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Abstract: This study discusses the evaluation of oscillatory stability based on the synchronizing Ks

and damping Kd torque coefficients for a single-machine system connected to an infinite bus (SMIB).
Particle swarm optimization (PSO) technique is used to determine Ks and Kd values and subsequently
identify the oscillatory stability conditions in the SMIB. The ability of PSO is compared with those
of evolutionary programming (EP) techniques and artificial immune system (AIS). The least square
(LS) method is selected as the benchmark for Ks and Kd values determined by PSO, EP, and AIS.
Simulation results show that PSO successfully estimated Ks and Kd values closest to LS compared
with EP and AIS. PSO also uses lower computational time compared with those of the two other
techniques. The proposed technique is suitable for solving oscillatory stability problems based on the
determination of eigenvalues and minimum damping ratio.

Keywords: eigenvalues; least square method; oscillatory stability; particle swarm optimization;
synchronizing and damping torque coefficients

1. Introduction

The increase in population worldwide has major implications to electricity consumption. Power
generation companies always innovate to ensure that the energy supply is sufficient and stable.
Accordingly, small signal stability is a frequently discussed topic, as reported in [1–5]. This system
must be tracked online because its power system operating condition changes over time. Various
indicators, such as damping ratio [6–8] and damping factor [9], have been proposed to determine the
angular stability of a system. However, the eigenvalues obtained from the entire mathematical model
of the system are needed to calculate these two indicators. In this study, the synchronizing Ks and
damping Kd torque coefficients were introduced to verify system stability. Ks and Kd can be calculated
on the basis of the information from three rotor responses, namely the changes in rotor angle, ∆δ(t);
rotor speed, ∆ω(t); and electromechanical torque, ∆Te(t). A system is considered stable when the
values of Ks and Kd are positive [10–12]. However, the system is considered unstable when one of the
values is negative.

Least square (LS) method is often used to calculate Ks and Kd values of a system by using a static
parameter estimation approach [13–15]. However, the LS method needs a large data set to obtain
the correct values. Extensive data collection also requires long computation time. Monitoring the
oscillation period is also critical because the occurrence of slight data error leads to inaccurate Ks and
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Kd values. Thus, heuristic techniques are introduced to solve this problem. Ks and Kd values will be
optimized from the beginning of the data until constant Ks and Kd values are obtained. Therefore, only
a portion of the data is necessary for estimating Ks and Kd. Minor data errors do not significantly affect
the determination of Ks and Kd values.

In recent years, the use of artificial intelligence (AI) technology has become the preferred option
in solving power system problems. The use of AI is introduced to solve the optimum values of a
system or condition particularly in the fields of economic dispatch, capacitor placement and sizing,
and assessment and improvement of voltage and oscillatory stability. Artificial neural networks [16,17],
evolutionary programming (EP) [18–20], artificial immune systems (AIS) [21–23], and ant colony
optimization (ACO) [24–26] are AI approaches that are commonly used in power systems. The EP
algorithm is modeled on the biological evolution process of solving a complex problem. The main
features of EP include the mutation process of the next generation and the selection of increasingly
powerful genes. The AIS algorithm uses a concept similar to that of EP. Although both concepts are
biologically based on living things, EP focuses on the evolution of living things, whereas AIS adopts the
concept of the living immune system. The difference between AIS and EP algorithms is that AIS has
an additional process of cloning called the clonal selection algorithm. However, the ACO approach
is inspired by the true behavior of ants while searching for food and interacting with fellow ants.
In ACO, artificial ants (the search agent) will communicate by using pheromones, which guide the
searcher ants to solve the calculation problem by tracking the best route. Meanwhile, the particle swarm
optimization (PSO) [27–30] concept mimics the movements of a herd, such as the behavior of schooling
fish and swarming insects. This technique was originally founded based on the population of random
particles, in which every particle is a potential solution. PSO can make adjustments to obtain balance
between global and local explorations during the search process. This feature makes the PSO suitable
for overcoming the problems caused by initial convergence and improving the ability to search.

This study presents the techniques for determining oscillatory stability based on the estimation
of twin indicators called synchronizing Ks and damping Kd torque coefficients. A single machine
linked to a large bus network or infinite bus (SMIB) is selected as the test system. The changes in
rotor angle, ∆δ(t); rotor speed, ∆ω(t); and electromechanical torque, ∆Te(t) are used to determine
Ks and Kd values. This optimization process aims to minimize the error of both torque coefficients.
In this study, the PSO technique was selected as the heuristic technique for solving this optimization
problem. The results in PSO will be compared with those of EP and AIS. From the simulation using
MATLAB, these three heuristic techniques will be compared based on the accuracy of the torque
coefficient, the amount of iteration for the simulation process, and simulation time. The eigenvalues λ

and minimum damping ratio ξmin, are also used to verify the system stability.

2. Materials and Methods

2.1. Oscillatory Stability Assessment

In oscillatory instability detection studies, early detection can provide the system time to improve
its stability and prevent further system instability and eventual collapse. This study introduces Ks and
Kd as the indicators for determining system stability. Ks and Kd are estimated periodically whenever
new data are received from the system. To validate the result, Ks and Kd are estimated using the LS
calculation method. Eigenvalue and damping ratio analysis were also conducted to verify the accuracy
of the results.

2.1.1. Ks and Kd

In the oscillatory stability analysis, electromechanical torque can be expressed in the form of
synchronous and damping torque components. The relationship among the rates of change in the
estimated electromechanical torque, ∆Tes(t); rotor angle, ∆δ(t); in rotor speed, ∆ω(t); synchronizing
torque coefficients, Ks; and damping torque coefficients, Kd can be expressed as follows:
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∆Tes(t) = Ks · ∆δ(t) + Kd · ∆ω(t) (1)

The stability evaluation of a linear system can be predicted based on Ks and Kd values. A stable
system is guaranteed when Ks and Kd values are positive. Figure 1 illustrates a stable angle stability as
resulted from the positive values of Ks and Kd.

∆δ

∆ω

∆TeKd

Ks t

∆δ

Figure 1. Complex plane of ∆Te(t) and ∆δ(t) response in stable condition.

If the linear system has a positive Ks and a negative Kd value, then the system is under an unstable
oscillatory condition, which is due to lack of adequate damping torque. The effect of the oscillatory
instability condition can be detected from the increment of amplitude oscillations of the rotor. Figure 2
shows the unstable conditions of angle stability from the positive Ks value and the negative Kd value.
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Figure 2. Complex plane of ∆Te(t) and ∆δ(t) response for unstable oscillatory condition.

Non-oscillatory instability occurs when Ks and Kd show negative and positive values, respectively,
because the absence of automatic voltage regulators results in the lack of sufficient synchronizing
torque. This condition can be verified based on the steady increment of rotor angle response. Figure 3
presents the unstable conditions for angle stability from the negative Ks and positive Kd value.
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Figure 3. Complex plane of ∆Te(t) and ∆δ(t) response for unstable non-oscillatory condition.

2.1.2. LS Method

Several methods have been proposed to estimate the value of KS and Kd which involved
optimization approach. LS method can be one of the possible techniques in addressing this
phenomenon, which has been used as static parameter estimation as reported in [18]. The LS method
is a form of mathematical analysis that calculates the most appropriate solution based on a data set.
In this study, the LS technique is used to minimize the sum of the squares of errors e(t). Error e(t) is
the difference between the changes in the estimated electromechanical torque ∆Tes(t) and the changes
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in the electromechanical torque ∆Te(t). From the previous equation, ∆Tes can be calculated based on
the values of ∆δ(t) and ∆ω(t) from the data set, and also estimated values of Ks and Kd. The equation
of e(t) is as follows:

e(t) = ∆Tes(t)− ∆Te(t) = Λx− ∆Te(t) (2)

Λ =
[
∆δ(t) ∆ω(t)

]
(3)

x =
[
Ks Kd

]T
(4)

For the overdetermined matrix system Λx = ∆Tes(t), the sum of the squared value of e(t) can be
defined as the following function f (x):

f (x) =
N

∑
t=1

e(t)2 =
N

∑
t=1
‖ Λx− ∆Te(t) ‖2 (5)

where N is the number of experimental samples.
To minimize e(t), Ks and Kd need to be calculated throughout the entire oscillation period.

The solution for this equation can be given as

ΛT ·Λ · x = ΛT · ∆Te(t) (6)

Matrix ΛT ·Λ is invertible. Thus, the solution of x is given by

x =
[
ΛT ·Λ

]−1 ·ΛT · ∆Te(t) (7)

The torque coefficients Ks and Kd can be calculated by solving Equation (7). Although the
calculated values are accurate, the application of the LS method requires data for the entire swing [5,6].
The need for such large data collection also requires a long calculation time. Accordingly, a new
indicator is needed.

2.1.3. Eigenvalue and Damping Ratio

There are various methods for determining the stability of a system, including the calculation
of eigenvalues and damping ratios. Eigenvalues are derived from matrix arrays by linear system
equations. However, the damping ratio is derived using a combination of real and imaginary values of
eigenvalues. Eigenvalues and damping ratios are often used as indicators for measuring the stability
of a system, as described in [18]. Eigenvalues λ of a matrix representing a linear system are obtained
as follows:

Πφ = λφ (8)

where Π is a (n× n) matrix, φ is a (n× 1) vector, and λ is the eigenvalues matrix (n× n). To determine
the eigenvalues, Equation (8) can be written as

(Π− λI)φ = 0 (9)

The eigenvalues of Π are the n solutions of λ = λ1, λ2, . . . , λn. The ith eigenvalue of a matrix
representing a linear system are obtained as follows:

λi = σi ± jωi (10)

where σi and ωi are the real and imaginary parts of the ith eigenvalue, respectively. The negative
real part of all eigenvalues indicates that a linear system is stable. The damping ratio, ξi, for the ith
eigenvalue is defined as [31,32]:
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ξi = −
σi√

σ2
i + ω2

i

(11)

The linear system is certainly stable when all the damping ratios have positive values. For
simplification, only the minimum damping ratio, ξmin, for the linear system is selected to verify
the result.

2.2. Test System

In this study, an SMIB system is selected for evaluation. ∆δ(t), ∆ω(t), and ∆Te(t) are generated
in a MATLAB Simulink environment based on the block diagram of the SMIB model. According to
Equation (1), the estimated electric torque, ∆Tes(t), is calculated by using the generated sample data
for Ks and Kd.

2.2.1. Philips–Heffron Model

Figure 4 shows the SMIB system with a classical generator model.

Figure 4. SMIB system.

Here, Re and Xe are resistance and reactance of the transmission line, respectively. VT and V∞ are
terminal bus and infinite bus voltages, respectively. δ and α are the rotor angles at terminal bus and
infinite bus, respectively. E′q is the generator terminal voltage. The equations for rotor acceleration,
rotor angle, and the field circuit are presented as follows [33,34]:

∆ωr

∆t
=

∆Tm − K1∆δ− D∆ωr − K2∆ψ f d

2H
(12)

∆δ

∆t
= ω0∆ωr (13)

∆ψ f d

∆t
=
−(K3K4∆δ + ∆ψ f d − K3∆E f d)

T3
(14)

Here, ∆ωr/∆t is the change of rotor acceleration, ∆δ/∆t is the change of rotor angle, ∆ψ f d/∆t is
the change of the field circuit, E f d is a field voltage, Tm is the rotor mechanical torque, H is the machine
inertia constant, and D is the machine damping coefficients.

According to Equations (12)–(14), the Philips–Heffron block diagram model of SMIB is developed
and shown in Figure 5 [1]. This figure illustrates that the constant K represents several variables,
such as the electric torque, rotor speed, and rotor angle. From the Philips–Heffron block diagram
model, the following are developed:

∆Ẋ = A · ∆X + B · ∆U (15)

A =


− D

2H − K1
2H − K2

2H
ω0 0 0

0 −ω0R f dm1L′ads
L f d

−ω0R f d
L f d

(
1− L′ads

L f d
+ m2L′ads

)
 (16)

∆X =
[
∆ωr ∆δ ∆ψ f d

]
(17)
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B =


1

2H 0
0 0

0
ω0R f d
Ladu

 (18)

∆U =
[
∆Tm ∆E f d

]
(19)

m1 =
EB(XTqsinδ0 − RTcosδ0)

D
(20)

m2 =
XTq

D
Lads

Lads + L f d
(21)

Here, R f d and L f d are resistance and reactance of field circuit, respectively. Lads and Laqs are the
generator d-axis and q-axis saturated value of mutual inductance, respectively. XTq is total q-axis
reactance of the system. RT is total system resistance. δ0 is the initial rotor angle. L f d is the field
circuit reactance.

Figure 5. Philips–Heffron block diagram model.

The function of the system parameters is separated into two system matrices, namely A and B.
The details in the calculation of matrices A and B are presented in [18].

2.2.2. Objective Function

In this study, three optimization techniques, namely EP, AIS, and PSO, are used to determine the
values of torque coefficients Ks and Kd. The difference between ∆Tes(t) and ∆Te(t) is defined as an
error. This error is minimized at each iteration by using heuristic techniques when the new Ks and Kd
values are calculated. In this study, the objective function is formulated based on the error as follows:

J = inv

(
1 +

∣∣∣∣∣∆Te(t)− ∆Tes(t)
∆Te(t)

∣∣∣∣∣
)

(22)

By the implementation of this objective function will ensures that the difference between ∆Tes(t)
and ∆Te(t) versus ∆Te(t) is close to or equal to 0. This objective function is developed such that the
value of J will be in the range 0 and 1, and value 1 is the optimal value. The designed problem in this
study can be represented by

Maximize(J) (23)

These two torque coefficients are simultaneously optimized via the three optimization techniques
for the different cases by using the proposed objective function.

2.2.3. Algorithm for Ks and Kd Estimation

The flowchart for Ks and Kd estimation process is shown in Figure 6.
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Figure 6. Flowchart for the estimation process of Ks and Kd.

3. Computational Intelligence Methods for Oscillatory Stability Assessment

In recent years, AI technology has been widely used in solving optimization problems in power
systems. Evolutionary computation (EC) is a widely used AI technique. EC models evolutionary
processes to develop strategies that seek optimal or almost optimal solutions for specific problems.
Examples of EC techniques include EP, genetic algorithm, AIS, and PSO. In this study, AIS, EP, and PSO
are selected as optimization techniques.

3.1. PSO

The PSO technique is inspired by the feeding process of certain animals, such as swarming birds
and schooling fish. The PSO algorithm begins with initialization, followed by the update of velocity
and position, fitness calculation, the best position update, and convergence test. The pseudocode that
represents the PSO algorithm is illustrated in Algorithm 1. Detailed explanations of the PSO algorithm
process can be found in [28].

In Algorithm 1, k is the number of iterations, i is the number of particles, ω is the inertia weight,
vi and xi are the velocity and position for the ith particle, respectively. c1 and c2 are the acceleration
coefficients, J is the objective function, as shown in Equation (22), xb,i is the personal best position for
the ith particle, and xg is the global best position.

Algorithm 1 Pseudocode for the PSO algorithm [28].
initialize particle
for k = 1 : maximum iteration do

for i = 1 : number of particle do
vi(k) = w · vi(k− 1) + c1 · xb,i − xi(k− 1) + c2 · xg − xi(k− 1)
xi(k) = vi(k) + xi(k− 1)
calculate J(xi(k))

end for
if J(xi(k)) > J(xb,i) then

xb,i = xi(k)
end if
rank x(k) in ascending order of J(x(k))
if J(x(k))max > J(xg) then

J(xg) = J(x(k))max

define new xg

end if
if |J(x(k))max − J(x(k))min| < 10−5 then

return
end if
k = k + 1

end for
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3.2. EP

The concept of EP is based on the theory of evolution of life through natural selection. EP is
motivated by the process at the evolution stage (parents, mutation, offspring) but without the genetic
evolution. The EP algorithm begins with the initialization, followed by the determination of fitness,
mutations, combinations of parent and offspring, and ends with selection. Algorithm 2 demonstrates
the pseudocode for the EP algorithm [18].

Algorithm 2 Pseudocode for the EP algorithm [18].
initialize population
for l = 1 : maximum generation do

///// Parents
for j = 1 : number of population do

define xj,par(l) and J(xj,par(l))
end for
///// Offspring
for j = 1 : number of population do

xj,o f f (l) = α · (xj,par(l)max − xj,par(l)min) · xj,par(l)/J(xj,par(l))max

calculate J(xj,o f f (l))
end for
combine parents and offspring
rank x(l) in ascending order of J(x(l))
select top-half of x(l) as new xj,par(l)
if |J(x(l))max − J(x(l))min| < 10−5 then

return
end if
l = l + 1

end for

In Algorithm 2, l is the number of generations, j is the number of populations, α is a mutation
factor in EP, and xi,par and xi,o f f are the parents and offspring for the jth population, respectively.

3.3. AIS

AIS is an optimization technique that attempts to biologically imitate the human immune system.
This concept, which is practiced in the AIS technique, is similar to that of the EP technique. However,
AIS has an additional criterion called cloning. The entire process is given in the form of a pseudocode
in Algorithm 3 [23].

In Algorithm 3, m is the number of cycles, h is the number of cells, β is a mutation factor in AIS,
xh is the precloning of hth cells, xc is the post-cloning cells, and xmut,h is the mutated hth cells.

Table 1 lists the parameters used in the PSO, EP, and AIS techniques. The value of these parameters
are selected based on the values used in the reference [8].

Table 1. List of parameters used in PSO, EP and AIS.

Techniques Parameters

PSO c1 = 0.5, c2 = 0.5, ω = 0.05
EP α = 0.05
AIS β = 0.05
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Algorithm 3 Pseudocode for the AIS algorithm [23].
initialize cells
for m = 1 : maximum cycle do

for h = 1 : number of cells do
define xh(m) and J(xh(m))

end for
///// Cloning
rank x(m) according to J(x(m))

select top-half of x(m)

clone x(m) to become xc(m)

clone J(x(m)) to become J(xc(m))

///// Mutate
for h = 1 : number of cells do

xmut,h(m) = β · (xc(m)max − xc(m)min) · xc(m)/J(xc(m))max

calculate J(xmut,h(m))

end for
rank xmut(m) in ascending order of J(xmut(m))

select xmut(m) as new xh
if then|J(xmut(m))max − J(xmut(m))min| < 10−5

return
end if
m = m + 1

end for

4. Results and Discussion

This study estimates oscillatory stability by using Ks and Kd in various loading conditions of
the SMIB system. The samples of ∆δ(t), ∆ω(t), and ∆Te(t) are required in the calculated estimations
generated in the MATLAB Simulink environment. EP, AIS, and PSO are used to estimate the values
of Ks and Kd. The results are compared with the benchmark values calculated via the LS method.
The values of λ and ξmin are also used to justify stability determination. For estimation with AI
algorithms and LS, data size used is set to 20 s, while number of samples is set to 400 samples.
The value of this 400 samples data proved to be effective for the AI algorithms and LS to make accurate
calculations, based on the reference [18]. In this study, the simulation tests are conducted using Intel
(R) Core (TM) i7-4770 CPU @ 3.40Ghz processor.

To determine the appropriate population size during the optimization process, the effect of
population size for angle stability assessment of SMIB system has been studied. Three different
population sizes, namely 5, 20 and 50 population sizes have been tested, using loading condition
of P = 0.6 p.u. and Q = 0.7 p.u. The data of synchronizing torque coefficient, Ks, damping torque
coefficient, KD and three different population sizes are tabulated in Table 2.

Table 2. Results of Ks, KD and computation time for three different population sizes with P = 0.6 p.u.
and Q = 0.7 p.u.

Population Sizes Ks, Kd EP AIS PSO LS

5
Ks 0.6141 0.6153 0.6020 0.5928
Kd 1.1541 1.3063 0.3919 0.6282

Computation Time (s) 5.7 4.3 5.1 -

20
Ks 0.5942 0.5962 0.5926 0.5928
Kd 0.6564 0.7161 0.6014 0.6282

Computation Time (s) 14.5 3.9 11.6 -

50
Ks 0.5929 0.5954 0.5925 0.5928
Kd 0.6219 0.6958 0.6223 0.6282

Computation Time (s) 24.5 8.2 17.9 -
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From Table 2, it is clearly shown that the results obtained using PSO and LS are the same when
optimized with 20 and 50 populations. The result for KS optimized using EP at population size of 50
is the same as that computed using LS. This indicates that 50 is the most suitable population size if
closeness to LS technique is desired. This result is significant with the result of KD. It is shown that
PSO outperformed AIS and EP since it manages to achieve final solution close to the value obtained by
LS. From the computation time point of view, it shows that computation time of optimization process
of EP and PSO is proportional to the population size of the simulation. On the other hand, AIS method
gives the shortest computation time when the population size is set to 20. This revealed that AIS
managed to achieve optimal solution within population size of 20. It was also discovered that the
value of fitness is always consistent even the size population is increased up to 50. According to this
result, 20 was selected as population size during the optimization process.

In this study, two large events with different cases, namely Events A and B, are evaluated. In Event
A, the value of active power, P, is randomly set to 0.5 p.u., whereas reactive power, Q, increases linearly
by 0.1 p.u. from 0.1 p.u. to 1.0 p.u. In Event B, Q is set to 0.15 p.u., whereas P decreases by 0.1 p.u. from
1.0 p.u. to 0.1 p.u. The loading condition values are selected because they obtain significant results.

Table 3 presents the values of Ks and Kd estimated by using EP, AIS, PSO, LS, ξmin, and λ for
Event A. All the cases show the negative and positive values of λ and ξmin, indicating that all the cases
are stable. In each case, a total of 10 replications for the simulation process were performed. The results
obtained are consistent and within the range of not more than 1%. The LS method is selected as the
standard value for EP, AIS, and PSO estimation methods.

Table 3. Ks and Kd via EP, AIS, PSO, LS, eigenvalues and ξmin for Event A.

Cases P, Q Ks, Kd EP AIS PSO LS λ ξmin

A-1 P = 0.5 Ks 0.8039 0.8243 0.8197 0.8197 −0.0698 ± j6.6437 0.0105Q = 0.1 Kd 1.2609 0.5720 0.9866 0.9791 −0.2610

A-2 P = 0.5 Ks 0.7959 0.7961 0.7931 0.7866 −0.0594 ± j6.5083 0.0091Q = 0.2 Kd 0.5350 0.5378 0.8483 0.8298 −0.2901

A-3 P = 0.5 Ks 0.7266 0.7266 0.7580 0.7552 −0.0510 ± j6.3772 0.0080Q = 0.3 Kd 0.5686 0.5686 0.7172 0.7162 −0.3160

A-4 P = 0.5 Ks 0.7266 0.7266 0.7226 0.7226 −0.0444 ± j6.2381 0.0071Q = 0.4 Kd 0.5672 0.5686 0.6231 0.6199 −0.3393

A-5 P = 0.5 Ks 0.6976 0.6988 0.6871 0.6866 −0.0392 ± j6.0809 0.0064Q = 0.5 Kd 0.5636 0.3757 0.5428 0.5506 −0.3606

A-6 P = 0.5 Ks 0.6209 0.6209 0.6458 0.6458 −0.0353 ± j5.8974 0.0060Q = 0.6 Kd 0.2278 0.2278 0.4962 0.4922 −0.3804

A-7 P = 0.5 Ks 0.6061 0.5926 0.5992 0.5992 −0.0324 ± j5.6805 0.0057Q = 0.7 Kd 0.6167 0.1780 0.4547 0.4546 −0.3993

A-8 P = 0.5 Ks 0.5654 0.5667 0.5445 0.5462 −0.0304 ± j5.4234 0.0056Q = 0.8 Kd 0.4351 0.4727 0.4330 0.4274 −0.4174

A-9 P = 0.5 Ks 0.4952 0.4989 0.4861 0.4865 −0.0294 ± j5.1185 0.0057Q = 0.9 Kd 0.4345 0.5546 0.4104 0.4095 −0.4348

A-10 P = 0.5 Ks 0.4248 0.4248 0.4199 0.4200 −0.0294 ± j4.7561 0.0062Q = 1.0 Kd 0.2889 0.2893 0.4170 0.4135 −0.4515

The results in Table 3 show that the estimated values of Ks and Kd using the PSO method obtains
more accurate values than EP and AIS. Particularly for the data of Ks for Cases A-1, A-4, and A-7,
the PSO estimation technique obtains exactly the same values as those calculated via the LS method.
The AIS technique achieves the worst results, such that most of the estimated values are different from
those calculated with the LS method.
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Fitness of the EP, AIS, and PSO methods for Event A is illustrated in graph form in Figure 7.
Figure 7a shows that the PSO technique obtains the highest fitness values for all cases. Fitness for EP
and AIS are in the range of 0.92 to 0.98, whereas that of PSO is in the range of 0.99 to 1.00. This finding
implies that PSO calculates better fitness results than EP and AIS.

The results of the computation time for Event A for all three estimation techniques are
demonstrated in Figure 7b. The graph indicates that EP takes the longest computation time with an
average time of approximately 60 s. The AIS method is the fastest among the three techniques because
most of the simulation cases achieved an optimal solution below 30 s.

(a) Fitness for Event A.

(b) Computation time for Event A.

Figure 7. Fitness and computation time for Event A.

For Event A, PSO achieves better results in the objective function compared with EP and AIS.
However, AIS simulates the estimation process in a short computation time and small iteration number.
Overall, PSO is the best method in most of the discussed situations. Table 4 tabulates the values of
Ks and Kd estimated via EP, AIS, PSO, LS, ξmin, and λ for Event B. From the 10 cases, the first 7 cases
show positive ξmin and negative λ, indicating that the first 7 cases are in a stable condition. The three
final cases are considered unstable because of the negative value of the minimum damping ratio,
ξmin, and positive eigenvalues, λ. The estimated values of Ks and Kd via the LS method supports the
result of ξmin and λ. From the estimation process for the first seven cases, which used the LS method,
the values of Ks and Kd are positive. These findings indicate that Cases B-1 to B-7 are stable. For
Cases B-8, B-9, and B-10, the LS results give negative values for Ks and positive values for Kd, thereby
proving that all three final cases are considered non-oscillatory instability cases. In each case, a total of
10 replications for the simulation process were performed. The results obtained are within the range of
not more than 1%.
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From Table 4, PSO method exhibits more comparable results with respect to AIS and EP,
particularly for the two final cases, namely Cases B-9 and B-10. In these two cases, the estimated value
of Kd using EP and AIS are far deviated from PSO and LS method.

Table 4. Ks and Kd via EP, AIS, PSO, LS, eigenvalues and ξmin for Event B.

Cases P, Q Ks, Kd EP AIS PSO LS λ ξmin

B-1 P = 1.0 Ks 0.7239 0.7247 0.7104 0.7104 −0.0249 ± j6.1853 0.0040Q = 0.15 Kd 0.2389 0.2448 0.3471 0.3493 −0.3593

B-2 P = 0.9 Ks 0.8063 0.8109 0.8065 0.8060 −0.0703 ± j6.5879 0.0107Q = 0.15 Kd 1.1691 1.3715 0.9681 0.9814 −0.2486

B-3 P = 0.8 Ks 0.8781 0.8640 0.8910 0.8912 −0.1068 ± j6.9272 0.0154Q = 0.15 Kd 1.5674 1.4611 1.4751 1.4975 −0.1604

B-4 P = 0.7 Ks 0.9864 0.9884 0.9876 0.9879 −0.1246 ± j7.2930 0.0171Q = 0.15 Kd 1.7431 1.8278 1.7439 1.7474 −0.1220

B-5 P = 0.6 Ks 1.0167 1.0223 1.0498 1.0514 −0.1351 ± j7.5236 0.0179Q = 0.15 Kd 1.8866 2.0740 1.8947 1.8925 −0.1016

B-6 P = 0.5 Ks 1.0165 1.0223 1.0760 1.0751 −0.1441 ± j7.6078 0.0189Q = 0.15 Kd 1.9198 2.0740 1.9984 2.0153 −0.0842

B-7 P = 0.4 Ks 1.1035 1.1068 1.0697 1.0699 −0.1531 ± j7.5894 0.0202Q = 0.15 Kd 2.0607 2.0699 2.1582 2.1455 −0.0667

B-8 P = 0.3 Ks −1.0601 −1.0601 −1.0510 −1.0511 7.3361, −7.6625 −1.0000Q = 0.15 Kd 2.9546 2.9546 2.6562 2.6560 −0.0473

B-9 P = 0.2 Ks −1.0136 −0.9449 −0.9875 −0.9991 7.1650, −7.5150 −1.0000Q = 0.15 Kd 3.1763 3.5296 1.8054 2.0112 −0.0245

B-10 P = 0.1 Ks −0.8589 −0.8642 −0.9437 −0.9437 −7.3137, 6.9347 −1.0000Q = 0.15 Kd −1.7892 −1.9245 2.7579 2.7580 0.0034

The profile for the fitness of EP, AIS, and PSO method for Event B is presented in Figure 8a.
From the graph, the PSO technique acquires the highest fitness values as compared with EP and AIS.
The fitness values for EP and AIS are in the range of 0.92 to 0.98, whereas PSO is in the range of 0.99 to
1.00. This finding implies that PSO outperformed EP and AIS in determining the values of Ks and Kd
with high accuracy.

Figure 8b lists the results of computation time for Event B for the EP, PSO, and AIS estimation
techniques. EP is the slowest among the three techniques with the computation time in a range of
40–80 s. For the AIS method, 5 out of 10 cases finished the computation process in 20 s.

The results of Event B indicate that PSO can optimize the best value of torque coefficients Ks and
Kd. PSO reaches higher fitness values than EP and AIS. AIS obtains better computation time, but EP is
computationally burdensome.
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(a) Fitness for Event B.

(b) Computation time for Event B.

Figure 8. Fitness and computation time for Event B.

5. Conclusions

In this study, an efficient real-time estimation technique of torque coefficients Ks and Kd for solving
angle stability problems is proposed. Ks and Kd are estimated on the basis of ∆δ(t), ∆ω(t), and ∆Te(t).
The values of Ks and Kd based on the LS technique are selected as the benchmark for evaluating
the performance of the proposed optimization method. Overall, PSO is excellent for calculating the
values of Ks and Kd because it obtains almost the same values as those calculated via the LS method.
Although EP and AIS can determine the stability condition of all the cases, the value differences of
Ks and Kd when compared with LS for EO and AIS are larger than those obtained by using PSO.
From the perspective of computation time and iterations, AIS obtains the fastest simulation time
in this event, followed by PSO and EP. Despite the large iteration number, the time consumed for
the PSO simulation process is still minimal and acceptable. From the point of view of population
size, the performance of calculation accuracy for all the three techniques significantly increased when
simulations are conducted in 20 and 50 population sizes compared with that in 5 population sizes.
The computation time consumed and number of iterations increase significantly regardless of the
calculation accuracy performance in each optimization technique as the population sizes increase.
The results of the last three events suggest that 20 is the recommended population size for calculating
the accurate value of Ks and Kd via the PSO technique.
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