B, B∗).

• LeftEncrypt(sk, α, x) → EL(x): Given the secret key sk, a uniformly random element α ∈ Zq,
and a row vector x = (x1, . . . , xn), the left encryption algorithm LeftEncrypt outputs a left
encryption:

EL(x) = (L1, L2) = (P α·det(B), P α·x·B).

• RightEncrypt(sk, β, y) → ER(y): Given the secret key sk, a uniformly random element β ∈ Zq,
and a row vector y = (y1, . . . , yn), the right encryption algorithm RightEncrypt outputs a right
encryption:

ER(y) = (R1, R2) = (Q β, Q β·y·B∗).

• Decrypt(op, EL(x), ER(y)) → z: Given the public parameters op, the left encryption EL(x) =

(L1, L2), and the right encryption ER(y) = (R1, R2), the decryption algorithm Decrypt computes:

D1 = e(L1, R1) and D2 = e(L2, R2).

Then, it checks whether there is a z satisfying (D1)
z = D2 by solving a discrete logarithm

problem [51] and either outputs z or a symbol implying that a valid z cannot be found. If there is
such a z, then z = 〈x, y〉.

3. Energy Trading System Model

3.1. System Components

We consider a microgrid system consisting of prosumers, smart meters, an energy storage, a DSO,
and a blockchain. Figure 1 illustrates the proposed system model. Each smart meter is connected to
a prosumer that we simply call a user. According to the convention in relevant literature [7,52], we
assume that a smart meter is a sealed tamper-proof device, i.e., even the user of the smart meter cannot
extract or inject secret keying material, although the user initiates the power trading transactions by
providing his/her smart meter with the desired amount and price of power to be sold or bought.
Therefore, we assume that a smart meter never performs a malicious function, i.e., it is a trusted
party. In addition, we consider a smart meter as not only a metering device but also a network node
that provides the user with a connection to the outside world, such as the blockchain. However,
it is also possible to set up a separate device for this purpose, if necessary. An energy storage is
an energy pool equipped with a bi-directional communication flow. It is connected with each smart
meter through a local distribution network. It is also connected to a DSO and a transmission system
operator (TSO) that transmits electrical power from power plants through a transmission line. We
assume that the energy storage is also a trusted party. In this paper, we do not deal with the details
of power-transmission lines involving TSOs and power plants. A DSO is responsible for both the
uni-directional power distribution from the transmission line and the bi-directional distribution
between the prosumers via the energy storage. For the latter P2P energy trading, the DSO becomes
a mediator and updates the seller credit and the buyer debit according to the seller-buyer matching
information provided by the blockchain. The DSO also serves as an LSE, and each user has an account
registered to the DSO. Thus, the DSO periodically charges each account associated with a user at a rate
decided by (usage of energy from power plants) − (energy sale credit) + (energy purchase debit) +
(fees for transaction mediation and distribution). The fees are not only for mediating P2P trading
but also for the transmission and distribution of power from power plants, as in a traditional energy
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service. The blockchain provides the peer users with a platform for energy trading where users can
anonymously negotiate energy prices without revealing their identity or prices to any third party
except the DSO. The blockchain implements this functionality by performing operations on users’
encrypted bids with functional encryption. Finally, we assume that all data communication lines are
protected by a proper traditional end-to-end encryption mechanism.

Figure 1. Proposed blockchain-enabled microgrid system model. DSO = distribution system operator;
LSE = load serving entity; TSO = transmission system operator.

3.2. Threat Model and Security Goals

Based on the above system model, we assume the following threat model.

• The blockchain never deviates from the protocol specified by smart contracts. In addition,
the integrity of the data written on the blockchain is guaranteed by the nature of the blockchain.
However, each node participating in the blockchain network can see all the details of all the
transactions and their related data if they are not encrypted. Therefore, from the viewpoint of
the DSO and the users, the blockchain can be considered an honest-but-curious adversary that
aims at obtaining any useful information from the user transactions but implements the protocol
honestly and correctly.

• When mediating an energy transaction, the DSO may try to manipulate either the energy price or
trading amount between the matched seller and buyer artificially to maximize its profit. Let us
assume that the desired prices of a seller and a buyer are ppS and ppB, respectively. The matching
for energy trading is successful when ppS ≤ ppB. If ppS = ppB, the transactions are performed
with this matched price. In contrast, if ppS < ppB, the price is settled according to a predefined
policy, e.g., (ppS + ppB)/2. However, abusing the property that the users cannot see the other
party’s encrypted bid, the DSO may try to buy the energy for ppS and sell it for ppB. Second,
assume that the desired trading amounts of a seller and a buyer are paS and paB, respectively.
Then, the matched trading amount must be min(paS, paB). However, if the fee for mediating P2P
trading is not profitable enough, in comparison with that for legacy transmission and distribution,
the DSO may attempt to intentionally reduce the volume of P2P transactions.

• Users may attempt to repudiate the amount and price of power that they had declared when
initiating a bid.

To address the above threats, a P2P energy trading system must satisfy the following goals.
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• User Privacy: The identities of users participating in P2P transactions must be kept private
from blockchain nodes. The peers that conduct power transactions must not learn each other’s
identities. The identity of a user must not be linkable through multiple transactions involving this
user.

• DSO Privacy: Because the DSO’s profit depends on the fees for transaction mediation,
the statistics on the transactions mediated by the DSO may reveal a significant portion of the
company’s trade secrets. Therefore, the contents of each bid, such as the amount and price of
power, must be kept private from blockchain nodes.

• Verifiability of transactions and integrity of bids: Let S and B be the sets of sellers and buyers
that uploaded bids on the blockchain, respectively. Let ppU and paU be the price and amount
of power declared by a user U ∈ S ∪ B, respectively. If minS∈S ppS ≤ maxB∈B ppB, it must be
guaranteed that the seller with the minimum bid, i.e., Sm = argminS∈S ppS, and the buyer with the
maximum bid, i.e., BM = argmaxB∈B ppB, will be matched for the P2P transaction. All operations
must be verifiable by any participating user. Furthermore, the DSO must not be able to modify
ppSm , paSm , ppBM , and paBM when mediating the transaction.

• Nonrepudiation of bids: The matched seller and buyer must not be able to repudiate their bids,
i.e., Sm cannot deny ppSm and paSm , and BM cannot deny ppBM and paBM .

4. Proposed Energy Trading System

In this section, we first explain the proposed algorithm that matches a seller and a buyer in
a privacy-preserving manner using functional encryption. Then, we combine this algorithm with the
system model explained in the previous section to build a prototype energy trading system.

4.1. Privacy-Preserving Matching Algorithm

First, we design a matching strategy that matches a seller and buyer pair for energy trading. Next,
we extend this strategy to a privacy-preserving matching algorithm. As in the previous section, let S
and B be the sets of sellers and buyers who want to trade energy, respectively. Let ppU be the power
price declared by a user U ∈ S∪ B. As in a typical matching strategy for various trading markets and
auctions, e.g., a stock market, we will match the seller with the minimum bid, i.e., Sm = argminS∈S ppS,
to the buyer with the maximum bid, i.e., BM = argmaxB∈B ppB. Therefore, matching is not possible
if minS∈S ppS > maxB∈B ppB. To identify Sm and BM easily, we maintain two array-based heap data
structures: a min-heap HS for sellers and a max-heap HB for buyers, where the primary keys are the
bid values. Therefore, Sm and BM can be found at the roots of HS and HB, respectively. The insertion
and deletion of a bid can be completed in either O(log2 |S|) or O(log2 |B|) time. After Sm and BM are
matched, the amount of power to be traded is decided as min(paSm , paBM ), where paU is the power
amount declared in user U’s bid.

To perform the above-mentioned matching and heap updating in a privacy-preserving manner,
we designed a vector encoding method for power prices. For simplicity, we assume that a price
is an element selected from an ordered set P ⊂ Z, where Z is the set of integers. The elements in
P are sorted in increasing order. We label these elements as p1, . . . , p|P|, starting from the smallest.
For example, if P = {11, 12, . . . , 20}, then p1 = 11, p2 = 12, . . . , p10 = 20. We also define indexP(pi)

where 1 ≤ i ≤ |P|. For example, indexP(13) = 3. In a situation where decimal fractions are allowed for
a price, appropriate scaling and quantization methods can be applied. To apply the FHIPE scheme [50]
explained in Section 2.3, we encode a price value ppU ∈ P with two |P|-dimensional vectors, UL

and UR, which we call left and right vectors, respectively. We encode UL, so that its elements with
index < indexP(ppU) are 0, and the other elements are 1. Meanwhile, a one-hot encoding is used
for UR. For example, if ppU = 15, UL = (0, 0, 0, 0, 1, 1, 1, 1, 1, 1), and UR = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0).
When the prices ppU1 and ppU2 are submitted by two users U1 and U2 as (UL

1 , UR
1 ) and (UL

2 , UR
2 ),

respectively, the comparison of ppU1 and ppU2 can be performed by computing an inner product.
To be precise, 〈UL

1 , UR
2 〉 = 1 is equivalent to ppU1 ≤ ppU2 . For example, ppU1 = 15 is encoded as
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UL
1 = (0, 0, 0, 0, 1, 1, 1, 1, 1, 1) in the above-mentioned example. If ppU2 = 16, 〈UL

1 , UR
2 〉 = 1 because

UR
2 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0). If ppU2 = 14, 〈UL

1 , UR
2 〉 = 0.

Now, we are ready to design a privacy-preserving matching algorithm. To submit a bid,
a user U first encrypts the bid using FHIPE [50] with a secret key sk and random α, β ∈ Zq as
follows: EL(UL) ← LeftEncrypt(sk, α, UL) and ER(UR) ← RightEncrypt(sk, β, UR). If U wants to
sell electricity, U submits an encrypted bid as a selling bid. Then, U is added to the seller set S,
and the pair (EL(UL), ER(UR)) is added to the min-heap. If U’s bid is a buying bid, U is added to B,
and (EL(UL), ER(UR)) is added to the max-heap. The bid values in these heaps must be maintained
as ciphertexts. We denote these two encrypted heaps as EHS and EHB. We implemented a heap
as an array of elements, where each heap element is a structure consisting of an encrypted bid
and auxiliary data. When an encrypted bid (EL(UL), ER(UR)) is added to either EHS or EHB, the
encrypted bids must be compared in the ciphertext domain. This is possible by performing an FHIPE
decryption operation. Let (EL(UL

1 ), ER(UR
1 )) and (EL(UL

2 ), ER(UR
2 )) be the encrypted bids of U1

and U2, respectively. We have seen in Section 2.3 that Decrypt(op, EL(UL
1 ), ER(UR

2 )) gives 〈UL
1 , UR

2 〉,
i.e., Decrypt(op, EL(UL

1 ), ER(UR
2 )) = 1 is equivalent to ppU1 ≤ ppU2 . This operation enables anyone

who possesses the public parameters op and ciphertext (EL(UL
1 ), ER(UR

2 )) to compare ppU1 and ppU2 .
Note that “Decrypt” does not mean recovering either UL

1 or UR
2 . Therefore, the comparison of EL(UL

1 )

and ER(UR
2 ) is possible without revealing their actual values. As a more intuitive notation, we will

use the notation COMP(EL(UL
1 ), ER(UR

2 ))← Decrypt(op, EL(UL
1 ), ER(UR

2 )) hereafter, which returns 1
when ppU1 ≤ ppU2 . Algorithm 1 is the procedure INSERT for inserting a new element into an encrypted
min-heap using COMP. As in a typical complete binary tree implementation, the root node is placed at
EHS[1]. The left and right children of EHS[i] are at EHS[2i] and EHS[2i + 1], respectively. The parent
node of EHS[i] is at EHS[bi/2c]. It is the same as the legacy heap operation, except that elements are
compared over the ciphertext domain. Similarly, the procedure REMOVEMIN(EHS) for removing
the top element, i.e., the minimum, from the encrypted heap EHS is defined in a straightforward way.
Heap operations for an encrypted max-heap are defined in an analogous way. Algorithm 2 is the
procedure for finding a possible match.

4.2. Privacy-Preserving Energy Trading Protocol

In this subsection, we present the proposed privacy-preserving energy trading protocol.
The protocol comprises three stages: the setup, bidding and matching, and trading stages.

4.2.1. Setup Stage

Figure 2 shows the setup stage of our protocol, which begins with the DSO performing the Setup

algorithm of FHIPE. The DSO generates public parameters op and a secret key sk. In addition, a smart
contract for peer matching is created on the blockchain with op. The validity of this smart contract can
be verified by any party because op is open to the public. When a user connects a smart meter to the
DSO’s network, a setup request is generated and forwarded to the DSO. When the DSO receives this
request, the pair (op, sk) is sent to the smart meter. The address of the smart contract is also sent to
the smart meter. When the smart meter successfully receives the (op, sk) pair and the smart contract
address, it notifies the user of the setup completion.
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Algorithm 1 INSERT procedure for encrypted min-heap EHS.

Input: EL(UL), ER(UR), auxiliary data
Output: none

1: idx ←(size of (EHS))+1 . Insert the new item as the last leaf node.
2: EHS[idx].EL ← EL(UL)
3: EHS[idx].ER ← ER(UR)
4: EHS[idx].aux ← auxiliary data
5: while idx > 1 do . Perform upheap to restore the heap-order.
6: if COMP (EHS[idx].EL, EHS[bidx/2c].ER) = 1 then
7: swap EHS[idx] and EHS[bidx/2c]
8: idx ← bidx/2c
9: else break

Algorithm 2 MATCHING procedure to find a possible match between a seller and a buyer.

Input: none
Output: data or f alse

1: if COMP (EHS[1].EL, EHB[1].ER) = 1 then . matching success
2: Sm ← REMOVEMIN(EHS)
3: BM ← REMOVEMAX(EHB)
4: Return (Sm.EL, Sm.ER, Sm.aux) and (BM.EL, BM.ER, BM.aux)
5: else . matching failure
6: Return f alse

Figure 2. Setup stage of the proposed protocol.

4.2.2. Bidding and Matching Stage

Figure 3 demonstrates the bidding and matching stage. When users want to trade energy,
they provide the smart meter with the details of the desired trade, i.e., the intent to buy or sell the
electrical power, power amount, and price per unit, which we denote as intent, pa ∈ Z, and pp ∈ P,
respectively, where P is the set of valid bids. The smart meter randomly generates a one-time identifier
OID, which can be considered a pseudonym for privacy. Then, the relation between UID and OID is
registered to the DSO for this session, where UID is the permanent ID of the user. pp is encoded into
two |P|-dimensional vectors UL and UR using the encoding method explained in Section 4.1. These two
vectors are encrypted using the FHIPE operations as follows: EL(UL) ← LeftEncrypt(sk, α, UL) and



Energies 2020, 13, 1321 10 of 22

ER(UR) ← RightEncrypt(sk, β, UR). We will use a simplified notation EPP ← E(α, β, pp) to cover
the entire vector encoding and FHIPE encryption procedures, i.e., EPP = (EL(UL), ER(UR)). In
addition, a hash function H is computed to commit to pa, pp, OID, α, and β with a random number r.
The smart meter submits the encrypted bid EPP, together with intent, OID, and the commitment c to
the blockchain by calling the smart contract created by the DSO in the setup phase. Many smart meters
submit their encrypted bids similarly. The blockchain maintains EHS and EHB to manage these bids.
Whenever a new bid EPP is received, either EHS or EHB is updated according to Algorithm 1, where
auxiliary data contain the intent, OID, and c, corresponding to EPP. For simplicity, we denoted this
operation as INSERT(EPP) in Figure 3. We denoted the encrypted bid, intent, OID, and c submitted
by another smart meter as EPP′, intent′, OID′, and c′, respectively, to distinguish them from the ones
submitted from U’s smart meter. These data are also inserted into either EHS or EHB according to
their intent′ value. The submission and insertion of encrypted bids and auxiliary data are performed
continuously at the request of smart meters. When both EHS and EHB are nonempty and a trigger
condition is satisfied, a matching operation is performed on the blockchain using Algorithm 2. With
regard to the trigger condition, we may consider various cases. For example, the matching may be
performed whenever a new bid is submitted. Matching may also be performed periodically for the
waiting bids. If the matching is successful, the encrypted bids and auxiliary data of Sm and BM are
returned by Algorithm 2. Blockchain nodes forward these data to the appropriate smart meters, and
each of the two smart meters notifies its user that it was selected for trading. The DSO also obtains
the information about the matched users. For simplicity, we will use subscripts S and B to represent
a matched seller and buyer, respectively, i.e., the auxiliary data for the matched seller and buyer are
(intentS, OIDS, cS) and (intentB, OIDB, cB), respectively. Their encrypted bids will be written as EPPS
and EPPB, i.e., EPPS = (Sm.EL, Sm.ER) and EPPB = (BM.EL, BM.ER).

Figure 3. Bidding and matching stage of the proposed protocol.
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4.2.3. Trading Stage

Figure 4 demonstrates the trading stage. Let US and UB be the two matched users with OIDS and
OIDB, and let SMS and SMB be their smart meters, respectively. When a smart meter is informed by
the blockchain that its OID has been selected for trading, it sends the DSO all the data for opening the
commitment. For example, SMS transmits OIDS, paS, ppS, αS, βS, and rS. The DSO verifies that these
values are the same as those committed at the bidding and matching stage by comparing the hash
value H(paS, ppS, OIDS, αS, βS, rS) with the corresponding commitment cS. The DSO also verifies that
the price ppS has been appropriately encoded in the encrypted bid EPPS by comparing EPPS with
a reproduced ciphertext E(αS, βS, ppS). Similar verifications are repeated for cB and EPPB. The DSO
then decides a negotiated price PP according to a predefined policy (e.g., the average of ppS and
ppB.) The DSO forwards all the data received from SMB to SMS, and vice versa. PP is also sent to
the two smart meters. After verifying the other party’s c and EPP, each smart meter verifies that PP
conforms to the price-decision policy. The DSO and two smart meters compute the trading amount
PA ← min(paS, paB). If all verifications are successful and PA is successfully decided, the smart
meters send an “ok” message to the DSO. Then, SMS feeds energy to the energy storage, and SMB
consumes the energy provided by the energy storage. The energy storage reports the amounts of fed
and consumed energy to the DSO, as well as the identifiers SMS and SMB of the corresponding smart
meters. The DSO combines this information and the stored (UID, OID) relations to identify US and
UB and adjusts their account balances. The two users US and UB are notified that their balances were
updated.

Figure 4. Trading stage of the proposed protocol.
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5. Simulation and Performance Analysis

In this section, we verify the feasibility of the proposed system by implementing a prototype.
To simulate the system illustrated in Figure 1, we implemented a DSO, private Ethereum blockchain,
and smart meter. The DSO was implemented on a desktop server with an Intel Core i7-7700 CPU
(3.60 GHz) and 16 GB RAM, and the private Ethereum blockchain was implemented on a desktop
server with the same configuration. To simulate a smart meter, we used a Raspberry Pi 2 with an ARM
Coretex-A7 quad-core CPU (900 MHz) and 1 GB RAM. The software for the DSO and smart meter was
implemented in the C++ programming language, and the blockchain codes were implemented in
the Solidity and Go languages. Figure 5 illustrates the internal components of the DSO, blockchain,
and smart meter. The DSO contains storage module to store the open parameter op, secret key sk,
(UID, OID) pairs, and contract results to calculate the charges associated with users. The blockchain
nodes provide storage to maintain two encrypted heaps EHS and EHB. The smart meter contains
a storage module to store op, sk, permanent UID, smart contract address, and the session information
including the one-time identifier OID, bid (pa, pp), and the randomizers (α, β, r) for hiding pp and pa.
The smart meter must be equipped with a measurement module. Because the smart meter feeds and
receives energy, it should be bi-directional. However, we did not equip the smart meter with the actual
power measurement module in our implementation as power measurement was not a primary concern
in our experiment. Finally, each party contains an FHIPE module to perform cryptographic operations
and a network module to communicate with others. Figure 5 also shows the data flows between the
internal components in each stage. The data flows in the setup stage, bidding and matching stage,
and the trading stage are shown as blue, red, and green lines, respectively. Most of the data flows
depicted in Figure 5 are straightforward according to the protocol description in the previous section.
Therefore, we focus on the data exchange involving the FHIPE modules below.

Figure 5. Components of the proposed system. FHIPE = function-hiding inner product encryption.

Because the cryptographic operations performed by the three parties are different, their FHIPE
modules contain different algorithms. Specifically, the DSO performs Setup in the setup stage (Figure 2),
producing (op, sk). The DSO also performs LeftEncrypt and RightEncrypt for the verification of
encrypted bids in the trading stage (Figure 4). Its FHIPE module takes (αS, βS, ppS) and (αB, βB, ppB)

as input and produces EPPS and EPPB to be compared with those received from the blockchain
in the bidding and matching stage. The FHIPE module in the smart meter performs LeftEncrypt

and RightEncrypt operations for generating its encrypted bid EPP in the bidding and matching stage
(Figure 3) and verifying the counterpart’s bid (α′, β′, pp′, pa′) in the trading stage (Figure 4). The FHIPE
module in the blockchain repeatedly performs COMP, i.e., Decrypt, for the INSERT and MATCHING
operations in the bidding and matching stage (Figure 3). The Decrypt operation requires pairing
computation e. We used an optimal Ate pairing [53] with a pairing-friendly Barreto-Naehrig (BN)
curve [54], as defined by Ethereum.
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According to Section 2.3, the Setup, LeftEncrypt, and RightEncrypt operations performed by the
DSO and smart meter require the implementation of group operations on G1 and G2. To be precise,
these operations are point operations on a pairing-friendly BN curve because G1 and G2 are BN
curve groups that enable pairing operations on the blockchain. To implement the group operations,
we also must implement the underlying finite field operations and big number operations. We used
the pairing-based cryptography library (MCL) [55], for elliptic curve operations, the GNU Multiple
Precision Arithmetic Library (GMP) [56], for big number arithmetic operations, and the library for
doing number theory (NTL) [57], for operations over a finite field, vector, and matrix. The MCL
library supports optimizations for BN curves in two layers. First, it supports the generalized lazy
reduction technique and the new squaring formula proposed in Reference [58] for the underlying finite
field. Second, in a higher layer, it supports an efficient scalar multiplication method using the skew
Frobenius map on BN curves [59]. For the smart meter, we implemented the FHIPE module, applying
these optimization methods. For the DSO, we adopted the FHIPE module in Reference [60], where the
above optimization methods, as well as parallel processing, were applied. For the Decrypt operation
performed by the blockchain, we used the pre-compiled contract provided by Ethereum.

Now, we present our experimental results. Table 1 summarizes the performance of FHIPE
operations by each party for |P| = 10, 20, 30, 40, and 50, where |P| is the number of possible choices
for power price per unit, i.e., the dimension of the left and right vectors. The values in the table are
the averages of 1000 iterations for each parameter combination. We observed that the smart meter
required significantly more time than the DSO for performing the same operations, i.e., LeftEncrypt and
RightEncrypt. For example, when |P| = 10, LeftEncrypt in the smart meter required 62.040 milliseconds,
but the same operation in DSO was performed in 0.120 ms, which is 0.19% of the time consumed by the
smart meter. RightEncrypt consumed 351.538 ms in the smart meter and 0.566 ms in the DSO. The DSO
required only 0.16% of the time required by the smart meter because the smart meter resource is very
constrained compared to the DSO, and an additional optimization method, i.e., parallel processing,
was applied to the DSO. However, it must be noted that all operations were completed in less than 2 s,
even in the smart meter.

Table 1. Measured times for performing FHIPE operations in smart meter, DSO, and blockchain (milliseconds).

Range of Price Smart Meter DSO Blockchain

LeftEncrypt RightEncrypt Setup LeftEncrypt RightEncrypt COMP

|P| = 10 62.040 351.538 0.434 0.120 0.566 10.679

|P| = 20 115.252 654.209 0.952 0.122 0.843 19.932

|P| = 30 176.429 999.862 2.076 0.135 1.239 29.167

|P| = 40 224.141 1271.670 4.030 0.146 1.524 38.209

|P| = 50 282.103 1595.647 7.026 0.159 1.940 47.053

Next, we analyzed the performance of the proposed protocol. First, we evaluated the bidding and
matching stage by measuring the transaction throughput, where a transaction covers the following
portion of Figure 3: the smart meter’s encrypting a bid into EPP, computing the commitment c,
and sending intent, EPP, OID, and c to the blockchain, and a blockchain node’s mining a block
containing the execution of INSERT and MATCHING procedure, and sending the result back to
the smart meter. In the experiment, we considered two setups. For the first setup, we measured
the throughput with a single smart meter. The second and third columns in Table 2 present the
experimental result in two units: transactions per second (tps) and kilobits per second (kbps). The
values are the averages for 1000 bids, where the bid values were randomly selected from P, and the
intent to either buy or sell was also randomly selected for each bid. The results indicate that an entire
transaction is completed in roughly a second when |P| = 10 and in a little more than 4 s even when
|P| = 50.
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Table 2. Transaction throughput of the proposed protocol.

Range of Price
Throughput with

a Single Smart Meter
Throughput with

Multiple Smart Meters
Throughput of Non-Encryption Protocol

with Multiple Smart Meters

In tps In kbps In tps In kbps In tps In kbps

|P| = 10 0.981 21.248 2.010 41.656 58.882 446.32

|P| = 20 0.552 20.950 0.990 36.259 34.517 438.49

|P| = 30 0.378 20.561 0.606 31.948 25.025 446.34

|P| = 40 0.289 20.496 0.423 29.100 17.561 403.28

|P| = 50 0.234 20.186 0.330 27.852 13.712 385.26

The second setup is for multiple smart meters. Recall that in the first setup, the measured time
covered the operations for both the smart meter and the blockchain. However, in a more realistic
situation, the blockchain does not have to wait until a smart meter completes its task. Instead, it is
reasonable to assume that many smart meters generate encrypted bids in parallel, and the blockchain
continues its transactions without stalling. Therefore, to simulate this situation, we pre-generated
1000 bids and fed them to the blockchain. According to the experimental results presented in the fourth
and fifth columns of the table, when |P| = 10, the throughput was doubled compared to the single
smart meter case. When |P| = 50, the throughput increased by 41%. For reference, we also presented
the measured throughputs when the bid protection was not applied, i.e., the bids were not encrypted.
The last two columns of Table 2 show that the transactions were performed up to 13.712/0.330 ≈ 41.55
times faster when the bidding and matching stage was implemented without encryption.

We also analyzed the Ethereum gas consumption in the bidding and matching stage of the
proposed protocol. In the protocol, the two dominant operations that consume gas are heap
node creation and COMP operation. First, when an encrypted bid is inserted into an encrypted
heap according to Algorithm 1, a new leaf node containing (EPP, intent, OID, c) is created, which
requires non-negligible memory, thereby consuming gas. Second, according to the specification of
go-ethereum [61], which is an EVM implemented with the Go language, a combined pairing operation
involving an n-dimensional vector consumes 80,000n + 100,000 gas [62]. In our case, a COMP operation
requires a combined pairing operation with n = |P| and some additional operations. The COMP
operation is used to manage two encrypted heaps, EHS and EHB, i.e., it is repeatedly used for the
INSERT and MATCHING procedures, as shown in Algorithm 1 and Algorithm 2. Although we did not
demonstrate an explicit algorithm, the REMOVEMIN procedure also repeatedly calls COMP. Table 3
details the gas consumption of these two dominating operations. We measured the consumed gas
for 100 iterations, and the values presented in the table are the averages. It can be inferred from the
experimental result that the gas consumption of heap node creation increased by a similar amount
each time |P| was increased by 10. For example, the difference in gas consumption between |P| = 10
and |P| = 20 was 1,334,272, and the difference between |P| = 20 and |P| = 30 was 1,334,236. We also
observe that the gas consumption of COMP was slightly greater than 80,000 × |P| + 100,000.

Table 3. Amount of gas consumed to perform a heap node creation and COMP operation.

Range of Price
Consumed Gas Heap Node Creation COMP

|P| = 10 1,626,775 941,188
|P| = 20 2,961,047 1,594,308
|P| = 30 4,295,283 2,508,970
|P| = 40 5,629,511 3,415,960
|P| = 50 6,964,833 4,175,020

Regarding the performance of the trading stage, the dominant operations for this stage are
LeftEncrypt and RightEncrypt operations of the DSO and two smart meters, because other operations,
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such as hash computation, are negligible. As the operations of the two smart meters are independently
performed in parallel, the time required for this stage is roughly 2 × (DSO’s left and right encryption
time) + (smart meter’s left and right encryption time). It is roughly 415 ms for |P| = 10 and 1.88 s for
|P| = 50 according to Table 1.

For an objective evaluation of the performance of the proposed system, we compare it with the
performance of previous blockchain-based privacy-perserving applications. Because these applications
were not for P2P energy trading, direct comparison with the proposed system is not possible. However,
they can be the reference for the performance of our system. First, we examine Zerocash [22] that
ensures user anonymity for cryptocurrency transfer. The main cryptographic primitive of Zerocash
is zero-knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARKs), which are
composed of KeyGen, Prove, and Verify algorithms. In Reference [22], the following six functions for
Zerocash were defined by using these algorithms; Setup, CreateAddress, Mint, Pour, VerifyTransaction,
and Receive. Among them, the Pour function actually transfers cryptocurrency. According to the
experimental results on an Intel i7-4770 @ 3.40 GHZ CPU and 16 GB RAM, the Prove algorithm needed
2 min 2 s, while the Verify algorithm needed only 5.4 ms [22]. Because the dominant operation of
the Pour function is Prove, a Pour operation needed 2 min 2 s. In contrast, the dominant blockchain
operation in the proposed system is COMP, which is based on the similar operation to the underlying
operation of Verify of Zerocash. We already verified in Tables 1 and 2 that COMP is completed in tens
of milliseconds and an entire transaction is completed in a few seconds.

Next, we examine the performance of Hawk [24]. Hawk is a more general framework for building
privacy-preserving smart contracts. As in Zerocash, the KeyGen, Prove and Verify algorithms were
defined for zk-SNARKs, and they were used to design Pour, Freeze, Compute, and Finalize operations.
Among the applications of Hawk presented in Reference [24], we may refer to the auction application.
This application is composed of user-side and manager-side operations. According to the experimental
results on Amazon EC2 r3.8xlarge virtual machines in a 27 GB, 4-core environment, the manager-side
Finalize operation for selecting a winner required 469.7 s for 100 participants. According to Table 2,
the proposed system requres only 100/2.010 ≈ 49.75 s for 100 transactions when |P| = 10 and
100/0.330 ≈ 303.03 s when |P| = 50.

6. Security Analysis

In this section, we examine whether the proposed system satisfies the security goals defined
in Section 3.2.

• User Privacy: Users are identified on the blockchain with the one-time pseudonym OID of
their smart meter for each trading session. Because OID is an ephemeral identifier, the other
peers connected to the blockchain do not learn the user’s permanent identifier UID. In addition,
the activities of the same user in two different sessions cannot be linked because the OID is
refreshed every session. The UID is revealed to the DSO through the initiation message from the
smart meter to the DSO in Figure 3, but this is not a violation of our security goal.

• DSO Privacy: What the blockchain nodes see in the bidding and matching stage are the tuples
(intent, EPP, OID, c) for each bid and the matching results. Although EPP and c contain the
pp and pa for the bid, they are protected by the FHIPE and cryptographic hash function. From
the one-way property of the cryptographic hash function, it is evident that the pa for the bid is
protected. The proof that pp is well protected will be presented in the Appendix A. In the trading
stage, pa and pp values are opened to the two smart meters, which is necessary for energy trading.
However, these values are protected from the other parties because all data communication
lines are protected by an end-to-end encryption mechanism according to the system model in
Section 3.1.

• Verifiability of transactions and integrity of bids: Because the blockchain is honest-but-curious,
it honestly performs heap updates (Algorithm 1) and peer matching (Algorithm 2). Therefore,
the seller with the minimum bid and the buyer with the maximum bid are always matched with each
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other. Whether the operations are being performed correctly is verifiable by any user connected to
a blockchain node, although the actual contents of the bids are protected by FHIPE. With regard to
the integrity of a bid, the blockchain guarantees integrity by nature. Therefore, no one can modify
the data on the blockchain, such as intent, EPP, OID, and c, without properly calling smart contracts.
According to Figure 3, cB on the blockchain is sent to SMS. Therefore, if the DSO attempts to
modify either paB or ppB in Figure 4, SMS will notice this modification through the verification of cB.
Additionally, by comparing EPPB with E(αB, βB, ppB), SMS can verify that ppB had been properly
encoded in the EPPB that was used for comparison and matching. SMB can verify the integrity of
paS and ppS in the same way.

• Nonrepudiation of bids: Because smart meters are tamper-proof, the users cannot revoke their
bids by manipulating the smart meter. Furthermore, once the encrypted bid EPP and commitment
c are uploaded on the blockchain, their integrity is protected by the blockchain. Because c is
bound to pa and pp using a cryptographic hash function, neither pa nor pp can be denied.

7. Discussion

In this paper, we proposed a P2P energy trading system on a blockchain where peer matching is
performed on the encrypted bids by a functional encryption-based smart contract. We also verified the
feasibility of the proposed system by implementing a prototype composed of smart meters, a DSO,
and private Ethereum blockchain. However, the system could be improved in several ways. First,
we only considered the case where new encrypted bids are inserted into the heap. However, it would
be desirable if there were a mechanism to remove a bid when it expires. Second, the dimension of the
vectors encoding bid values is proportional to the range of possible bid values. If we can use a more
compact encoding, e.g., a binary encoding, we can significantly reduce the time and gas consumption
for bid generation and peer-matching. Finally, the smart meter performance can be improved by
adopting more implementation optimization. We shall address these issues in future research.

The proposed method provides the means to hide the electricity price and amount contained in
a bid, but it does not tell a prosumer what price to bid. Many relevant studies have been conducted to
improve the energy management and optimize the costs. Various techniques, such as fuzzy logic [63],
cooperative game theory [64], genetic algorithms [65], and deep recurrent neural networks [66], have been
proposed. Specifically, a reinforcement learning-based strategy (Fuzzy Q-learning) was recently proposed
to improve the decision-making process of P2P power trading [67]. These strategies may be combined
with our privacy-enhancing method.

Furthermore, the proposed system may be combined with other privacy-preserving techniques for smart
grids. In recent years, extensive research on smart meter data obfuscation has been conducted to prevent the
leakage of smart meter readings [37–39]. However, these methods are adding noise to the measurements;
thus, they affect the billing and control functionalities [68]. Therefore, many studies have proposed the use
of batteries to mask the energy-consumption statistics [68–70]. The advantage of using batteries is that they
not only improve privacy but also reduce energy costs when charging and discharging are cleverly controlled.
For this purpose, multiobjective optimization methods have been proposed to simultaneously minimize privacy
leakage and energy cost [69,70]. However, these proposals assume that energy prices are set up by the utility
company, and the prosumer’s active pricing mechanism with P2P trading has not been considered. Therefore,
it would be very interesting if we combined the proposed system with these battery-enabled data protection
methods. This may ensure privacy in two aspects: protection of power-consumption and P2P transaction data.
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Abbreviations

The following abbreviations are used in this manuscript:

BN Barreto-Naehrig
DSO Distribution System Operator
EVM Ethereum Virtual Machine
FE Functional Encryption
FHIPE Function-Hiding Inner Product Encryption
LSE Load Serving Entity
NIALM Non-Intrusive Appliance Load Monitoring
OID One-time IDentifier
PPT Probabilistic Polynomial Time
P2P peer-to-peer
TSO Transmission System Operator
UID User’s permanent IDentifier
zk-SNARKs zero-knowledge Succinct Non-interactive Arguments of Knowledge
tps transactions per second
kbps kilobits per second

Appendix A. Security Proof

In this section, we prove that pp is well protected by FHIPE. We first review the security properties
of the FHIPE scheme ΠIPE in Reference [50]. Next, we prove the security of the proposed protocol
using reduction from ΠIPE.

Appendix A.1. Review of the Security of the FHIPE scheme ΠIPE

Previous works on inner product encryption, including ΠIPE [50] we used considered
an indistinguishability notion of security [50]. We review the security notion of ΠIPE defined in
Reference [50]. Specifically, an experiment between a challenger and an adversary A that can make the
left and right encryption oracle queries is defined as follows.

Definition A1 (Experiment ExptIPE−INDb [50]). Let b ∈ {0, 1}. The challenger computes (op, sk) ←
Setup(1λ), gives op to the adversary A, and then responds to each oracle query type made by A in the
following manner.

- Left encryption oracle. On input a pair of vectors x0, x1 ∈ Zn
q \ {0}, the challenger computes and returns

EL(xb)← LeftEncrypt(sk, α, xb) using a random element α ∈ Zq.
- Right encryption oracle. On input a pair of vectors y0, y1 ∈ Zn

q \ {0}, the challenger computes and returns
ER(yb)← RightEncrypt(sk, β, yb) using a random element β ∈ Zq.
Eventually, A outputs a bit b′, which is also the output of the experiment, denoted by ExptIPE−INDb (A).

Then, the security of an FHIPE scheme is defined using an indistinguishability notion as follows:

Definition A2 (Admissibility of A [50]). For an adversary A, let QL and QR be the total number of left and
right encryption oracle queries made by A, respectively. For b ∈ {0, 1}, let x(1)b , . . . , x(QL)

b ∈ Zn
q \{0} and

y(1)
b , . . . , y(QR)

b ∈ Zn
q \{0} be the corresponding vectors that A submits to the left and right encryption oracles,

respectively. We say that A is admissible if for all i ∈ {1, . . . , QL} and j ∈ {1, . . . , QR}, we have that:

〈x(i)0 , y(j)
0 〉 = 〈x

(i)
1 , y(j)

1 〉.
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Definition A3 (IND-Security for IPE [50]). We define an inner product encryption scheme denoted as ΠIPE =

(Setup, LeftEncrypt,RightEncrypt,Decrypt) as fully-secure if for all efficient and admissible adversaries A:∣∣∣Pr[ExptIPE−IND0 (A) = 1]− Pr[ExptIPE−IND1 (A) = 1]
∣∣∣ = negl(λ),

where negl(λ) denotes a negligible function in λ.

Theorem A1 ([50]). The inner product encryption scheme ΠIPE is IND-secure in the generic group model.

Remark A1. The original statement in Theorem 7 in Reference [50] is that the inner product encryption
scheme ΠIPE is SIM-secure in the generic group model. It was also remarked in Remark 5 in Reference [50]
that a SIM-secure IPE scheme is also IND-secure. We merged these two statements into Theorem A1. See
Reference [50] for more information on the SIM-security and a generic group model.

Appendix A.2. Proof of the Security of the Proposed System

We denote the proposed privacy-preserving P2P energy trading protocol by ΠPPET . Our threat
model in Section 3.2 assumed that a blockchain is honest-but-curious. That is, the blockchain nodes
might attempt to extract useful information regarding the power price pp of a user. Regarding the
security against the honest-but-curious blockchain, we define an indistinguishability notion of security
for ΠPPET . Then, we prove the IND-security of ΠPPET using that of ΠIPE. Our proof is a modification
of the security proof of two-input functional encryption in the full version of Reference [50].

First, we define the following experiment between a challenger and an adversary A∗ that can
make two oracle queries, LeftEncrypt and RightEncrypt.

Definition A4 (Experiment ExptPPET−INDb ). Let b ∈ {0, 1}. The challenger computes (op, sk)← Setup(1λ)

using ΠIPE, gives op to the adversary A∗, and then responds to each oracle query type made by A∗ in the
following manner.

- LeftEncrypt oracle. On input a pair of two messages x0, x1 ∈ {z, . . . , z + (n− 1)} for a positive integer z,
the challenger encodes x0, x1 to UL

0 , UL
1 ∈ Zn

q \ {0} according to the description of Section 4.1, computes and
returns EL(UL

b )← LeftEncrypt(sk, α, UL
b ) using a random element α ∈ Zq.

- RightEncrypt oracle. On input a pair of two messages y0, y1 ∈ {z, . . . , z + (n− 1)} for a positive integer z,
the challenger encodes y0, y1 to UR

0 , UR
1 ∈ Zn

q \ {0} according to the description of Section 4.1, computes and
returns ER(UR

b )← RightEncrypt(sk, β, UR
b ) using a random element β ∈ Zq.

Eventually, A∗ outputs a bit b′, which is also the output of the experiment, denoted by ExptPPET−INDb (A∗).

Definition A5 (Admissibility ofA∗). For an adversaryA∗, let QL and QR be the total number of LeftEncrypt
and RightEncrypt oracle queries made by A∗, respectively. For b ∈ {0, 1} and a positive integer z, let
x(1)b , . . . , x(QL)

b ∈ {z, . . . , z + (n − 1)} and y(1)b , . . . , y(QR)
b ∈ {z, . . . , z + (n − 1)} be the corresponding

messages that A∗ submits to the LeftEncrypt and RightEncrypt oracles, respectively. We say that A∗ is
admissible if for all i ∈ {1, . . . , QL} and j ∈ {1, . . . , QR}, we have that:

f (x(i)0 , y(j)
0 ) = f (x(i)1 , y(j)

1 ),

where f is a function that computes the inner product of the two vectors encoded from the two input integers,
i.e., f (x(i)b , y(i)b ) = 〈(UL

b )
(i), (UR

b )
(i)〉.

Definition A6 (IND-Security for ΠPPET). We define a privacy-preserving P2P energy trading system ΠPPET
as fully-secure if for all efficient and admissible adversaries A∗:∣∣∣Pr[ExptPPET−IND0 (A∗) = 1]− Pr[ExptPPET−IND1 (A∗) = 1]

∣∣∣ = negl(λ).
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Theorem A2. If ΠIPE is IND-secure (according to Definition A3) in the generic group model, then ΠPPET
constructed with ΠIPE is IND-secure (according to Definition A6) in the generic group model.

Proof of Theorem A2. To perform a reduction proof of the security for ΠPPET , assume that
there exists an efficient and admissible adversary A∗. We will show that A∗ can be used as
a subroutine for the adversary A. That is, we design A that simulates the LeftEncrypt and
RightEncrypt oracles of ExptPPET−INDb by forwarding A∗’s corresponding queries to the left
and right encryption oracles of ExptIPE−INDb , respectively. Our construction of A is shown in
Algorithm A1. It is straightforward to see that if A∗ is an admissible, polynomial time algorithm,
Algorithm A1 is so, too. In addition,

∣∣∣Pr[ExptIPE−IND0 (A) = 1]− Pr[ExptIPE−IND1 (A) = 1]
∣∣∣ =∣∣∣Pr[ExptPPET−IND0 (A∗) = 1]− Pr[ExptPPET−IND1 (A∗) = 1]

∣∣∣. However, the construction of A
contradicts Theorem A1, which states that an efficient and admissibleAwith non-negligible advantage
does not exist. This completes the proof.

Algorithm A1 Construction of A using A∗.
Input: public parameters op.
Output: a bit b′.

1: Give op to A∗.
2: while true do
3: if A∗ returns b′ then
4: Return b′.
5: Wait until A∗ submits a query Q.
6: if Q = (x0, x1) is a LeftEncrypt oracle query then
7: Encode x0, x1 ∈ {z, . . . , z + (n− 1)} to UL

0 , UL
1 ∈ Zn

q \{0}.
. z is a positive integer and UL

b is a vector encoded according to the description of Section 4.1.
8: Submit (UL

0 , UL
1 ) to the left encryption oracle in ExptIPE−INDb and receive EL(UL

b ).
9: Provide EL(UL

b ) to A∗.
10: else. Q = (y0, y1) is a RightEncrypt oracle query.
11: Encode y0, y1 ∈ {z, . . . , z + (n− 1)} to UR

0 , UR
1 ∈ Zn

q \{0}.
. z is a positive integer and UR

b is a vector encoded according to the description of Section 4.1.
12: Submit (UR

0 , UR
1 ) to the left encryption oracle in ExptIPE−INDb and receive ER(UR

b ).
13: Provide ER(UR

b ) to A∗.
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