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Abstract: This study dealt with evaluating the (J85-GE-5H) military turbojet engine (TJE) in terms of
exergetic and advanced exergetic analyses at Military (MIL) and Afterburner (AB) process modes by
utilizing kerosene (JP-8) and hydrogen (H2) fuels. First, exergy and advanced exergy analyses of the
engine were performed using JP-8 fuel as per actual engine operating conditions. These analyses
of the turbojet engine using hydrogen fuel were also examined parametrically. The performance
evaluation of the engine was lastly executed by comparing the obtained results for both fuels. Based
on the parametric studies undertaken, the entire engine’s exergetic efficiency with JP-8 was reckoned
30.85% at the MIL process mode while it was calculated as 16.98% at the AB process mode. With the
usage of H2, the efficiencies of the engine decreased to 28.62% and 15.33% for the above mentioned
two modes, respectively. As the supreme exergy destructions occurred in the combustion chamber
(CC) and afterburner exhaust duct (ABED) segments, the new technological developments should
be considered to design more efficient engines. As a result, the engine worked less efficiently with
hydrogen fuel due to the enhancement in exergy destructions. Conversely, the greenhouse gas (GHG)
emission parameters lessened with the utilization of H2 fuel.

Keywords: turbojet engine; exergetic analysis; advanced exergetic analysis; performance evaluation;
exergy efficiency; improved exergy efficiency; H2 fuel

1. Introduction

In today’s world, the main parameter of sustainable economic development bounds up with
energy. The diminishing of the energy sources due to fast consumption can cause detrimental effects
on the environment [1]. Aviation, one of the most energy consuming sectors, should be considered as
per ecological threat to the world. Increases in CO2 emissions and temperature cause climate change
across the world. In this regard, many studies have been executed in order to eliminate the unfavorable
effects of the emissions in aviation [2–6]. Moreover, another challenge that must be considered is the
diminution of fossil energy resources. In this context, these challenges led researchers to work on
alternative energy resources. One of the most eco-friendly and least pollutant renewable source as well,
known is hydrogen. In recent years, the studies on fuel cell-based energy systems have led liquefied
hydrogen fuel to be considered as an important alternative fuel with feasible outcomes [7–15], but the
disadvantages that have been waiting to be solved still remain [16–21]. Hydrogen should be produced
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because it does not exist in nature by itself. The need for the large fuel tank size, preserving liquefied
hydrogen approximately below 253 ◦C working conditions and the aerodynamic design challenges in
terms of weight is counted to be the major problems [22–24].

Beyond all this, the main concern is to design jet propulsion systems regarding exergetic efficiency
in order to give the best feasible outcome regardless of the type of fuel used [16,17,25–27]. It is known
that aircraft gas turbine engines operate according to thermodynamic principles. The main criterion
on performance evaluation of aircraft engines is to achieve maximum thrust with minimum fuel
consumption [28,29]. On this aspect, energy and exergy performance assessments have been applied to
aircraft engines based on thermodynamic rules [30–36]. Thermodynamics’ second law analysis named
exergy analysis can give a chance to evaluate the quality of energy, entropy production (irreversibility)
and the capability of doing work. Exergy can deal with the quantity of the work by considering the
system and its environment thanks to reversible processes. The entire performance in a gas turbine
system can be determined by putting forth the irreversibilities [37–41]. The whole performance of a
system and its segments can be improved when the irreversibilities and the exergy destructions of the
system are diminished [42,43]. Not only the destruction ratio but also the interplay of the segments
in a system can give the researchers a better comprehension to evaluate the performance metrics in
a gas turbine engine. Even though thermodynamic irreversibilities lead to inefficiencies, which can
be examined through conventional exergy analysis, further investigation by examining the source of
irreversibility and amelioration capacity can be achieved only via advanced exergy analysis [44–48].

As opposed to prior researches, the comparative improved performance examination of J85-GE-5H
turbojet engine (TJE), as considering advanced exergetic analyses with the utilization of H2 fuel, has
not been detected during the literature review. The primary interest and the originality of this study lie
in this view. The main objectives and typicalness of this study can be abstracted to:

• Calculate the exergy destructions of TJE and its segments,
• Compare the TJE exergetic efficiency with the improved exergetic efficiency at Military (MIL) and

Afterburner (AB) process modes for JP-8 fuel and H2 fuel,
• Determine advanced exergy destruction rates of TJE and its segments by dividing into

endogenous/exogenous and avoidable/unavoidable parts,
• Compare the advanced exergetic destruction rates with the usage of JP-8 fuel and H2 fuel and
• Find out the segments in demand of recuperation.

2. Methodology

2.1. Definition of TJE

J85-GE-5H TJE is formed of the segments given as air compressor (AC), combustion chamber
(CC), gas turbine (GT), forward exhaust duct (FED), afterburner exhaust duct (ABED) and gas turbine
mechanic shaft (GTMS), which joins eight stage axial flow compressor section to a two stage turbine
section. In this research, the inlet duct was assumed negligible since the engine was operated in the
ground test cell indoor condition. The combustion with continuous flow occurs in the annular CC and
ABED segments. This engine is used on T-38 military training aircraft. The engine and its segments’
power need can be obtained by the expansion of burnt gases in the turbine. The empirical data, such
as temperature (T), fuel and air flow rates (

.
m) and pressure (P), regarding the TJE segments, have been

obtained by indicators that are mounted on the engine. The ABED segment provides more power and
thrust force by burning the AB fuel depending on the flight characteristic. A basic cross-section of the
TJE is demonstrated in Figure 1.
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Figure 1. A basic cross-section and exergy flow of the military TJE.

2.2. Assumptions Made

The assumptions regarding the study are listed as follows:

• Air and combustion gases were reputed as ideal gases.
• The TJE functioned in a steady state.
• At the end of the process, complete combustion was obtained.
• Kinetic exergy and potential exergy changes were reputed to be insignificant.
• Since the engine was operated in the ground test cell as a rigid position, Vin was assumed to be

zero. Therefore, the effect of the inlet duct was neglected.
• The AC and GT segments of the TJE were counted off as adiabatic due to negligible heat transfer

rates [3,31].
• The fuels, JP-8 and H2, based on the exergy analysis of this study.
• The Lower Heating Value (LHV) was assumed to be 43,124 kJ/kg for JP-8 and 119,450 kJ/kg for H2

fuel [49,50].

2.3. Exergy Analysis

As per exergy analysis, the efficiency of the system and its segments are considered by their place,
source and size with the maximum exergy destruction [44]. In other words, exergy is a description of
a utilizable work that can be obtained from the present capacity of a gas turbine system. With this
scope, the CC and ABED segments are the main components, which have significant effects in terms of
exergetic efficiency due to the utmost exergy destructions.

2.3.1. The Exergy Equations

General exergy equilibrium equation is defined by:∑
n

(
1−

To

Tn

) .
Qn −

.
W +

∑
in

.
Exin −

∑
out

.
Exout −

.
ExD = 0 (1)

where
.

Qn is the heat transfer rate at Tn temperature;
.

W is the work rate;
.
Ex is exergy flow rate and the

.
ExD is exergy destruction rate.

The exergy equation can be written for a continuous flow continuous open (CFCO) system as
follows [51]:

.
ExF =

.
ExPr +

.
ExD (2)

where
.
ExF and

.
ExPr symbolize fuel exergy rate and product exergy rate, respectively.

Exergy consumption, symbolized as
.
ExC, is obtained by summing the rates of exergy destruction

and exergy losses
.
ExL [3].

.
ExC =

.
ExD +

.
ExL (3)
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In order to consider the energy produced in the system, the chemical consumption of liquid fuels
(CaHb) can be calculated per unit mass as undermentioned [39,49,52]:

.
Exch,F

.
mFLHVF

= γF � 1.04224 + 0.011925
b
a
−

0.042
a

(4)

where γF represents the fuel exergy grade function calculated as 1.0616 for JP-8 fuel with the chemical
formula of C12H23 [31]. The specific exergy of the jet fuel is obtained by multiplying the LHVF with the
γF within the value of 45,780.28 kJ/kg, whereas it is calculated as 134,778 kJ/kg for liquefied H2 fuel [53].

The impulse is equal to the momentum of the burned gases at the exhaust duct and is obtained as
follows [54]:

F =
.

moutVout −
.

minVin + AoutPout −AinPin (5)

where the subscripts “in” and “out” stand for inlet and outlet control quantities, respectively; A is the
area (m2); F is the thrust (N);

.
m is the mass flow rate (kg/s) and V is the velocity (m/s). Since the turbojet

engine ran in a ground test cell without being exposed to outdoor conditions, the input momentum
was assumed to be zero (Vin � 0) [31,34,49].

The product exergy rate of the TJE, symbolized as
.
ExPr,TJE, is calculated as follows [31]:

.
ExPr,TJE =

.
mout

V2
out
2

(6)

where
.

mout and Vout represent the mass flow rate of exhaust gases and the outlet velocity of the exhaust
nozzle, respectively.

2.3.2. Combustion Balance Equations in CC and ABED segments

As per the empirical data obtained from the engine test cell, the energy produced in CC and
ABED segments were calculated within the rate of 15,593.11 and 31,972.05 kW at MIL and AB process
modes, respectively; while the mass flow rates of kerosene were determined as 0.36 and 0.74 kg/s.
When calculating the energy values for the engine segments, the reference environmental condition
was taken as the basis. As stated in Ref. [50], LHV of the hydrogen fuel is greater than that of the
kerosene fuel. Therefore, equal energy values can be obtained by using 0.13 and 0.27 kg/s hydrogen
fuels for MIL and AB process modes, respectively.

Since the mass of fuel and exhaust gases varies, the thrust gained from exhaust nozzle differs for
MIL and AB process modes. However, the temperature and the pressure of the compressor segment in
both process modes are the same. Therefore, this gives a chance to compare the efficiency of the entire
system with and without AB impact in the present study for both fuel utilizations.

The air consists of 77.48% nitrogen (N2), 20.59% oxygen (O2), 1.90% water vapor (H2O) and 0.03%
carbon dioxide (CO2) [3,31,39,49], while kerosene consists of approximately 9% (C8–C9) aliphatic
hydrocarbons, 65% (C10–C14) aliphatic hydrocarbons, 7% (C15–C17) aliphatic hydrocarbons and 18%
aromatics [55]. Since the ratio of dodecane in kerosene is the highest percentage hydrocarbon, it is
considered as a representative component in this research.

For JP-8 fuel, the air-to-fuel ratio is calculated 45.10 at the MIL process mode. The combustion
equation is demonstrated in terms of mole fractions as given below [56]:

C12H23 + 263.3976(0.7748 N2 + 0.2059O2 + 0.0003 CO2 + 0.019 H2O)→

12.0790 CO2 + 16.5046 H2O + 36.4836 O2 + 204.0805 N2
(7)

The primary emissions considered in the exhaust emission were CO2, H2O, O2 and N2. Upon the
completion of the combustion process as per Equation (7), the mass compositions of combustion gases
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were obtained to be 6.89% CO2 (1.15 kg/s), 3.85% H2O (0.64 kg/s), 15.14% O2 (2.52 kg/s) and 74.12% N2

(12.36 kg/s). The specific heat capacity of the combustion gases is calculated as undermentioned [57]:

cp,cg(T) = 0.9890 +
0.01281

102 T +
0.01477

105 T2
−

0.06580
109 T3 (8)

where the unit of temperature (T) is Kelvin and the specific heat capacity of the combustion gases
cp,cg(T) is kJ/(kg·K). Based on the mass rates of emissions, the combustion gases cp,cg(T) value has been
calculated in terms of temperature by implementing the cp,cg(T) values of each emission [57].

When operating at the AB process mode, the air-to-fuel ratio is reckoned to 22.84. For the AB
process mode, the combustion equation can be written as:

C12H23 + 0.4877(204.0805 N2 + 36.4836 O2 + 12.0790 CO2 + 16.5046 H2O)→

17.8911 CO2 + 19.5494 H2O + 0.0434 O2 + 99.5322 N2
(9)

Upon the completion of combustion process as per Equation (9), the mass compositions of
combustion gases were determined to be 20.04% CO2 (3.49 kg/s), 8.96% H2O (1.56 kg/s), 0.04% O2

(0.01 kg/s) and 70.96% N2 (12.35 kg/s). The specific heat capacity of the combustion gases at the AB
process mode is reckoned as undermentioned:

cp,cg(T) = 0.99413 +
0.02423

102 T +
0.00977

105 T2
−

0.05664
109 T3 (10)

The ideal gas constant values of combustion gases were calculated as 0.290112 and
0.289927 kJ/(kg·K) for the MIL and AB process modes, respectively.

For H2 fuel, the air-to-fuel ratio was calculated 124.93 at the MIL process mode. The combustion
equation is demonstrated as undermentioned [56]:

H2 + 8.7901(0.7748 N2 + 0.2059 O2 + 0.0003 CO2 + 0.019 H2O)→

0.0026 CO2 + 1.1670 H2O + 1.3099 O2 + 6.8106 N2
(11)

Upon the completion of combustion process as per Equation (11), the mass compositions of
combustion gases are reckoned 0.05% CO2 (0.01 kg/s), 8.28% H2O (1.36 kg/s), 16.51% O2 (2.71 kg/s) and
75.16% N2 (12.36 kg/s). The specific heat capacity of the combustion gases is calculated as follows [57]:

cp,cg(T) = 1.05532 +
0.00457

102 T +
0.02280

105 T2
−

0.08676
109 T3 (12)

When operating at the AB process mode, the air-to-fuel ratio is reckoned as 61.42. For the AB
process mode, the combustion equation can be shown as undermentioned:

H2 + 0.4877(6.8106 N2 + 1.3099 O2 + 0.0026 CO2 + 1.1670 H2O)→

0.0013 CO2 + 1.5692 H2O + 0.1388 O2 + 3.3216 N2
(13)

Upon the completion of combustion process as per Equation (13), the mass compositions of
combustion gases are reckoned 0.04% CO2 (0.01 kg/s), 22.47% H2O (13.75 kg/s), 3.53% O2 (0.59 kg/s)
and 73.96% N2 (12.36 kg/s). The specific heat capacity of the combustion gases at the AB process mode
is computed as shown below:

cp,cg(T) = 1.19340 +
0.00001

102 T +
0.03367

105 T2
−

0.11916
109 T3 (14)

The ideal gas constant values of combustion gases were calculated as 0.304282 and 0.33245
kJ/(kg·K) for the MIL and AB process modes, respectively.
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The specific heat capacity of air is shown with the temperature unit of Kelvin (K) as
undermentioned [58]:

cp,a(T) = 1.04841− 0.000383719T +
9.45378T2

107 −
5.49031T3

1010
+

7.92981T4

1014
(15)

The exergy equilibrium equations for TJE and its primary segments are derived and given below:

• Air compressor:
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Tables 1 and 2 demonstrate the reckoned energy rate, exergy rate, mass flow rate, pressure and
specific heat capacity for the system segments according to the flow state numbers for JP-8 and H2 fuel
usages, respectively.

Table 1. Values for energy rate, exergy rate, mass flow rate, pressure and specific heat capacity for the
system segments for kerosene fuel utilization (*: solely for Afterburner (AB) process mode).

State No. Fluid Type
.

m (kg/s) P (kPa) T (K) cp (kJ/kg·K)
.
E (kW)

.
Ex (kW)

0 Air 0.00 101.33 288.15 1.00375 0.00 0.00
1 Air 18.12 101.33 288.15 1.00375 0.00 0.00
2 Air 18.12 719.41 572.15 1.04401 5582.74 4700.03

2.1 Air 16.31 719.41 572.15 1.04401 5024.47 4230.03
2.2 Air 1.81 719.41 572.15 1.04401 558.27 470.00
2.3 Air 1.81 182.25 942.55 1.12946 1404.92 739.76
2.4 Air 1.81 178.60 932.15 1.12735 1380.07 720.25
2.5 Air 1.81 175.03 919.65 1.12477 1350.24 698.64

2.5 * Air 1.81 175.03 1563.15 1.13501 2690.75 1714.09
3 Military fuel 0.36 244.76 298.15 - 15,593.11 16,553.58
4 Combustion gas 16.67 683.44 1177.15 1.23710 19,453.74 13,258.25
5 Combustion gas 16.67 182.25 942.55 1.18586 13,810.78 7155.65
6 Combustion gas 16.67 178.60 932.15 1.18345 13,567.78 6965.71
7 Combustion gas 16.67 175.03 919.65 1.18055 13,276.65 6745.94

7 * Combustion gas 17.41 175.03 1563.15 1.38960 32,783.53 20,163.84
10 * Afterburner fuel 0.74 244.76 298.15 - 31,972.05 33,941.41

8 Mechanical work - - - - 5639.87 5639.87
9 Mechanical work - - - - 5582.74 5582.74
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Table 2. Values for energy rate, exergy rate, mass flow rate, pressure and specific heat capacity for the
system segments for H2 fuel utilization (*: solely for AB process mode).

State No. Fluid Type
.

m (kg/s) P (kPa) T (K) cp (kJ/kg·K)
.
E (kW)

.
Ex (kW)

0 Air 0.00 101.33 288.15 1.00375 0.00 0.00
1 Air 18.12 101.33 288.15 1.00375 0.00 0.00
2 Air 18.12 719.41 572.15 1.04401 5582.74 4700.03

2.1 Air 16.31 719.41 572.15 1.04401 5024.47 4230.03
2.2 Air 1.81 719.41 572.15 1.04401 558.27 470.00
2.3 Air 1.81 182.25 923.15 1.12550 1358.59 709.82
2.4 Air 1.81 178.60 912.15 1.12319 1332.35 689.61
2.5 Air 1.81 175.03 894.15 1.11934 1289.47 664.51

2.5 * Air 1.81 175.03 1532.15 1.14204 2646.52 1677.12
3 Military fuel 0.13 244.76 298.15 - 15,593.11 17,594.04
4 Combustion gas 16.44 683.44 1156.15 1.27884 19,550.38 13,349.45
5 Combustion gas 16.44 182.25 923.15 1.22356 13,813.23 7059.33
6 Combustion gas 16.44 178.60 912.15 1.22086 13,551.58 6856.80
7 Combustion gas 16.44 175.03 894.15 1.21645 13,125.45 6551.49

7 * Combustion gas 16.71 175.03 1532.15 1.38537 30,628.66 18,853.16
10 * Afterburner fuel 0.27 244.76 298.15 - 31,972.05 36,074.76

8 Mechanical work - - - - 5737.15 5737.15
9 Mechanical work - - - - 5582.74 5582.74

2.3.3. Exergy Performance Variables

The diverse variables, which help assess the exergetic performance of the TJE, are determined as
follows [31,59]:

• Exergy efficiency:

ψ =

.
ExPr
.
ExF

(25)

• Relative exergy consumption rate:

φn =

.
ExC,n

.
ExC,TJE

(26)

• Fuel exergy demolition rate:

αn =

.
ExC,n

.
ExF

(27)

• Productivity lack rate:

λn =

.
ExC,n

.
ExPr,TJE

(28)

• Exergetic improvement potential:

.
ExI

.
Pn = (1−ψn)

.
ExD,n (29)

• Specific fuel consumption rate:

SFC =

.
mF

F
(30)

• Improved exergetic efficiency:

Ψ =

.
ExPr,TJE

(
.
ExF −

.
ExIPTJE)

(31)
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3. Advanced Exergy Analysis

Even though in exergy analysis, one can figure out the destructions and irreversibilities, it cannot
classify the provenance. The further step in order to gain sophisticated consequences is to reckon the
advanced exergetic breakdown by virtue of the exergy analysis results [44–48]. By this way, one can
classify the entropy production and the demolition of the segment’s exergy. Irreversibility taking
place in a device not only depends on its performance but also is related to the remaining segments,
which deals with it. However, the demolition based on the segment itself can be avoidable rather than
the rest of the segments interplay among it. Besides, the segments demolition can influence each of the
other system segments’ demolitions. With the help of the advanced exergy analysis, researchers have a
chance to design systems that are more efficient. By dividing the exergy demolition into endogenous
and exogenous parts, one can find out the source of irreversibilities.

The relations for calculating the endogenous and exogenous parts of the n-th segment are
demonstrated as [60,61]:

.
ExEN

D,n =
.
ExRL

Pr,n ×


.
ExD
.
ExPr


EN

n

(32)

.
ExD,n =

.
ExEX

D,n +
.
ExEN

D,n (33)

The demolition regarding the endogenous part includes the segment performance, considering
that other segments work in optimal conditions. The effect of the residuary segments on the whole
system composes the exogenous part of the demolition. When the disposal capacity of irreversibilities
is considered, the exergy demolitions need to be divided into unavoidable and avoidable parts by the
researchers. Although the technological challenges are altered, the unavoidable part of the segments
cannot be removed. Yet, the avoidable part can be altered with the aid of technical recuperation.
The unavoidable exergy destruction rate equation can be written as follows [62,63]:

.
ExUN

D,n =
.
ExRL

Pr,n ×


.
ExD
.
ExPr


UN

n

(34)

The avoidable exergy destruction rate can be gained by subtracting the unavoidable exergy
destruction rate from the real exergy destruction rate as:

.
ExAV

D,n =
.
ExRL

D,n −
.
ExUN

D,n (35)

A schematic subdivision of the exergy destruction is shown in Figure 2.
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The
.
ExD rates are united to be evaluated for further analysis as given hereinafter [64]:

.
ExUNEN

D,n =
.
ExRL

D,n ×


.
ExUN

D
.
ExRL

D

×

.
ExEN

D
.
ExRL

D

 =
.
ExUN

D ×
.
ExEN

D
.
ExRL

D

(36)

.
ExUNEX

D,n =
.
ExRL

D,n ×


.
ExUN

D
.
ExRL

D

×

.
ExEX

D
.
ExRL

D

 =
.
ExUN

D ×
.
ExEX

D
.
ExRL

D

(37)

.
ExAVEN

D,n =
.
ExRL

D,n ×


.
ExAV

D
.
ExRL

D

×

.
ExEN

D
.
ExRL

D

 =
.
ExAV

D ×
.
ExEN

D
.
ExRL

D

(38)

.
ExAVEX

D,n =
.
ExRL

D,n ×


.
ExAV

D
.
ExRL

D

×

.
ExEX

D
.
ExRL

D

 =
.
ExAV

D ×
.
ExEX

D
.
ExRL

D

(39)

where
.
ExAVEN

D,n can be diminished via the uplift of the regarding segment, whereas
.
ExAVEX

D,n can be
diminished via the uplift of other system segments.

4. Results and Discussion

In accordance with Table 1, exergetic performance variables at MIL and AB process modes of the
entire TJE are demonstrated in Tables 3 and 4 for kerosene utilization, respectively. As per the results,
the velocities of the combustion gases were measured as 782.7 and 992.5 m/s at MIL and AB process
modes, respectively. The thrusts of the aircraft at MIL and AB process modes were 13.05 and 17.28 kN,
respectively. While the specific fuel consumption (SFC) was calculated as 99.77 (kg/h)/kN at the MIL
process mode, it was determined to be 229.78 (kg/h)/kN at the AB process mode. The product exergy
rates of the entire engine known as the kinetic exergy of the combustion gases were calculated as 5106.21
and 8575.33 kW at MIL and AB process modes, respectively, while the fuel exergy rates were 16,553.58
and 50,494.99 kW. Thus, exergy consumption rates were calculated as 11,447.37 and 41,919.66 kW at
MIL and AB process modes, respectively. Figure 3 indicates the exergetic and improved exergetic
efficiency of the TJE and its segments for the MIL and AB process modes, respectively, with the usage
of JP-8 fuel hereinafter.

Table 3. Results for exergy performance variables at the MIL process mode for JP-8 fuel.

SEG.
.
ExF (kW)

.
ExPr (kW)

.
ExC (kW) ψ (%) Ex

.
IP (kW) α (%) λ (%) φ (%) Ψ (%)

AC 5582.74 4700.03 882.71 84.19 139.57 5.33 17.29 7.71 86.35
CC 16,553.58 9028.23 7525.35 54.54 3421.07 45.46 147.38 65.74 68.75
GT 5832.85 5639.87 192.98 96.69 6.38 1.17 3.78 1.69 96.80

FED 7895.41 7685.96 209.45 97.35 5.56 1.27 4.10 1.83 97.42
ABED 7685.96 7444.59 241.37 96.86 7.58 1.46 4.73 2.11 96.96
GTMS 5639.87 5582.74 57.13 98.99 0.58 0.35 1.12 0.50 99.00
Total Destruction Rate - 9108.99 - - - - - -

Total Losses Rate - 2338.38 - - - - - -
TJE 16,553.58 5106.21 11,447.37 30.85 7916.25 69.15 224.19 100.00 59.12
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Table 4. Results for exergy performance variables at the AB process mode for JP-8 fuel.

SEG.
.
ExF (kW)

.
ExPr (kW)

.
ExC (kW) ψ (%) Ex

.
IP (kW) α (%) λ (%) φ (%) Ψ (%)

AC 5582.74 4700.03 882.71 84.19 139.57 1.75 10.29 2.11 86.35
CC 16,553.58 9028.23 7525.35 54.54 3421.07 14.90 87.76 17.95 68.75
GT 5832.85 5639.87 192.98 96.69 6.38 0.38 2.25 0.46 96.80

FED 7895.41 7685.96 209.45 97.35 5.56 0.41 2.44 0.50 97.42
ABED 41,605.77 21,877.93 19,727.84 52.58 9354.18 39.07 230.05 47.06 67.84
GTMS 5639.87 5582.74 57.13 98.99 0.58 0.11 0.67 0.14 99.00
Total Destruction Rate - 28,595.47 - - - - - -

Total Losses Rate - 13,324.19 - - - - - -
TJE 50,494.99 8575.33 41,919.66 16.98 34,800.63 83.02 488.84 100.00 54.64
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Figure 3. (a) MIL process mode exergy efficiency; (b) AB process mode exergy efficiency.

While the entire engine had 9108.99 kW exergy destruction rate and 2338.38 kW exergy loss rate
at the MIL process mode, it had 28,595.47 kW exergy destruction rate and 13,324.19 kW exergy loss
rate at the AB process mode. Even though the overall engine efficiency was detected at MIL and AB
process modes with the ratios of 30.85% and 16.98%, respectively, it was determined to be 59.12% and
54.64% when taking into account the improved potential of the system. The exergy ratio and other
variables for the system segments are given as undermentioned:

• As per Table 3 at the MIL process mode, the utmost exergy demolition took place in the CC
segment, which had a rate of 7525.35 kW. The entire engine had a 7916.25 kW exergy improvement
potential rate, which was detected in the CC as the highest ratio with a value of 3421.07 kW.
The CC segment had the rock-bottom exergy efficiency with a ratio of 54.54%, while it was
detected as 68.75% for the improved condition. Therewithal, the CC had the utmost relative
exergy consumption ratio with 65.74%, the maximum fuel exergy depletion ratio with 45.46% and
the maximum productivity exergy lack ratio with 147.38%.

• As per Table 4 at the AB process mode, the utmost exergy demolition occurred in the ABED segment,
which had a rate of 19,727.84 kW. The entire engine had a 34,800.63 kW exergy improvement
potential rate, which was detected in the ABED as the highest ratio, with a value of 9354.18 kW.
The ABED had the rock-bottom exergy efficiency with a ratio of 52.58%, whereas it was detected
67.84% for the improved condition. At the same time, the ABED had the maximum relative
exergy consumption ratio with 47.06%, the maximum fuel exergy depletion ratio of 39.07% and
the maximum productivity exergy lack ratio with 230.05%.

In accordance with Table 2, exergetic performance variables at MIL and AB process modes of
the entire TJE are demonstrated in Tables 5 and 6 for H2 utilization, respectively. Since the research
has been performed parametrically in terms of H2 fuel usage similar to Ref. [65], the velocities of
the exhaust gases were assumed as 782.7 and 992.5 m/s at MIL and AB process modes, respectively.
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The thrusts of the A/C at MIL and AB process modes were 12.87 and 16.58 kN, respectively. While SFC
was calculated 36.52 (kg/h)/kN at MIL process mode, it was calculated 86.46 (kg/h)/kN at the AB process
mode. The product exergy rates of the entire engine known as the kinetic exergy of the exhaust gases
were determined as 5035.44 and 8228.21 kW at MIL and AB process modes, respectively, while the fuel
exergy rates were 17,594.04 kW and 53,668.79kW. Thus, exergy consumption rates were calculated
as 12,558.60 and 45,440.58 kW at MIL and AB process modes, respectively. Figure 4 illustrates the
exergetic and improved exergetic efficiency of the TJE and its segments for the MIL and AB process
modes, respectively, with the usage of H2 fuel hereinafter.

Table 5. Results for exergy performance variables at the MIL process mode for H2 fuel.

SEG.
.
ExF (kW)

.
ExPr (kW)

.
ExC (kW) ψ (%) Ex

.
IP (kW) α (%) λ (%) φ (%) Ψ (%)

AC 5582.74 4700.03 882.71 84.19 139.57 5.02 17.53 7.03 86.35
CC 17,594.04 9119.43 8474.61 51.83 4082.01 48.17 168.30 67.48 67.49
GT 6050.30 5737.15 313.16 94.82 16.21 1.78 6.22 2.49 95.08

FED 7769.15 7546.40 222.75 97.13 6.39 1.27 4.42 1.77 97.21
ABED 7546.40 7216.00 330.40 95.62 14.47 1.88 6.56 2.63 95.81
GTMS 5737.15 5582.74 154.41 97.31 4.16 0.88 3.07 1.23 97.38
Total Destruction Rate - 10,378.03 - - - - - -

Total Losses Rate - 2180.57 - - - - - -
TJE 17,594.04 5035.44 12,558.60 28.62 8964.31 71.38 249.40 100.00 58.35

Table 6. Results for exergy performance variables at the AB process mode for H2 fuel.

SEG.
.
ExF (kW)

.
ExPr (kW)

.
ExC (kW) ψ (%) Ex

.
IP (kW) α (%) λ (%) φ (%) Ψ (%)

AC 5582.74 4700.03 882.71 84.19 139.57 1.64 10.73 1.94 86.35
CC 17,594.04 9119.43 8474.61 51.83 4082.01 15.79 102.99 18.65 67.49
GT 6050.30 5737.15 313.16 94.82 16.21 0.58 3.81 0.69 95.08

FED 7769.15 7546.40 222.75 97.13 6.39 0.42 2.71 0.49 97.21
ABED 43,596.07 20,530.27 23,065.79 47.09 12,203.64 42.98 280.33 50.76 65.40
GTMS 5737.15 5582.74 154.41 97.31 4.16 0.29 1.88 0.34 97.38
Total Destruction Rate - 33,113.43 - - - - - -

Total Losses Rate - 12,327.15 - - - - - -
TJE 53,668.79 8228.21 45,440.58 15.33 38,473.87 84.67 552.25 100.00 54.15
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GT 5,832.85 5,639.87 192.98 96.69 6.38 0.38 2.25 0.46 96.80 

FED 7,895.41 7,685.96 209.45 97.35 5.56 0.41 2.44 0.50 97.42 
ABED 41,605.77 21,877.93 19,727.84 52.58 9,354.18 39.07 230.05 47.06 67.84 
GTMS 5,639.87 5,582.74 57.13 98.99 0.58 0.11 0.67 0.14 99.00 
Total Destruction Rate - 28,595.47 - - - - - - 

Total Losses Rate - 13,324.19 - - - - - - 
TJE 50,494.99 8,575.33 41,919.66 16.98 34,800.63 83.02 488.84 100.00 54.64 

In accordance with Table 2, exergetic performance variables at MIL and AB process modes of 275 
the entire TJE are demonstrated in Tables 5 and 6 for H2 utilization, respectively. Since the research 276 
has been performed parametrically in terms of H2 fuel usage similar to Ref. [65], the velocities of the 277 
exhaust gases were assumed as 782.7 and 992.5 m/s at MIL and AB process modes, respectively. The 278 
thrusts of the A/C at MIL and AB process modes were 12.87 and 16.58 kN, respectively. While SFC 279 
was calculated 36.52 (kg/h)/kN at MIL process mode, it was calculated 86.46 (kg/h)/kN at the AB 280 
process mode. The product exergy rates of the entire engine known as the kinetic exergy of the 281 
exhaust gases were determined as 5,035.44 and 8,228.21 kW at MIL and AB process modes, 282 
respectively, while the fuel exergy rates were 17,594.04 kW and 53,668.79kW. Thus, exergy 283 
consumption rates were calculated as 12,558.60 and 45,440.58 kW at MIL and AB process modes, 284 
respectively. Figure 4 illustrates the exergetic and improved exergetic efficiency of the TJE and its 285 
segments for the MIL and AB process modes, respectively, with the usage of H2 fuel hereinafter. 286 

  

(a) (b) 

Figure 4. (a) MIL process mode exergy efficiency; (b) AB process mode exergy efficiency. 287 

While the entire engine had a 10,378.03 kW exergy destruction rate and 2,180.57 kW exergy loss 288 
rate at the MIL process mode, it had a 33,113.43 kW exergy destruction rate and 12,327.15 kW exergy 289 
loss rate at the AB process mode. Even though the engine efficiency was detected at MIL and AB 290 
process modes with the ratios of 28.62% and 15.33%, respectively, it was determined 58.35% and 291 
54.15% for the improved conditions. The exergy ratio and other variables were presented as follows: 292 

 As per Table 5 at the MIL process mode, the utmost exergy demolition took place in the CC 293 
segment, which had a rate of 8,474.61 kW. The entire engine had 8,964.31 kW exergy 294 
improvement potential, which was in the CC as the highest ratio with the value of 4082.01 kW. 295 
The combustion chamber segment had the rock-bottom exergy efficiency by the ratio of 51.83%, 296 

51.83

28.62

67.49 58.35

0.00

20.00

40.00

60.00

80.00

100.00

A
C

C
C

G
T

FE
D

A
BE

D

G
TM

S

TJ
E

ψ
Ψ

MIL process mode

Ex
er

gy
Ef

fi
ci

en
cy

 (%
)

51.83 47.09

15.33

67.49 65.40

54.15

0.00

20.00

40.00

60.00

80.00

100.00 ψ
Ψ

Ex
er

gy
Ef

fi
ci

en
cy

 (%
)

AB process mode

Figure 4. (a) MIL process mode exergy efficiency; (b) AB process mode exergy efficiency.

While the entire engine had a 10,378.03 kW exergy destruction rate and 2180.57 kW exergy loss
rate at the MIL process mode, it had a 33,113.43 kW exergy destruction rate and 12,327.15 kW exergy
loss rate at the AB process mode. Even though the engine efficiency was detected at MIL and AB
process modes with the ratios of 28.62% and 15.33%, respectively, it was determined 58.35% and 54.15%
for the improved conditions. The exergy ratio and other variables were presented as follows:
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• As per Table 5 at the MIL process mode, the utmost exergy demolition took place in the CC
segment, which had a rate of 8474.61 kW. The entire engine had 8964.31 kW exergy improvement
potential, which was in the CC as the highest ratio with the value of 4082.01 kW. The combustion
chamber segment had the rock-bottom exergy efficiency by the ratio of 51.83%, while it was
detected 67.49% for the improved condition. Therewithal, the CC had the utmost relative exergy
consumption ratio with 67.48%, the maximum fuel exergy depletion ratio with 48.17% and the
maximum productivity exergy lack ratio with 168.30%.

• As per Table 6 at the AB process mode, the utmost exergy demolition was due to the ABED
segment, which had a rate of 23,065.79 kW. The entire engine had 38,473.87 kW exergy improvement
potential, which was detected in the ABED as the highest ratio, with a value of 12,203.64 kW.
The ABED had the rock-bottom exergy efficiency by the ratio of 47.09%, whereas it was detected
as 65.40% for the improved condition. At the same time, the ABED has the maximum relative
exergy consumption ratio with 50.76%, the maximum fuel exergy depletion ratio with 42.98% and
the maximum productivity exergy lack ratio with 280.33%.

When comparing the exergetic efficiency results acquired from the present study with the outcome
of J69-T-25A TJE study [65], one can write as follows:

The exergetic efficiency of the whole J69 engine was determined 15.40% with kerosene fuel usage
while it was reckoned 14.33% with hydrogen fuel utilization. The percentage change of J69 engine’s
exergetic efficiency calculated as 6.95% was not only lower than the MIL process mode exergy efficiency
percentage change 7.23% of the J85-GE-5H TJE but also lower than the AB process mode exergy
efficiency percentage change 9.73%. Although these findings have indicated that the use of hydrogen
fuel caused more exergy destruction in J85 engine, the overall engine efficiency was more efficient than
J69 engine in both process modes. On the other hand, as per Ref. [31], the efficiency of (J85-GE-CAN-15)
TJE determined 31.64% and 24.18% at the MIL and AB process modes, respectively, was detected more
efficient than the ones in this article.

In order to verify the exergy analyses consequences, the advanced exergy analysis results were
taken into account for further performance assessment of TJE and its segments. Turbojet engine and its
segments’ advanced exergy destructions are shown for MIL and AB process modes in Tables 7 and 8
for JP-8 usage.

Table 7. Results for endogenous, exogenous, unavoidable and avoidable exergy demolition of TJE and
its segments at the MIL process mode for JP-8 utilization.

SEG.
.
ExRL

D (kW)
.
ExUN

D (kW)
.
ExAV

D (kW)
.
ExEX

D (kW)
.
ExEN

D (kW)
.
ExUNEN

D (kW)
.
ExUNEX

D (kW)
.
ExAVEN

D (kW)
.
ExAVEX

D (kW)

AC 882.71 722.02 160.69 132.24 750.47 609.79 112.23 140.68 20.01
CC 7525.35 7317.64 207.71 690.10 6835.25 6643.88 673.76 191.37 16.34
GT 192.98 117.03 75.95 12.02 180.96 109.03 8.00 71.93 4.02

FED 209.45 136.95 72.50 25.98 183.47 119.36 17.59 64.11 8.39
ABED 241.37 134.02 107.35 33.06 208.31 114.60 19.42 93.71 13.64
GTMS 57.13 31.15 25.98 3.90 53.23 28.89 2.26 24.34 1.64

TJE 9108.99 8458.81 650.18 897.30 8211.69 7625.55 833.26 586.14 64.04

Table 8. Results for endogenous, exogenous, unavoidable and avoidable exergy demolition of TJE and
segments at AB process mode for JP-8 utilization.

SEG.
.
ExRL

D (kW)
.
ExUN

D (kW)
.
ExAV

D (kW)
.
ExEX

D (kW)
.
ExEN

D (kW)
.
ExUNEN

D (kW)
.
ExUNEX

D (kW)
.
ExAVEN

D (kW)
.
ExAVEX

D (kW)

AC 882.71 722.02 160.69 132.24 750.47 609.79 112.23 140.68 20.01
CC 7525.35 7317.64 207.71 690.10 6835.25 6643.88 673.76 191.37 16.34
GT 192.98 117.03 75.95 12.02 180.96 109.03 8.00 71.93 4.02

FED 209.45 136.95 72.50 25.98 183.47 119.36 17.59 64.11 8.39
ABED 19,727.84 16,726.80 3001.05 3328.53 16,399.32 13,867.49 2859.31 2531.83 469.22
GTMS 57.13 31.15 25.98 3.90 53.23 28.89 2.26 24.34 1.64

TJE 28,595.47 25,051.59 3543.88 4192.77 24,402.70 21,378.44 3673.15 3024.26 519.62

As per Table 7 at the MIL process mode, the total avoidable exergy destruction rate
.
ExAV

D of the
TJE was 650.18 kW. The largest part of this ratio occurred in the CC with a rate of 207.71 kW. The utmost
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unavoidable exergy destruction rate was due to
.
ExUN

D in the CC with a value of 7317.64 kW. This rate
was equal to 86.51% of the total unavoidable exergy destruction rate (8458.81 kW), which is 80.33% of the
total exergy destruction rate (9108.99 kW). As per Figure 5, the unavoidable demolition part of the CC
was the sum of

.
ExUNEN

D the rate of 6643.88 kW and
.
ExUNEX

D with a rate of 673.76 kW. The unavoidable
parts cannot be diminished via uplift in the efficiency of the system due to manufacturing restrictions.
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Figure 5. Advanced exergy evaluation of TJE and its segments as per avoidable/-unavoidable
endogenous/-exogenous destruction ratios at the MIL process mode for JP-8 utilization.

On the other hand, the utmost endogenous exergy destruction rate
.
ExEN

D took place in the CC
with a rate of 6835.25 kW. Since the great endogenous exergy destruction rate, being due to the CC,
the amount of the endogenous part of the exergy destruction therein the entire engine was extremely
greater than that of the exogenous part. The percentage of endogenous exergy destruction therein
the CC was 83.24% of the total endogenous exergy destruction rate (8211.69 kW) and the 75.04% of
the total exergy destruction rate. The TJE engine had an aggregate exogenous exergy demolition
rate of 897.30 kW. The major fragments of this rate given in Table 7 were determined 690.10 kW
in the CC, 132.24 kW in the AC, 33.06 kW in the ABED and 25.98 kW in the FED. The exogenous
exergy destruction was brought about in the n-th segment by the irreversibilities that occurred in the
downstream segments. One could have a chance to understand the reciprocal interplay between engine
segments by separating the demolitions into the exogenous parts. With respect to Table 7, the CC had
a striking influence on the AC segment based on the inefficiencies. At the same time, the AC had the
same influence on the CC segment too. Moreover, the AC and the CC segments’ inefficiencies caused
the exergy destructions of the downstream segments.

One could have a better understanding by analyzing the dispersion of the exergy demolition
as per Table 7. The avoidable-exogenous exergy demolition

.
ExAVEX

D rates were calculated 20.01 and

16.34 kW in the AC and CC segments, respectively. The
.
ExAVEX

D could be diminished uplift in the form

of the entire system or uplift in the efficiency of the downstream system segments. The
.
ExAVEN

D section
could be diminished by uplifting the efficiency of the searched segment. According to the obtained
results, while the CC segment had the utmost avoidable demolition value with the ratio of 31.95% at
the MIL process mode, the ABED segment had the utmost avoidable demolition value with the ratio of
66.99% at the AB process mode.

As per Table 8 at the AB process mode, the total avoidable exergy destruction rate
.
ExAV

D of the
TJE was 3543.88 kW. The great section of this ratio occurred in the ABED segment with a value of
3001.05 kW. The irreversibilities took place in the downstream segments led to exogenous exergy
demolition in the n-th segment. The TJE engine had an aggregate exogenous exergy demolition rate of
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4192.77 kW. The major fragments of this rate were 3328.53 kW in the ABED, followed by 690.10 kW in
the CC and 132.24 kW in the AC. The supreme

.
ExUN

D was in the ABED with a rate of 16,726.80 kW,
being equal to 66.77% of total unavoidable exergy destruction rate (25,051.59 kW) and 58.49% of total
exergy destruction rate (28,595.47 kW). As per Figure 6, the unavoidable demolition part of the ABED
was the sum of

.
ExUNEN

D the rate of 13,867.49 kW and
.
ExUNEX

D with a rate of 2859.31 kW. In addition,

the supreme endogenous exergy destruction rate
.
ExEN

D was determined in the ABED with a rate of
16,399.32 kW. This ratio equaled to 83.13% of the ABED exergy destruction rate (19,727.85 kW) and
67.20% of the total endogenous exergy destruction rate (24,402.70 kW). As per Table 8, the ABED
segment had the utmost

.
ExAVEX

D with the rate of 469.22 kW. The rate of the
.
ExAVEX

D equaled to 1.82% of
the total exergy destruction rate in the TJE at the AB process mode while it was reckoned 0.7% at the
MIL process mode.Energies 2020, 13, x FOR PEER REVIEW 15 of 23 
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Figure 6. Advanced exergy evaluation of TJE and its segments as per avoidable/-unavoidable
endogenous/-exogenous destruction ratios at AB process mode for JP-8 utilization.

On the other hand, the turbojet engine and its segments’ advanced exergy destructions are shown
in Tables 9 and 10 at MIL and AB process modes for H2 usage hereinafter:

Table 9. Results for endogenous, exogenous, unavoidable and avoidable exergy demolition of TJE and
segments in advanced exergy evaluation at MIL process mode for H2 utilization.

SEG.
.
ExRL

D (kW)
.
ExUN

D (kW)
.
ExAV

D (kW)
.
ExEX

D (kW)
.
ExEN

D (kW)
.
ExUNEN

D (kW)
.
ExUNEX

D (kW)
.
ExAVEN

D (kW)
.
ExAVEX

D (kW)

AC 882.71 722.02 160.69 119.75 762.96 620.93 101.09 142.03 18.66
CC 8474.61 8174.28 300.33 860.74 7613.87 7348.78 825.50 265.09 35.24
GT 313.16 211.95 101.21 49.74 263.42 173.55 38.40 89.87 11.34

FED 222.75 140.32 82.43 21.69 201.06 124.65 15.67 76.41 6.02
ABED 330.40 181.81 148.58 43.50 286.89 152.93 28.88 133.96 14.62
GTMS 154.41 87.25 67.16 14.14 140.27 79.22 8.03 61.05 6.11

TJE 10,378.03 9517.63 860.40 1109.56 9268.47 8500.06 1017.57 768.41 91.99

Table 10. Results for endogenous, exogenous, unavoidable and avoidable exergy demolition of TJE
and segments in advanced exergy evaluation at AB process mode for H2 utilization.

SEG.
.
ExRL

D (kW)
.
ExUN

D (kW)
.
ExAV

D (kW)
.
ExEX

D (kW)
.
ExEN

D (kW)
.
ExUNEN

D (kW)
.
ExUNEX

D (kW)
.
ExAVEN

D (kW)
.
ExAVEX

D (kW)

AC 882.71 722.02 160.69 119.75 762.96 620.93 101.09 142.03 18.66
CC 8474.61 8174.28 300.33 860.74 7613.87 7348.78 825.50 265.09 35.24
GT 313.16 211.95 101.21 49.74 263.42 173.55 38.40 89.87 11.34

FED 222.75 140.32 82.43 21.69 201.06 124.65 15.67 76.41 6.02
ABED 23,065.79 19,083.41 3982.38 4297.26 18,768.53 15,469.09 3614.32 3299.43 682.94
GTMS 154.41 87.25 67.16 14.14 140.27 79.22 8.03 61.05 6.11

TJE 33,113.43 28,419.23 4694.19 5363.32 27,750.11 23,816.22 4603.01 3933.88 760.31
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According to Table 9 at the MIL process mode, the total avoidable exergy destruction rate
.
ExAV

D,k
of the TJE was 860.40 kW. The great section of this ratio occurred in the CC with a rate of 300.33 kW.
The utmost unavoidable exergy destruction rate took place

.
ExUN

D in the CC with a rate of 8174.28 kW,
being equal to 85.89% of the total unavoidable exergy destruction rate (9517.63 kW) and 78.77% of the
total exergy destruction (10,378.03 kW). As per Figure 7, the unavoidable demolition part of the CC
was the sum of

.
ExUNEN

D the rate of 7348.78 kW and
.
ExUN−EX

D with a rate of 825.50 kW.Energies 2020, 13, x FOR PEER REVIEW 16 of 23 

 

 389 

Figure 7. Advanced exergy evaluation of TJE and its segments as per avoidable/-unavoidable 390 
endogenous/-exogenous destruction ratios at MIL process mode for H2 utilization. 391 

The utmost endogenous exergy destruction rate EN
DxE occurred in the CC with a rate of 7,613.87 392 

kW. According to the obtained results, endogenous exergy destruction rates of the entire engine were 393 
greater than the exogenous destruction rates. The percentage of endogenous exergy destruction in 394 
the CC was 82.15% of the total endogenous exergy destruction (9,268.47 kW) and 73.37% of the total 395 
exergy destruction in the TJE. The TJE engine had an aggregate exogenous exergy demolition rate of 396 
1,109.56 kW. The major fragments of this rate given in Table 9 were 860.74 kW in the CC, 119.75 kW 397 
in the AC, 49.74 kW in the GT and 43.50 kW in the ABED. As per Table 9, the influences of the CC 398 
and AC segments on each other not only caused their exergy destructions but also the exergy 399 
destructions of other engine segments. According to the results, while the CC segment had the utmost 400 
avoidable demolition value with a ratio of 34.91% at the MIL process mode, the ABED segment had 401 
the utmost avoidable demolition value with the ratio of 70.36% at the AB process mode. The results 402 
for endogenous, exogenous, unavoidable and avoidable exergy demolition of TJE and segments in 403 
advanced exergy evaluation at AB process mode for H2 utilization are shown in Table 10. 404 

Table 10. Results for endogenous, exogenous, unavoidable and avoidable exergy demolition of TJE 405 
and segments in advanced exergy evaluation at AB process mode for H2 utilization. 406 

SEG. �̇�𝒙𝑫
𝑹𝑳 (𝒌𝑾) �̇�𝒙𝑫

𝑼𝑵 (𝒌𝑾) �̇�𝒙𝑫
𝑨𝑽 (𝒌𝑾) �̇�𝒙𝑫

𝑬𝑿 (𝒌𝑾) �̇�𝒙𝑫
𝑬𝑵 (𝒌𝑾) �̇�𝒙𝑫

𝑼𝑵𝑬𝑵  (𝒌𝑾) �̇�𝒙𝑫
𝑼𝑵𝑬𝑿 (𝒌𝑾) �̇�𝒙𝑫

𝑨𝑽𝑬𝑵 (𝒌𝑾) �̇�𝒙𝑫
𝑨𝑽𝑬𝑿 (𝒌𝑾) 

AC 882.71 722.02 160.69 119.75 762.96 620.93 101.09 142.03 18.66 
CC 8,474.61 8,174.28 300.33 860.74 7,613.87 7,348.78 825.50 265.09 35.24 
GT 313.16 211.95 101.21 49.74 263.42 173.55 38.40 89.87 11.34 

FED 222.75 140.32 82.43 21.69 201.06 124.65 15.67 76.41 6.02 
ABED 23,065.79 19,083.41 3,982.38 4,297.26 18,768.53 15,469.09 3,614.32 3,299.43 682.94 
GTMS 154.41 87.25 67.16 14.14 140.27 79.22 8.03 61.05 6.11 

TJE 33,113.43 28,419.23 4,694.19 5,363.32 27,750.11 23,816.22 4,603.01 3,933.88 760.31 

As per Table 10 at the AB process mode, the total avoidable exergy destruction rate AV
DxE  of 407 

the TJE was 4,694.19 kW. The great section of this ratio occurred in the ABED segment with a value 408 
of 3,982.38 kW. The TJE engine had an aggregate exogenous exergy demolition rate of 5,363.32 kW. 409 
The major fragments of this rate were 4,297.26 kW in the ABED and 860.74 kW in the CC. 410 

The supreme UN
DxE took place in the ABED with a rate of 19,083.41 kW, which was equal to 411 

67.15% of the total unavoidable exergy destruction rate (28,419.23 kW) and 61.33% of the total exergy 412 
destruction rate (33,113.43 kW). 413 

7,348.78

8,500.06

825.50 1,017.57

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

AC CC GT FED ABED GTMS TJE

AVEN

AVEX

UNEN

UNEX

Ex
er

gy
D

es
tr

uc
ti

on
 R

at
e

(k
W

)

TJE and its segments

Figure 7. Advanced exergy evaluation of TJE and its segments as per avoidable/-unavoidable
endogenous/-exogenous destruction ratios at MIL process mode for H2 utilization.

The utmost endogenous exergy destruction rate
.
ExEN

D occurred in the CC with a rate of 7613.87 kW.
According to the obtained results, endogenous exergy destruction rates of the entire engine were
greater than the exogenous destruction rates. The percentage of endogenous exergy destruction in
the CC was 82.15% of the total endogenous exergy destruction (9268.47 kW) and 73.37% of the total
exergy destruction in the TJE. The TJE engine had an aggregate exogenous exergy demolition rate of
1109.56 kW. The major fragments of this rate given in Table 9 were 860.74 kW in the CC, 119.75 kW
in the AC, 49.74 kW in the GT and 43.50 kW in the ABED. As per Table 9, the influences of the
CC and AC segments on each other not only caused their exergy destructions but also the exergy
destructions of other engine segments. According to the results, while the CC segment had the utmost
avoidable demolition value with a ratio of 34.91% at the MIL process mode, the ABED segment had
the utmost avoidable demolition value with the ratio of 70.36% at the AB process mode. The results
for endogenous, exogenous, unavoidable and avoidable exergy demolition of TJE and segments in
advanced exergy evaluation at AB process mode for H2 utilization are shown in Table 10.

As per Table 10 at the AB process mode, the total avoidable exergy destruction rate
.
ExAV

D of
the TJE was 4694.19 kW. The great section of this ratio occurred in the ABED segment with a value
of 3982.38 kW. The TJE engine had an aggregate exogenous exergy demolition rate of 5363.32 kW.
The major fragments of this rate were 4297.26 kW in the ABED and 860.74 kW in the CC.

The supreme
.
ExUN

D took place in the ABED with a rate of 19,083.41 kW, which was equal to
67.15% of the total unavoidable exergy destruction rate (28,419.23 kW) and 61.33% of the total exergy
destruction rate (33,113.43 kW).

As per Figure 8, the unavoidable demolition part of the ABED was the sum of
.
ExUNEN

D with a

rate of 15,469.09 kW and
.
ExUNEX

D with a rate of 3614.32 kW. In addition, the supreme
.
ExEN

D occurred
in the ABED with a rate of 18,768.53 kW, being equal to 81.37% of the ABED exergy destruction rate
(23,065.79 kW) and 67.63% of the total endogenous exergy destruction rate (27,750.11kW). As per
Table 10,

.
ExAVEX

D rates were calculated as 682.94 kW in the ABED and 35.24 kW in the CC. The rate of
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the
.
ExAVEX

D equaled to about 2.3% of the total exergy destruction in the TJE at the AB process mode
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Figure 8. Advanced exergy evaluation of TJE and its segments as per avoidable/-unavoidable
endogenous/-exogenous destruction ratios at AB process mode for H2 utilization.

5. Conclusions

J85-GE-5H turbojet engine utilized on a military aircraft was assessed fully as per the exergetic and
advanced exergetic analyses with the usage of kerosene and hydrogen fuels. First, exergy and advanced
exergy analyses of the engine were carried out using JP-8 fuel as per actual engine operating conditions.
Secondly, exergy and advanced exergy analyses results of the turbojet engine using hydrogen fuel were
examined parametrically. Ultimately, the values calculated for both fuel usages were compared for the
performance metric evaluation of the turbojet engine. The primary striking consequences regarding
the present investigation were given hereinafter:

• Exergy destruction rate of the entire engine with JP-8 was reckoned 9108.99 kW at the MIL process
mode and 28,595.47 kW at the AB process mode. With the use of H2, the exergy destruction rate
of the engine at the MIL process mode was 10,378.03 kW while it was 33,113.43 kW at the AB
process mode.

• Exergy efficiency of the whole engine with JP-8 was calculated 30.85% at the MIL process mode
and 16.98% at the AB process mode. With the utilization of H2, the efficiency of the engine at the
MIL process mode was 28.62%, whereas it was 15.33% at the AB process mode.

• When taking into account the ExIP, the improved exergy efficiency of the entire engine with JP-8
was determined to be 59.12% at the MIL process mode and 54.64% at the AB process mode. On the
other hand, the improved exergy efficiency of the engine at the MIL process mode was 58.35%,
whereas it was 54.15% at the AB process mode by using H2.

• The product exergy rates of the engine were calculated for JP-8 usage at MIL and AB process
modes with the rates of 5106.21 and 8575.33 kW, respectively, while they were obtained as 5035.44
and 8228.21 kW with the utilization of H2.

• Since the mass flow rates of H2 fuel were less than those of JP-8 fuel’, the SFC values were
determined less for H2 usage.

• The unavoidable exergy destructions rates of the engine were calculated for JP-8 usage at MIL
and AB process modes with the rates of 8458.81 and 25,051.59 kW, respectively, while they were
determined 9517.63 and 28,419.23 kW with the utilization of H2. Besides, the UNEN exergy
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destruction had the biggest exergy demolition portion in the entire system for both fuel utilizations.
Hence, the system has little betterment capability.

• The endogenous exergy destruction rates of the engine were computed for kerosene usage at MIL
and AB process modes with the rates of 8211.69 and 24,402.70 kW, respectively, while they were
determined as 9268.47 and 27,750.11 kW with the utilization of H2.

• The exogenous destruction rates of the engine were calculated for kerosene usage at MIL and
AB process modes with the rates of 897.30 kW and 4192.77 kW, respectively, while they were
determined as 1109.56 kW and 5363.32 kW with the utilization of H2.

• Since the endogenous exergy destruction rates were determined larger than the exogenous
destruction rates, the interplays among the engine segments were poor.

• The avoidable exergy destruction rates of the engine were calculated for JP-8 usage at MIL and AB
process modes with the rates of 650.18 and 3543.88 kW, respectively, while they were determined
as 860.40 and 4694.19 kW with the utilization of H2. Moreover, the AVEX exergy destruction had
the smallest exergy demolition portion in the entire system for both fuel utilizations.

Among the engine segments, the CC and ABED segments had the supreme exergy destruction
rate, unavoidable exergy destruction rate, product exergy waste rate, relative exergy waste rate and
fuel exergy waste rate and ExIP for both fuel usages. These results indicated that the main factor
causing a decrease in the efficiency of the TJE was the low efficiency of the CC and ABED segments
due to the irreversibilities that occurred in the burnout process. Moreover, the uplift potentials were by
a majority pertinent to the segments due to the internal demolition ratio was larger than the external
demolition ratio. The main destructions that occurred due to internal heat transfers from the burned
fuel to the air-fuel mixture, could cause constraints to achieve a more beneficial work. In other words,
these analyses pointed out that those segments, which were in the border of thermodynamic restrictions
based on the unavoidable endogenous destruction rates, were to be manufactured more efficiently
with conventional manufacturing technology. Therefore, it has been important to increase the turbine
inlet temperature (TIT) and the compressor pressure ratio in order to increase the overall efficiency of
the engine by reducing inefficiencies in the ABED and CC segments. With the development of gas
turbine manufacturing technology in terms of materials and production methods in recent years, it is
thought that gas turbine engines, which would be produced monolithic by a 3D print manufacturing
method, could work more eco-friendly and efficiently by reducing exergy destructions.

As a result, the engine worked less efficiently with hydrogen fuel due to the enhancement in
exergy destructions. Conversely, the GHG emissions lessened with the utilization of H2 fuel were
clearly put forth in the article according to the mass rates that were exhausted from the engine.
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Nomenclature

A area (m2)
cp specific heat capacity (kJ/(kg·K))
.
E energy rate (kW)
.
Ex exergy rate (kW)
.
ExIP exergetic improvement potential rate (kW)
F thrust (kN)
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LHV lower heating value of fuel (kJ/kg)
.

m mass flow ratio (kg/s)
P pressure (kPa)
.

Q heat transfer rate (kW)
SFC specific fuel consumption ((kg/h)/kN)
T temperature (◦C or K)
V velocity (m/s)

.
W work rate (kW)
Greek Letters
α fuel exergy demolition rate (%)
φ relative exergy consumption rate (%)
λ productivity lack rate (%)
ψ exergy (second law) yield (%)
Ψ improved exergy yield (%)
Subscripts
a air
ABED afterburner exhaust duct
AC air compressor
C consumption
CC combustion chamber
D destroyed, destruction
F fuel
FED forward exhaust duct
cg combustion gas
GT gas turbine
GTMS gas turbine mechanic shaft
in inlet
L losses
n n-th segment
out outlet
P pressure
Pr product
T temperature
TJE turbojet engine
0 reference state
1, 2, 3, . . . 8, 9, 10 station numbering of segments
Superscripts
AV avoidable
AVEN avoidable-endogenous
AVEX avoidable-exogenous
EN endogenous
EX exogenous
RL real
UN unavoidable
UNEN unavoidable-endogenous
UNEX unavoidable-exogenous
Abbreviations
AB afterburner process mode
AC air compressor
ABED afterburner exhaust duct
CC combustion chamber
CFCO continuous flow continuous open
FED forward exhaust duct
GT gas turbine
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GTMS gas turbine mechanic shaft
MIL military process mode
SEG segment
TIT turbine inlet temperature
TJE turbojet engine
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