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Abstract: This paper explores the possibility of using the Winter–Kennedy (WK) method for transient
flow rate measurement in hydraulic turbines. Computational fluid dynamic (CFD) analysis of
a numerical model of an axial turbine was carried out for accelerating and decelerating flows.
Those were obtained by linearly opening and closing of the guide vanes, respectively, while retaining
the inlet pressure constant during the simulations. The behavior of several WK configurations on
a cross-sectional plane and along the azimuthal direction of the spiral casing was studied during
the transients. The study showed that there are certain WK configurations that are more stable
than others. The physical mechanism behind the stability (or instability) of the WK method during
transients is presented. Using the steady WK coefficient obtained at the best efficiency point (BEP),
the WK method could estimate the transient flow rate with a deviation of about 7.5% and 3.5%, for
accelerating and decelerating flow, respectively.
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1. Introduction

The integration of intermittent renewable energy sources like solar and wind into the grid results in
grid fluctuations. The grid fluctuations are usually stabilized by hydropower plants. Thus, hydropower
will likely remain a key link to ease the integration of different renewable energy sources within the
grid in the coming decades [1,2]. This demands the highly flexible operation of the hydropower plants.
Consequently, the plants undergo frequent transient events such as start–stops and large ramping
rates. Most research is focused on the hydro-mechanical aspects of the transients [1], variable-speed
operation [3] and designing flexible hydraulic turbines to support flexible operations [2]. Besides, the
instantaneous flow rate in the transients is a key parameter to study the hydro-mechanical effects on
the turbine components or to quantify the total volume of water flow during such events. Thus, the
accurate transient flow rate measurement in a hydraulic turbine has become a necessity.

It is still challenging to accurately measure the transient flow rate in practical engineering
applications, such as in hydraulic turbines. There is no standard method to measure transient flow rate
in a hydraulic turbine: there are only methods to measure the steady flow rate (see IEC 60193 [4] for
model testing or IEC 60041 [5] and ASME PTC-18 [6] for field testing). Most of the methods described
in these standards are applicable to high-head turbines. Similar measurement in low head turbines is
challenging, as the intake for such plants is usually short and has continuously varying cross-section.
Some recent advancements in the acoustic transit-time method showed a promising result, with a
deviation of less than 0.2% from a code-accepted reference flow meter [7]. In this study, the authors
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employed pairs of ultrasonic transducers installed in a non-uniform transition section at the intake.
Yet, the ultrasonic measurement method may be expensive and time-consuming [8].

There have been substantial studies in transient flow rate measurements, mainly in pulsating
flows with several techniques. Leontidis et al. [9] developed an ultrasonic flowmeter for measuring
flow rate fluctuations in cryogenic conditions. Cheesewright et al. [10] presented a Coriolis flowmeter
with a high dynamic performance in pulsating flows is presented by an electromagnetic flowmeter
was developed to measure transient flow by Lefebvre and Durgin [11]. However, these transient
flowmeters are applicable to a laboratory or simple engineering applications. For a hydraulic turbine,
the transient flow rate in a laboratory, i.e., model testing, may be measured by recording the water
level variation over time in the upstream tank with a controlled free surface (see the experimental
work by Fraser et al. [12]). However, the usual choice in model testing remains an electromagnetic
flowmeter [13,14]. These flowmeters may not provide accurate instantaneous results as they have a
time response of 0.5 s or above. Furthermore, the utilization of these techniques in field testing of
hydraulic turbines can be infeasible or expensive.

Transient flows have been extensively studied in straight pipes [15–17] and channels [18–20].
From these studies, three main stages in flow acceleration have been identified. The first stage is
a frozen stage where the turbulent shear stress largely remains unchanged, so the mean flow field
evolves like in a laminar flow. Inertia dominates and the flow responds to the imposed pressure
gradient. There is a rapid response of the turbulence and gradually exceeds the influence of inertia
in the second stage. The third stage is a quasi-steady stage where the turbulence and the mean flow
field converge towards their steady distributions based on the final Reynolds number. Consequently,
the wall-shear stress in ramp-up flow is larger than the quasi-steady value initially and becomes
smaller in the initial stage before approaching the quasi-steady value. In ramp-down flows, the
wall-shear stress may be either larger or smaller than the corresponding quasi-steady values in flow
deceleration depending on how strong the deceleration is [21]. Seddighi et al. [19] showed through
a direct numerical simulation (DNS) study of channel flows that in strongly decelerated flow, the
wall-shear stress is smaller initially and then becomes larger than the quasi-steady values. Furthermore,
the flow and turbulence quantities are significantly different from the corresponding quasi-steady
value in the ramp-up flow whereas much less in ramp-down flow. Accelerating and decelerating flows
are two increasingly occurring transient flows in hydraulic turbines due to frequent ramp-up and
ramp-down of the machine. Therefore, a better understanding of the transients has also become a
necessity for accurate transient flow rate measurement.

One of the popular methods to measure the relative flow rate in low head plants during steady
operation is the Winter–Kennedy (WK) method. The WK method is based on a simple radial
equilibrium flow assumption, i.e., a balance between the radial pressure gradient and centrifugal forces.
The method was first described by Winter and Kennedy almost a century ago [22]. It utilizes a pair of
differential pressure taps placed at a section of the spiral casing (SC) to measure the pressure difference
∆P. ∆P is then used to calculate the flow rate (Q), such as:

Q = KWK∆Pn, (1)

where KWK is the flow coefficient called the WK constant/coefficient and n is an exponent. KWK and n
values are usually calibrated using model test results or a previous efficiency test result. The value of n
ranges from 0.48 to 0.52 [5] but is usually kept at 0.5. The uncertainty in the measurement can range up
to 2% under similar conditions [23,24].

The WK method has some cost advantages and is easy to implement. It is widely used in relative
efficiency measurements, or to find an optimum cam relationship in double regulated machines.
Another benefit of the WK method is that the ∆P is measured continuously thus providing a possibility
of using WK as a transient flow rate measurement method.

Therefore, the present work explores the possibility of using the WK method in transient flows.
For this purpose, a numerical model of a low head Kaplan model turbine has been developed and the



Energies 2020, 13, 1310 3 of 22

computational fluid dynamics (CFD) simulations using unsteady Reynolds-averaged Navier–Stokes
(URANS) equations have been carried out. A previous study by the authors presented in [25]
showed that there could be appropriate locations and configurations of the stable WK pressure taps in
decelerating flow. Therefore, the present study is conducted considering several feasible locations for
the WK measurements in decelerating, as well as in accelerating flows. The WK coefficients in the
transient flows are compared to the coefficients obtained at steady flow conditions. The behavior of
the WK configurations in the transient flows is studied in detail.

In this paper, the test case considered is described initially, then the numerical modeling and
simulation approach to achieve the transient flows are described. The method section describes the
WK configurations considered. The result section presents the flow rate and the pressure difference
variation with time and the behavior of the WK coefficients during the transients. The performance of
the WK method is compared with the GV opening flow rate estimation approach. Finally, the flow
physics during transients, along with steady operations, are presented in the paper.

2. Methods

2.1. Porjus U9 Model Test Case and the Computational Domain

The test case of the present study is the Porjus U9 model turbine, which is a 1:3.1 scaled model of
the actual hydropower plant located in Sweden. The model turbine consists of a penstock, an SC, a
distributor with 18 stay vanes (SVs) and 20 guide vanes (GVs), a Kaplan runner with six blades, and
an elbow-type draft tube. The flow rate at the best efficient point (BEP), QBEP, is 0.71 m3/s at the GV
angle (GVA, α) of 26.5◦. The model turbine with the test rig is shown in Figure 1a. The computational
domain for the present study includes the penstock, SC and distributor. More details on the Porjus
U9 model turbine may be found in [26]. Furthermore, previously conducted experiments using laser
Doppler anemometry (LDA) at the inlet of the SC by Amiri et al. [26] and a separate study conducted
by Mulu and Cervantes [27] at two locations in the SC were used to validate the numerical model; see
Figure 1b for the measurement locations in the experiment conducted by Mulu and Cervantes.
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Figure 1. (a) Porjus U9 test rig facility with the computational domain marked by the dashed-rectangle;
(b) top view of the turbine with laser Doppler anemometry (LDA) measurement locations: SI and SII

from Mulu and Cervantes [27].

2.2. Transient Cases

The present study considers accelerating and decelerating ramp-type flows, which were obtained
by linearly opening and closing the GVs in the numerical simulations, respectively. For both cases,
the GVs movement was set to the rotational speed (ωGV) of about 8.83◦/s of the GV angle. The GVs
were opened from α = 2◦ to 26.5◦ (BEP) during acceleration and closed from α = 26.5◦ to 2◦ during
deceleration. These simulations were representative of a rapid ramp-up and rapid shutdown condition.
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Note that there is no runner in the study and hence only the GVs are moved (rotated) to obtain the
transient flows, so it is representative of an axial turbine. A minimum α of 2◦ was chosen mainly for
three reasons: a) to avoid water hammer effects, b) mesh constraints, and c) the necessity of having a
minimum flow rate during simulations.

The transient times in the acceleration and deceleration cases are denoted by ta and td, respectively.
These times are presented in reference to the time when the transient starts. As the GVs rotational
speed was 8.83◦/s of the GV angle and the range of GVA movement was 24.5◦, the total ramp time for
both cases was � 2.77 s. Before starting the transients, the steady simulations were run for a sufficiently
long period of time at a constant α, i.e., at αinitial = 2◦ for the acceleration case and αinitial = 26.5◦ for the
deceleration one. Furthermore, steady flows were obtained at stationary GVs opening with an angle of
26.5◦, 18◦, 13◦, 8◦, and 4◦, for comparison with the transient results. Table 1 shows a summary of the
transient cases.

Table 1. Transient cases.

Case αinitial (◦) αfinal (◦) Ramp Time (s)

Acceleration (GV opening) 2 26.5 2.77
Deceleration (GV closing) 26.5 2 2.77

2.3. WK Configurations and Locations

The WK configurations considered in this study are shown in Figure 2. Four cross-sectional planes
along the SC’s azimuthal direction: θ = 60◦, 75◦, 101◦, and 124◦ were considered; see Figure 2a. At each
cross-sectional plane θ, there were four WK configurations - two WKs in the upper half (WK1u and
WK2u) and their mirrored configurations in the lower half (WK1d and WK2d); see Figure 2b. The WK
coefficients KWKs were calculated from Equation (1) considering n = 0.5 and ∆P as the difference
in pressure between the outer and inner pressure points for a configuration: ∆P1u = Pou − P1u,
∆P2u = Pou − P2u, ∆P1d = Pod − P1d, and ∆P2d = Pod − P2d. As some spiral model turbine casings are
manufactured in two blocks with a horizontal interface in the middle of the guide vanes, the outer
pressure taps, Pou and Pod, are considered above and below this interface to avoid the connecting plane,
β = 0◦ shown in Figure 2b. The choice of these WK configurations is to cover feasible measurement
locations of the WK pressure taps in the SC, to understand the stability of the WKs along the azimuthal
direction of the SC and the choice of the pressure taps’ locations at a cross-sectional plane.
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Figure 2. (a) Locations of the Winter–Kennedy (WK) configurations at four cross-sections along the
azimuthal direction of the SC at θ = 60◦, 75◦, 101◦, and 124◦; (b) WK pressure points marked with the
black circles and combinations represented by the solid lines for each cross-sectional plane. The angular
locations of the pressure points on the plane are given by β angles, which are referenced from β = 0◦.
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2.4. Numerical Approach

2.4.1. Computational Domain

The computational domain is shown in Figure 3a. It encompasses penstock, SC, and distributor
consisting of SVs and GVs. All the domains were composed of structured hexahedral meshes created
using the software ICEM CFD; see representative meshes in the penstock and the SC in Figure 3b,c.
A general grid interface (GGI) was used to connect the domains. The mesh for the distributor was
created for a single passage containing a GV and an SV and then copied and rotated to create the
distributor. This ensures the one-to-one mesh connection at the interfaces of the two adjacent passages
and makes GVs movement possible. Since there are only 18 SVs in the distributor, two passages were
without SVs (see Figure 2a).
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2.4.2. Guide Vanes Motion

In order to mimic the GVs motion in the simulations, either mesh deformation [28] or re-meshing
techniques [29] are usually employed. In this study, the mesh deformation technique was used to rotate
the GVs. The mesh motion model used is based on the displacement diffusion equation,∇·

(
Γdisp∇δ

)
= 0;

where Γdisp is the mesh stiffness and δ is the displacement relative to the previous mesh locations.
The mesh stiffness increases exponentially as the control volume size decreases to keep the cells in the
boundary layer mostly unchanged. This equation is solved at the start of each time step. With this
model, the displacements applied on boundaries are diffused to other mesh points preserving the
relative mesh distribution of the initial mesh. More details on this mesh deformation model may be
found in the software’s solver guide [30].

The transient simulations were conducted with two intermediate meshes at α = 18◦ and 8◦ to
conserve the quality of the mesh. The transient simulations were performed considering a small GV
angle overlap between two consecutive simulations. As a matter of fact, a small bump in the variables
was observed at the start of the intermediate meshes and the overlapping zones were removed during
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post-processing for smooth results. This method did not affect the overall solution, as the solution
of the second mesh followed (overlapped) the solution of the previous mesh. The GVs were rotated
around their respective rotational axes. Representative meshes around the GVs at different time
instants during the deceleration are shown in Figure 4.
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2.4.3. Governing Equations and Boundary Conditions

All the simulations were performed using the software ANSYS CFX v19.1. The flow was modeled
using unsteady Reynolds-average Navier–Stokes (URANS) equations. The continuity and momentum
equations can be expressed as:

∂ui
∂xi

= 0 (2)

∂ui

∂t
+ uj

∂ui

∂xj
= −

1
ρ

∂p
∂xi

+ ν
∂2ui

∂x2
j

−

∂
(
u′iu
′

j

)
∂xj

(3)

where ui is a time-averaged velocity component, p is the time-averaged pressure, ν is the fluid kinematic
viscosity, and u′i represents the fluctuating velocity component. The Reynolds stress term −u′iu

′

j is
modeled with a turbulence model. The governing equations are discretized using the element-based
finite volume technique implemented in the software. The High-Resolution scheme was used to
discretize the advection term, which uses a special nonlinear technique to blend first to second-order
schemes depending on the location solution field. The transient term was discretized with the
second-order backward Euler scheme, as this scheme is robust, implicit, conservative in time, and does
not have a time step size limitation, refer CFX solver guide for more information on the scheme [30].
Menter’s k−ω SST (shear stress transport) model [31] was used to model turbulence. This turbulence
model has shown satisfactory results in terms of robustness, stability, and accuracy in several previous
hydraulic turbine studies [28,32–34] and transient flow simulations in pipes [35,36]. The automatic
near-wall treatment developed by CFX was employed, which automatically switches from a low-Re
formulation to wall-functions when the grid is not refined enough near the wall [30].

Water at 20 ◦C was considered as the working fluid, with no compressibility effects. The inlet
boundary condition was a total pressure with a normal velocity profile (plug flow) at the inlet of the
penstock with medium turbulence (5% intensity). The distributor outlet was defined as an opening
boundary with a relative pressure. With these boundary conditions, the motion of the GVs induces
the flow rate variation during the simulations. All walls were assumed smooth and no-slip boundary
condition. The same set of boundary conditions was considered for all the simulations in this study.

2.4.4. Mesh Information and Numerical Uncertainties

Three different sets of meshes with a total number of elements: N1 = 9.75, N2 = 5.45, and N3 = 2.77
million were used to study the uncertainty in the chosen mesh. For this, the grid convergence index
(GCI) study was considered, following the guidelines provided in [37]. The study was performed at
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the BEP flow condition with the time step ∆t = 0.0226 s; the time step study will be discussed later.
Table 2 presents the discretization uncertainty for the WK configurations at θ = 101◦. In the table,
φ21

ext is the extrapolated value of the WK coefficients from N2 mesh to N1 mesh and GCI21
f ine mesh is the

uncertainty in the chosen mesh (N1 mesh) in this study.

Table 2. Discretization uncertainty study using Richardson extrapolation following Reference [37]. ∅1,
∅2, and ∅3 are the WK coefficients obtained with N1, N2, and N3 mesh, respectively.

Parameter φ=KWK1u φ=KWK1d φ=KWK2u φ=KWK2d

φ1 0.0199 0.0170 0.0143 0.0127
φ2 0.0196 0.0172 0.0143 0.0125
φ3 0.0204 0.0181 0.0145 0.0128
φ21

ext 0.0202 0.0168 0.0143 0.0129
GCI21

f ine mesh 1.4% 1.0% 0.1% 1.5%

Furthermore, the discretization uncertainty in the velocity along a vertical line at the inlet of the
SC is presented for the chosen mesh in Section 2.4.5. The mesh information for the chosen set of mesh
is summarized in Table 3. The mesh quality fulfills the minimum quality criteria required by the solver.
Moreover, the mesh was chosen to maintain the good quality during the GV’s movement.

Table 3. Mesh information for the chosen mesh set.

Parameters Penstock Spiral Casing Distributor (SV + GV)

α = 26.5◦ α = 18◦ α = 8◦

Total elements, in million 1.4 1.8 6.4 6.4 6.4
Max. element aspect ratio 9200 2429 416 516 557
Orthogonality angle, ◦ (min, avg) 35, 84 19, 65 22, 59 19, 57 19, 56
y+ (avg, max) 1, 495 20, 130 19, 224 16, 161 13, 67

The effect of time step size was conducted for the decelerating flow with the chosen mesh.
Two time steps: ∆t = 0.0226 s and 0.0057 s were considered, which corresponds to the GV rotational
speed ∆α of 0.2◦ and 0.05◦, respectively. The maximum deviation in the transient flow rates obtained
with these time steps was about 1.2% at td � 1.42 s. The variation of ∆P with time during the deceleration
obtained from these time steps also showed similar results and the effect of the time step is negligible,
further discussion about this is also presented in Section 3.1. All the simulations, transient and steady
cases, were therefore conducted with the time step ∆t = 0.0226 s. The simulations were carried out
using distributed-parallel computation across two machines, each with 64 GB memory and 24 cores.
The computers took a time period of about 6 days to complete each transient case simulation.

2.4.5. Validation Studies

The streamwise velocity distribution along a vertical line, Line A, at the inlet of the SC obtained
from the chosen mesh solution is compared with experimental results in Figure 5. The velocities are
scaled by the bulk velocity, Ub, calculated as the ratio of the BEP flow rate to the inlet area of the
SC (QBEP/ASC_inlet). The discretization uncertainty in the solution with the chosen mesh using the
GCI method is represented by the vertical error bars, which shows a maximum of ~1.8% uncertainty
towards the SC top wall (z*→ 1); excluding the boundary layer region which shows ~29% uncertainty
as the velocity magnitude is smaller and the relative uncertainty is thus larger.
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performed using a two-component LDA system with an 85 mm fiber optic probe from Dantec. 
Overall, the tangential velocity obtained from the CFD closely follows the experimental results. 
Towards the lower wall (z* → −1), the tangential velocity is smaller, and the radial velocity is larger 
than the experimental results. A larger magnitude of radial velocity indicates a stronger secondary 
flow. The magnitude of the radial velocity is small compared to the tangential velocity and subject to 
large variation. Therefore, an accurate comparison between the numerical and experimental results 
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Figure 5. Normalized streamwise velocity (U∗) profile along Line A, with discretization error bars
for the chosen (fine) mesh in the study. z* is the dimensionless vertical distance in the spiral casing.
The velocities are scaled by the bulk velocity (QBEP/ASC_inlet). Experimental data for Line A is
from Amiri et al. [26], with the error bar assumed to 1% of the value which is reasonable for LDA
measurements. The data from Kalpakli and Örlü [38] is for a 90◦ pipe bend measured with a hot-wire.

The velocity distribution obtained from the present CFD study shows discrepancy with the
measurements conducted with a two-component LDA system by Amiri et al. [26] (see Figure 5).
The authors in [26] also performed numerical simulation and investigated the effects of mesh size,
downstream geometries (runner and draft tube) and upstream geometry (upper tank) on the velocity
distribution at the SC inlet. The simulations were conducted using scale adaptive simulation based on
the SST turbulence model (SAS-SST), which is an improved URANS formulation with the capability
to adapt the length scale to resolve turbulent structures—resulting in LES-like behavior in unsteady
regions of the flow field. Only the inclusion of the upstream tank affected the numerical results, but
no significant improvement was achieved. Therefore, the discrepancy can be attributed to either not
properly modeling the upstream tank including the performance of the URANS model or the quality
of the measurements itself. Nonetheless, the velocity follows a typical distribution observed in curved
pipes, with larger velocity towards the outer wall and smaller velocity in the inner wall of the bend.
Figure 5 also shows the velocity profile agrees well with 90◦ pipe bend measurements with a hot-wire
from Kalpakli and Örlü [38]. This velocity distribution signifies the formation of Dean vortices [38,39].

In Figure 6, the tangential and radial velocities at two locations: SI and SII (shown in Figure 1b) are
compared with the experimental results from Mulu & Cervantes [27]. The experiment was performed
using a two-component LDA system with an 85 mm fiber optic probe from Dantec. Overall, the
tangential velocity obtained from the CFD closely follows the experimental results. Towards the lower
wall (z*→−1), the tangential velocity is smaller, and the radial velocity is larger than the experimental
results. A larger magnitude of radial velocity indicates a stronger secondary flow. The magnitude of the
radial velocity is small compared to the tangential velocity and subject to large variation. Therefore, an
accurate comparison between the numerical and experimental results is sensible to the exact position.
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Figure 6. (a) Normalized tangential velocity (U∗θ); (b) radial velocity (U∗r) at the spiral casing (SC)
measurement locations: SI and SII. The velocities are scaled by the bulk velocity Ub. The measurement
locations can be found in Figure 1b. z* is the dimensionless vertical distance in the spiral casing.
The experimental data are from Mulu and Cervantes [27]. The dashed-dotted vertical lines represent,
from left to right: the bottom of the SC at SI, the bottom wall of the SC at SII, the lower level of the
leading of the stay vanes (SVs)/guide vanes (GVs), the mid-span of the GVs, and the upper level of the
leading edge of the SVs/GVs.

3. Results

3.1. Variation of Pressure Difference ∆P and Flow Rate

The variation of ∆P for the WK configurations at θ = 101◦ during deceleration is presented
in Figure 7. Two time-steps are considered in this study, as described in Section 2.4.4. ∆P drops
towards zero irrespective of its value at the BEP condition. This is expected since the flow rate reduces
towards zero.

The pressure difference on the upper half of the SC, ∆P1u, and ∆P2u, drops to zero and even
becomes negative (i.e., P2u > Pou and P1u > Pou) earlier than for the lower configurations, ∆P1d and
∆P2d. Although ∆P2u magnitude is the second largest at BEP, it is the first one to have a negative value
during the deceleration. Pressure point P2u is influenced by a large pressure built up around the upper
notch, i.e., a low velocity region; marked with a dashed circle in Figure 7. This behavior is similar
at all other cross-sections of the SC considered in this study. No large pressure was built up around
the lower notch zone, i.e., around P2d. This phenomenon was not observed in the accelerating flow.
Moreover, there is an asymmetry in pressure distribution on the cross-sections of the SC, see Figure 7,
which is mainly caused by the upstream bent penstock.

The variation of the transient flow rate during acceleration and deceleration is presented in
Figure 8a,b, respectively. The flow rates obtained at steady conditions are also shown in the figures.
The steady flow rate varies almost linearly and closely follows the GVA. For an accelerating flow, the
flow rate increases almost linearly at the beginning of the transient but the rate decreases towards the
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end, i.e., when ta � 2.77 s (α = 26.5◦). The deviation (%) between the transient and steady flow rate was
studied and calculated as:

Dev (%) = 100×
∆q

QBEP
, (4)

where ∆q is a difference between the transient and steady flow rate. The maximum deviation between
the transient and the steady flow rate, calculated from Equation (4), is ~8% when ta ~2.77 s. The
flow takes a while to reach the BEP flow conditions even after the transient movement of the GV is
finished. The flow rate is slightly larger during the deceleration compared to the steady flow rates,
with a maximum deviation of ~4.5% when td ~1.52 s (α = 13◦).Energies 2020, 13, 1310 10 of 22 
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Figure 8. Flow rate variation over time, transient flow rate Qt. (a) During an acceleration and (b)
during a deceleration. The ramp time for the transient, tramp, is 2.77 s. Qs is the steady flow rate
obtained from the simulations at stationary GV angle (GVA) (α).
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The flow shows some delays during the transients to reach its corresponding steady value for
a given GVA, which might be attributed to the inertia of the fluid. The behavior of the flow during
transient is influenced by inertia and turbulence dynamics and can be significantly different from its
quasi-steady behavior, as was studied in [16,19].

As the flow rate shows a quasi-linear relationship with the GV opening (see Figure 8), it is
interesting to see if the GV opening is sufficient to predict the flow rate during transients. The deviation
between the flow rates with respect to the GV plotted in Figure 9. The deviation is calculated as:

Dev (%) = 100×
(

Q
QBEP

−
α

αBEP

)
. (5)
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The steady flow rate is within 3.5%, whereas the transient flow rates show a larger deviation
(~8%) in both accelerating and decelerating cases. It suggests that the estimation of the transient flow
rate based only on the GV opening can induce a larger error than for the steady flow rate estimation.
The estimation of the transient flow rates with the WK method is presented in the coming sections.

3.2. Variations of the WK Coefficients During Transients

This section presents the behavior of the WK coefficients during transients. The instantaneous
WK coefficients during deceleration are also compared to the steady WK coefficients obtained at
several stationary GVAs. The instantaneous coefficients during transients were calculated from
KWK = Q/

√
|∆P|, where Q and ∆P are instantaneous flow rate and pressure difference, respectively

during transients. The absolute value of ∆P was taken as negative values of ∆P were obtained for
some WK configurations during deceleration, discussed later.

3.2.1. Decelerating Flow

The variation of the WK coefficients, KWKs, in a decelerating flow at the considered azimuthal
locations is presented in Figure 10. The figure also includes the steady WK coefficients obtained at
several stationary GVAs. All the coefficients in the figure are scaled by the coefficients obtained at the
BEP condition, KWK_BEP. Therefore, the perfect WK configurations should have a value of 1.
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Figure 10. Variation of the WK coefficients over time during deceleration at four different azimuthal
locations (θ) of the SC. Steady WK coefficients obtained at five GVAs (α) are represented by the symbols:
#, WK1u; •, WK1d; �, WK2u, �, WK2d. The WK coefficients were calculated from Equation (1) with n
= 0.5 and the absolute value of ∆P, i.e., KWK = Q/

√
|∆P|—as negative values of ∆Ps for some WKs

were observed towards the end of the deceleration. Q and ∆P are instantaneous flow rate and pressure
difference, respectively during deceleration.

The sensitivity of the coefficients in the transient depends on the WK configuration and their
azimuthal location in the SC. Overall, the WKs with a larger ∆P at BEP tends to be stable during
the transient, see WK2d in Figure 10a–c. The most stable configuration is WK2d at θ = 101◦, with a
maximum deviation of about 3% from its BEP value during the transient (td < 2.77 s), however, the
deviation increased over 20% immediately after the transient time, around td = 3 s. The flow rate and
pressure difference have low values at the end of the deceleration (see Figures 7 and 8b) and induces a
larger deviation. Moreover, the flow becomes unsteady at low flow rate regime and takes some time to
reach quasi-steady stage. Therefore, the post-transient response might be neglected or treated carefully
to avoid a larger deviation. WK2d at θ = 124◦ is not stable (Figure 10d) and shows similar behavior
to other configurations. The figures also show WK taps can induce very large errors (>20%) in the
transient flow rate measurement, which is over twice the error associated with the flow rate estimated
from the GV opening, as presented in Figure 9. This shows the WK method can outperform the GV
opening approach to predict the transient flow rate if the WK taps are in proper locations.

The deviations in the steady coefficients are also in a similar range, with a maximum deviation of
4.4% from their BEP values. The flow in the present type of SC, i.e., full SC, seems to be less sensitive
to the GV openings compared to that observed in semi-spiral casing [40].

Towards the end of the decelerating period, negative values of ∆P, i.e., inner pressure larger
than the outer pressure, were obtained for some WK configurations. The configurations showing
this behavior are WK1u at θ = 101◦ and 124◦, WK2u at θ = 75◦, 101◦, and 124◦, and WK2d at θ = 124◦.
Furthermore, even after the transient time, i.e., when td > 2.77 s, the coefficients are still varying
because of the flow unsteadiness in this regime.
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3.2.2. Accelerating Flow

The variation of KWKs in the accelerating flow is presented in Figure 11a–d. The values are
scaled by the BEP values. The behavior of the coefficients is like those in the decelerating flow—WK
configurations with larger ∆P tends to be more stable. However, the deviations are in a range of 10%
of their BEP values. WK2u configuration is more comparatively stable than the other configurations.
The most stable configuration is at θ = 101◦ and 124◦, see Figure 11c,d.
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Figure 11. Variation of the WK coefficients over time during acceleration at four different azimuthal
locations of the SC. The WK coefficients were calculated from Equation (1) with n = 0.5. The coefficients
after the transient time, i.e., when ta > 2.77s s do not coincide with the value of 1 because the flow takes
some time after the transient to stabilize and be steady.

Immediately after the beginning of the transient, 0 s < ta < 0.3 s, the coefficient decreases abruptly
and then gradually increases, see Figure 11. These dips are the results of a sudden decrease of the
pressure when the GVs starts to open as the flow accelerates. When the flow rate begins to increase,
the rate of velocity increment at the inner pressure point is larger than at the outer pressure points. So,
the rate of ∆P increment becomes larger in the beginning. However, there is still a small delay in the
flow rate to increase. Consequently, the WK coefficients show sudden dips and gradually take a steady
value as the GVs open.

The coefficients are not constant, and the ratio does not have a value of 1 before the onset of the
acceleration, i.e., ta < 0 s (i.e., when α = 2◦). This is due to the unsteady nature of the flow in a low
flow rate regime, as mentioned before. However, no negative ∆Ps were observed in accelerating flow,
unlike in the decelerating flow as mentioned before. The coefficients also take some time to stabilize
after the transient time, ta > 2.77 s. Ramp-up flows are observed to have a post-transient response and
the flow takes some time to stabilize, see the post-transient response in ramp-up pipe flow by He and
Jackson [15].

3.3. Practical Use of the WK Method in Transients

An alternative way to look at the variation of the WK coefficients during transients is by studying
the variation of ∆P with Qt, the flow rate at any instant during the transient. The WK coefficients
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and exponent values are then estimated by curve fitting, usually with a power rule in Equation (1).
Figure 12a and b show the variation of ∆P with Qt in an accelerating and decelerating flow, respectively.
Figure 12 is plotted on a log–log scale for better visual reference. The results are presented for the WK
configurations at θ = 101◦. The data from the curve fitting with Equation (1) are presented in Table 4.
If the value of n is close to 0.5, the coefficient can be calibrated only at BEP (a single point calibration)
and then used to estimate Qt. A departure from n = 0.5 signifies that the coefficient changes during the
transient; a single point calibration may induce a larger error. The data in Table 4 supports the results
observed earlier—the most stable configurations using a single point calibration are WK2u and WK2d

for an accelerating and a decelerating flow, respectively, as the value of n is close to 0.5.
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deceleration. The legends are provided in figure (a).

Table 4. WK coefficient KWK and exponential n from curve fitting in Figure 12. R-squared (R2) values
in the table show a good fit for the data.

WK KWK n R2

Acceleration Deceleration Acceleration Deceleration Acceleration Deceleration

WK1u 0.693 0.619 0.508 0.480 0.998 0.994
WK1d 0.642 0.619 0.526 0.480 0.997 0.999
WK2u 0.465 0.468 0.500 0.443 0.997 0.993
WK2d 0.433 0.397 0.512 0.504 0.999 0.999

The implication of the above results is that the transient flow rate may be estimated by using the
coefficient obtained at BEP and ∆P measured during the transients, such as:

Qest = KWK_bep ×
√

∆P, (6)

where Qest is the estimated flow rate using the WK coefficient obtained at BEP, KWK_bep and ∆P is the
pressure difference (instantaneous) during the transient. The deviation between Qest and the transient
flow rate Qt obtained from the simulation is shown in Figure 13 for the WK configurations at θ = 101◦,
is calculated as:

Dev (%) =
Qest − Qt

Qt
× 100. (7)
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The least deviation in the flow rates is obtained with the WK2d configuration, with a maximum
deviation of 7.3% and 3.5% for an accelerating and decelerating flow, respectively. The deviations are
lower than those estimated by the GV opening approach (see Figure 9)— suggesting a better accuracy
of the WK method in transient flow estimation.

3.4. Flow Physics

The study of the flow physics inside the SC during the transients and steady conditions are
presented in the following sections. This will help to understand the factors necessary to stabilize the
WK coefficients.

3.4.1. Velocity and Vorticity Development

The development of the velocity along the line representing WK2d during the acceleration and
deceleration is shown in Figures 14a–c and 14d–f, respectively. The results are scaled by Ub, the bulk
velocity. Three different cross-sections of the SC at θ = 0◦, 60◦, and 101◦ are considered to study the
flow development in the SC. The figures show the velocity profiles are nearly preserved for all the cases.
Overall, the velocity in the decelerating flow is larger than for the accelerating flow, for example at
ta = 1.81 s (or when α = 18◦), the maximum velocity at θ = 0◦ is only ~80% of Ub (Figure 14a) during the
acceleration, but it is almost equal to Ub in the deceleration (see td = 0.96 s in Figure 14b). This means
that the transient flow rate is larger in the decelerating flow than in the accelerating flow at a particular
α, which was observed in Figure 8. The velocity profiles in the deceleration are oscillating, suggesting
the presence of a larger amount of secondary flow in the region. In other words, the flow becomes
more chaotic in the deceleration than in the acceleration. Furthermore, there is a flow asymmetry
between the upper and lower half of the SC cross-section in the deceleration (not presented here).
However, the flow during the acceleration is more symmetric between the upper and lower half of the
cross-section and showed more like the vortex-flow distribution and accelerating stabilizes the flow
while decelerating destabilizes.
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Figure 14. Development of the streamwise velocity (U∗) during an acceleration (a–c) and deceleration
(d–f) along the radial distance r*, given by r∗ = (r− ri)/(ro − ri), where, ri and ro are the radial distance
of the inner pressure point (P2d) and outer pressure point (Pod). The results are plotted at three azimuthal
locations of the SC for four different GVAs (including best efficiency point (BEP)) during the transients
and in steady conditions.

The total vorticity represents the intensity of the secondary flow [41] and helps to understand the
flow inside the SC. Figure 15 shows the normalized area-averaged vorticity, Ω* = Ω/Ωmax, where Ω is
the area-averaged vorticity at a cross-sectional plane of the SC and given by:

Ω =
1

Aθ

∫
Aθ

(
∂uz

∂r
−
∂ur

∂z

)
dA, (8)

where Aθ is the area of a cross-sectional plane at angle θ.
The strength of the secondary flow increases along the azimuthal direction of the SC, at least until

θ = 101◦ for most of the cases presented in Figure 15a. The growth of the secondary flow from the inlet
to about one-third of the circumference (θ ~ 120◦) of the scroll of a radial turbine was also observed in
an experimental study by Hara et al. [42]. The total vorticity at a cross-section in curved pipes is zero
due to the presence of the contra-rotating Dean vortices [41]. However, in the present SC, the vortices
are asymmetric and of different strengths, which are due to the combined effects of upstream bent, SC
geometry and radially inward flowing conditions, see Figure 15b. Therefore, the vorticity Ω* presented
in Figure 15a is the net strength of the vortices, i.e., the difference between the counter-clockwise
and clockwise vortices, where counter-clockwise vortices being stronger. The strong secondary
flow also transports the low momentum fluids in the boundary layer radially inwards, Figure 15b.
The magnitude of the vorticity in the acceleration is smaller than in the deceleration—signifying a
lower magnitude of secondary flow in accelerating flow. It will be shown later that the secondary flow
can be an important factor to balance the radial pressure gradient and make the WK coefficients stable.
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in acceleration and deceleration, corresponding to the same GVAs. (b) In-plane velocity vectors on θ =

101◦ plane at BEP showing secondary flow structure; vortices are schematically shown by the circles
and direction by arrowheads.

3.4.2. Turbulence, Secondary Flow, and Temporal Forces

Flow in curved pipes is characterized by a radial pressure gradient balancing the centrifugal
force exerted by the fluid due to its curvilinear motion. The URANS equation in a radial coordinate
are now considered to study the various forces acting on the flow during steady and transient flows.
The URANS equation can be written in the differential form as:

ρ
∂ur

∂t
+
∂P
∂r
− ρ

uθ
2

r
+ ρ

[
uz
∂ur

∂z
+ ur

∂ur

∂r
+

uθ
r
∂ur

∂θ

]
− µ

[
∇

2ur −
ur

r2 +
2
r2
∂uθ
∂θ

]
− Tt = 0, (9)

where ∇2 is the Laplacian operator and Tt is the turbulence term. Following the notions presented
in [43], the following terms are considered:

The radial pressure gradient (RPG): ∂P/∂r;
The centrifugal force (CF): ρuθ

2/r;
The spatial inertial force (SIF): ρ

[
uz

∂ur
∂z + ur

∂ur
∂r +

uθ
r
∂ur
∂θ

]
;

The temporal inertial force (TIF): ρ∂ur/∂t;
The turbulence and viscous term (TV): −Tt − µ

[
∇

2ur −
ur
r2 + 2

r2
∂uθ
∂θ

]
.

The effect of these terms is analyzed, and the results are presented along the line representing
WK2d at θ = 101◦, as it was one of the most stable WK configurations. The variations of the terms of
Equation (9) are presented for steady flows in Figure 16a–c, decelerating flow in Figure 16d,f, and
accelerating flow in Figure 16f,g. The steady results are presented at α = 26.5◦, 18◦, and 8◦, whereas
the results for the accelerating and deceleration flows are presented at the times when α = 18◦ and 8◦

during the transients. The magnitude of the terms M∗ are scaled by the maximum value of the RPG
term for a given α in the steady flow.

During the steady operation, the distribution of the terms is almost preserved, and the magnitude
of the terms reduces with α; see Figure 16a–c. At all the GVAs considered, the CF is larger than the
RPG towards the inner wall ( r∗ → 0) and outer wall ( r∗ → 1) of the SC. Although the CF shows a
smooth variation in the core region, the RPG distribution is oscillatory. The oscillatory variation of the
RPG is mainly due to the SIF - secondary flow. The relative magnitude of the SIF slightly increases
when r∗ → 0 at small α, which increases the magnitude of the RPG term.



Energies 2020, 13, 1310 18 of 22

Energies 2020, 13, 1310 18 of 22 

 

During the deceleration, the distribution of the terms is still fairly preserved, at least in the early 
part of the deceleration; see Figure 16d,e. The SIF magnitude increases and the TIF term also become 
significant during the deceleration. For example, at td = 0.96 s, the TIF constitutes ~ 7% of the 
maximum magnitude of the RPG, whereas it increases to ~ 26% at td = 2.09 s. Although, there is a 
change in the magnitude of the TV and SIF affecting the distribution of the RPG term, 𝐾  was 
observed to be stable. This means the proper reduction rate of ∆P during the deceleration is attributed 
to these terms. 

The values of RPG and CF are largely balanced in the case of the accelerating flow, see Figure 16 
f and g. This signifies the flow in the acceleration is more like the vortex flow distribution. However, 𝐾  showed larger deviations in the acceleration than in the deceleration. The magnitudes of the 
terms: SIF, TIF, and TV are smaller, and change significantly compared to the corresponding steady 
values. A study conducted by Seddighi et al. [19] in a turbulent channel also shows a similar behavior. 
Flow and turbulent quantities deviate significantly from the corresponding quasi-steady values in 
the case of ramp-up flow and much less in ramp-down flow. This behavior was due to the response 
of turbulence in transient flows. 

 
Figure 16. Variation of different terms at WK2d for steady operations (a–c), deceleration (d and e) and 
acceleration (f and g). RPG: radial pressure gradient, CF: centrifugal force, SIF: spatial inertial force, 
TIF: temporal inertial force, VT: Viscous and turbulence term; see Equation (9). 

Figure 16. Variation of different terms at WK2d for steady operations (a–c), deceleration (d and e) and
acceleration (f and g). RPG: radial pressure gradient, CF: centrifugal force, SIF: spatial inertial force,
TIF: temporal inertial force, VT: Viscous and turbulence term; see Equation (9).

During the deceleration, the distribution of the terms is still fairly preserved, at least in the early
part of the deceleration; see Figure 16d,e. The SIF magnitude increases and the TIF term also become
significant during the deceleration. For example, at td = 0.96 s, the TIF constitutes ~ 7% of the maximum
magnitude of the RPG, whereas it increases to ~ 26% at td = 2.09 s. Although, there is a change in the
magnitude of the TV and SIF affecting the distribution of the RPG term, KWK was observed to be stable.
This means the proper reduction rate of ∆P during the deceleration is attributed to these terms.

The values of RPG and CF are largely balanced in the case of the accelerating flow, see Figure 16f,g.
This signifies the flow in the acceleration is more like the vortex flow distribution. However, KWKs

showed larger deviations in the acceleration than in the deceleration. The magnitudes of the terms:
SIF, TIF, and TV are smaller, and change significantly compared to the corresponding steady values.
A study conducted by Seddighi et al. [19] in a turbulent channel also shows a similar behavior.
Flow and turbulent quantities deviate significantly from the corresponding quasi-steady values in the
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case of ramp-up flow and much less in ramp-down flow. This behavior was due to the response of
turbulence in transient flows.

The variations of the pressure gradients during the transients are associated with the deviations
in the WK coefficients presented earlier. As seen from Figure 16, the pressure gradients along the
lines are balanced by—apart from the centrifugal forces—temporal and spatial inertial forces and
turbulence terms. These terms contribute to maintain the distribution of the forces and, therefore,
the WK coefficients showed smaller deviations during the deceleration. This means the development
of the temporal force, secondary flow, and turbulence are important factors for stabilizing the WK
coefficient during the transient. However, it should be noted that the flow inside the SC strongly
depends on the inflow conditions [44], so the behavior of the WK configurations might change with
the inlet geometry or conditions. Therefore, it is recommended to initially perform CFD simulations to
understand the behavior of the WK pressure taps before conducting measurements. The locations of
the WK taps depends, of course, on their accessibility during the measurement.

4. Conclusions

The WK method may be used for transient flow rate measurement by installing the WK pressure
taps in proper locations. In this numerical study, the variation of the WK coefficients was studied in
two cases of the transients: accelerating and decelerating flows, which were obtained by opening and
closing GVs, respectively. The deviations in the WK coefficients during the transients were studied
along with the coefficients obtained at the BEP flow condition (steady flow condition).

It was shown that the sensitivity of the WK method in the transient flows depends on the type
of transient: accelerating or decelerating, locations of the WK pressure taps, and their combinations.
The coefficients during the deceleration were observed to be more stable than for the acceleration.
The flow analysis showed that the decelerating flows exhibit a larger magnitude of secondary flow,
temporal forces, and turbulence than that of accelerating flow. These forces play a significant role to
balance the radial pressure gradient in the SC and make some WK configurations more stable than
the others. Although the accelerating flow shows a vortex type flow distribution—the radial pressure
gradient and centrifugal force largely balanced—the WK coefficients significantly deviate from their
BEP values and the deviations were larger than in the case of the decelerating flow.

The transient flow rate can be estimated by using the WK coefficient obtained at the BEP flow
condition and the differential pressure obtained in transients. In this study, the transient flow rate
with the WK2d configuration at θ = 101◦ was estimated to ~7.5% and 3.5% deviation for accelerating
and decelerating flows, respectively. The WK method showed a better performance in estimating the
transient flow rates than using the GV opening flow rate estimation approach. It is recommended
to conduct numerical simulations and study the sensitivities of different WK configurations before
the measurements.
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Nomenclature

ASC_inlet inlet area of the spiral casing (SC), m2

D penstock diameter at the inlet of the spiral casing, m
KWK WK coefficient, m3.5/kg0.5

KWK_BEP WK coefficient obtain at BEP flow condition (steady), m3.5/kg0.5

n WK exponent
N1, N2, N3 number of mesh elements in fine, medium and coarse mesh
∆P pressure difference between outer and inner WK pressure points, Pa
Q flow rate (discharge), m3/s
QBEP flow rate (steady) at BEP, m3/s
Qest estimated flow rate using KWK_BEP and ∆P, m3/s
Qs steady flow rate obtained at stationary α, m3/s
Qt transient (instantaneous) flow rate, m3/s
∆q difference in the transient and steady flow rate at same α
r∗ dimensionless radial distance
t time, s
∆t time step, s
ta accelerating time (transient time), s
td decelerating time (transient time), s
t0 the time when the transient starts, s
Ub bulk velocity calculated at the SC inlet at BEP, m3/s
U streamwise velocity (total), m/s
Uθ tangential velocity, m/s
Ur radial velocity, m/s
y+ dimensionless wall distance
z∗ dimensionless vertical distance in the spiral casing, m
Greek Symbols
α guide vane angle, ◦

∆α time step in terms of guide vane rotation angle, ◦

θ circumferential location/azimuthal angle of the SC, ◦

ρ density of the fluid (water), kg/m3

Ω total vorticity
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