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Abstract: Parametric identification of the single diode model of a photovoltaic generator is a key
element in simulation and diagnosis. Parameters’ values are often determined by using experimental
data the modules manufacturers provide in the data sheets. In outdoor applications, the parametric
identification is instead performed by starting from the current vs. voltage curve acquired in
non-standard operating conditions. This paper refers to this latter case and introduces an approach
based on the use of interval arithmetic. Photovoltaic generators based on crystalline silicon cells are
considered: they are modeled by using the single diode model, and a divide-and-conquer algorithm
is used to contract the initial search space up to a small hyper-rectangle including the identified set of
parameters. The proposed approach is validated by using experimental data measured in outdoor
conditions. The information provided by the approach, in terms of parametric sensitivity and of
correlation between current variations and drifts of the parameters values, is discussed. The results
are analyzed in view of the on-site application of the proposed approach for diagnostic purposes.

Keywords: parametric identification; single-diode model; interval arithmetic; photovoltaic systems

1. Introduction

Photovoltaic (PV) array modeling is crucial in many fields, including the prediction of energy
production [1], the design, the control [2] and the diagnosis [3]. The increase of the PV cells would be
desirable, in a context where many types of technologies have been developing, although 90%–95%
of the market is still dominated by mono-crystalline and poly-crystalline silicon technologies [4].
The mono-crystalline PV commercial modules reach efficiencies between 15% and 22%; meanwhile,
poly-crystalline technology goes up to the efficiency range of 14%–20%. The economies of scale of its
main material, silicon, make crystalline silicon cells more affordable and highly efficient compared to
other materials [5]. Other technologies derived from crystalline silicon technologies have been gaining
importance in the research and commercial fields, such as half-cell, double glass and bifacial [4]. On the
other hand, thin film technologies, e.g., amorphous silicon, CdS/CdTe and CIS, represent close to
5%–10% of the market [4]. Emerging technologies, e.g., organic and perovskite ones, offer interesting
perspectives in terms of efficiency [6], but some barriers still need to be overcome, especially durability
and price [5]. The approach proposed in this paper refers to PV generators based on crystalline silicon
cells, which represent the largest part of the market. Different models have been studied in the scientific
publications to represent PV modules based on crystalline silicon cells. The single diode model (SDM)
offers a reasonable trade-off between accuracy and degree of non linearity, such that it is widely used in
literature. It involves five parameters, which are related to the photo-induced current, the P-N junction
and the losses. These parameters are in turn dependent on other ones related to the cell material and
the environmental conditions—the irradiance and the temperature; see [7,8]. The double diode model
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(DDM) allows one to model the dark current losses and the effect of pair generation—recombination
in the space charge region [9], but at the cost of an increase in the number of parameters, increasing
from five for the SDM, to seven. A more complicated model can be used in a case where the PV cells’
behavior at negative voltage values has to be accounted for. A further generator is included in this
model [10], so that the parameters required become eight.

In this paper, the SDM is preferred to the DDM because of the features mentioned above and
also because the PV array working conditions considered are uniform; thus, the model proposed
in [10] becomes superfluous. A key operation for an accurate SDM-based simulation of the PV array is
the identification of the five model parameters. This is very often done by employing data that are
provided by the PV module manufacturer through the data sheet. These experimental measurements
refer to a specific operating conditions of the cells, called standard test conditions (STC).

In the literature, parametric identification is done by using analytical methods or fitting
techniques [11]. In Table 1 a comparison among such approaches is given by referring to the
implementation complexity, the convergence speed, the robustness when noisy data are considered,
the impact of the initial conditions and the requirements of algorithmic setting. Analytical approaches
are based on a set of simplified equations leading to explicit formulas allowing one to calculate the
five parameters of the SDM without using any iterative method [12]. Some approaches consider the
SDM lossless model, or scale down the order of the SDM by considering an infinite value of the shunt
resistance or by neglecting the series resistance [13]. The most common simplification consists of
supposing that the short-circuit current (Isc) value is equal to the photo-induced current (Iph) [14].
A set of equations is derived at the main points of the current vs. voltage (I-V) curve: at the maximum
power point (MPP), at the short circuit operating point through Isc and in open circuit conditions
through Voc. Noisy I-V data may have a significant effect on parameters values. This is the case,
for instance, for a series and for the shunt resistances whose values are related to the slopes of the
I-V curve in an open circuit and in short circuit conditions, respectively. Additionally, the so called
translation equations have been considered in some papers to relate the I-V curve in non-standard
conditions to the five SDM parameters that are scaled according to the irradiance and temperature
conditions the I-V curve refers to [14–18]. Simplified and direct equations make the implementation of
the method suitable, even for an embedded processor, at the cost of a reduced accuracy.

Many other approaches to the SDM parametric identification are based on optimization
methods, which are usually aimed at the root mean square error (RMSE) between the simulated
I-V curve and the experimental curve minimization. The convergence of the algorithm depends
on factors such as the guess condition, the objective function and the algorithm itself. Three main
approaches are proposed: the one using non-linear minimization algorithms [19,20], the one using
heuristics approaches [21–24] and the adoption of hybrid methods [25]. The non-linear algorithms
are computationally expensive [19,20], but that allows for solving numerically, the set of non-linear
equations of SDM. In [20], Matlab embedded Levenberg–Marquardt and Gauss-Newton nonlinear
equation solvers were used to manage the SDM equations. The parameters in STC were obtained
from modules’ data sheets, and translation equations [15,16] were used to obtain the SDM model
in other operating conditions. Noisy data affect the confidence intervals of the solutions achieved
by these algorithms. The termination conditions and the related parameters have to be chosen in
order to have a trade-off between computation time and accuracy. Low values of the convergence
thresholds and high values assigned to the maximum number of iterations are compatible with off-line
identification purposes. Moreover, the iterative methods, such as Newton methods, are less complex,
but they might be trapped in local optima and show a high dependency from the guess solution used.
For instance, in [26] Rs is neglected, so that four equations to determine four SDM parameters are
proposed, the series resistance value being fitted by calculating the power error between the SDM and
the experimental measurements in a iterative way. Nonlinear minimization algorithms are often used
to fit I-V experimental curves, the objective function to minimize being the error between the model
and experimental data. Trust-region and Levenberg-Marquardt methods are widely used, but they
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require a good guess solution. Simulation platforms, e.g., Matlab and Mathematica, provide curve
fitting tools to perform offline parametric identification. Recently, soft computing methods, such as
artificial neural networks [21,22], genetic algorithms [23] and particle swarm optimization (PSO) [23],
among others, have been employed more and more frequently. Such approaches are not suitable for
online operation because of the computational complexity of the stochastic algorithms. The approaches
introduced in [21,22] operate on suitable sets of I-V curves, related to a specific module’s operation,
to train neural networks. To determine the amount of training data and the numbers of layers and
neurons is a challenging task. In genetic algorithms [23], fixing selection, reproduction and mutation
operators and values of the related parameters is challenging as well. Settings such as population size,
iteration number and mutation rate, among others, have to be well adjusted to prevent the algorithm
from stalling. Therefore, in terms of setting of the heuristic algorithms, several initial guess values
have to be designed by an expert and/or through a trial and error procedure. By combining different
techniques, some weaknesses are reduced. For example, in [25] the global exploration capabilities of
the soft computing algorithm artificial bee colony (ABC) allowed it to reduce the space for exploring
solutions, and local searching was done by the trust-region reflective algorithm, thereby improving
accuracy, convergence and reliability. Unfortunately, there is not a consensus about the improvement
of the computation time achieved by hybrid approaches.

The difficulty of the parametric identification comes from the high non linearity of the SDM and
from the fact that the values of the parameters have very different orders of magnitude. With respect
to the identification performed on the basis of the STC experimental data that are usually available
in PV modules data sheets, the parametric identification using data acquired while the PV module is
working in outdoor conditions show different features. Indeed, the whole I-V curve is usually available
and irradiance (G) and temperature (T) values at which the PV module is working might be also given.

Interval arithmetic (IA) is a mathematical approach that is used in many contexts for evaluating
the propagation of the uncertainty affecting input data on the output of a given system. Moreover,
it has been used for tolerance analysis and design in the context of electrical and electronic engineering;
e.g., in [27–29]. By IA, parameters assume values that are not real numbers, but intervals limited
by a lower and an upper bound: in an interval the parameter may assume any value with the same
probability. In [28] an evolutionary approach to worst case tolerance design of magnetic devices is
presented. The algorithm improves on the classical nominal design, accounting for parameter variations
and tolerances, so that the system performance does not exceed upper and lower specifications imposed
in advance by the designer. In [27], IA is used to perform tolerance analysis and design and to evaluate
the production yield. In [29], an IA based estimation state in power distribution networks with
high penetration of photovoltaic generators is proposed. In this case, IA is adopted to deal with
measurement uncertainty. The proposed method allows one to determine the upper and lower bounds
of state variables, which is helpful for providing operators the confidence that the actual value variable
is not exceeding the voltage security constraint, thereby improving the network operation for the case
of uncertain inputs.

IA-based parametric identification has never been used in the outdoor PV context, but it can
be helpful for designing an algorithm profiting from IA features, thereby giving a reliable result
with little computational effort. The IA based approach presented in this paper starts from a large
volume in the parameter search space and contracts it by means of a divide-and-conquer (D&C)
strategy up to converge to a tight hyper-rectangle including the experimental measurements in the I-V
plane. The proposed IA based D&C algorithm requires the user to fix the initial intervals for the five
SDM parameters and two thresholds for the feasibility and the termination conditions respectively.
The initial intervals, which define the search parameters’ space, are contracted towards the identified
set, if they are included in the search space. Otherwise, the IA based D&C algorithm informs the
user about the guaranteed infeasibility of the whole search space. To fix the search space is obviously
easier for a not-so-skilled user than to provide a guess solution that is quite close to the final one,
as is required by gradient-based minimization approaches. This feature is very helpful, especially for
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some parameters, e.g., saturation current and thermal voltage, that greatly depend on cells material
and on operating conditions. As for the feasibility condition, the desired amount of experimental
data contained in the IA computed I-V boundaries depends on the application, and it can be fixed as
greater than 85%. In the same way, the threshold to fix in the termination condition is chosen as the
desired resolution of the interval solution. D&C strategy allows one to evaluate solutions separately,
so parallel computing is suitable to decrease the computation time without sacrificing the size of search
space. This is a distinctive feature compared to the other approaches, which in general have to make
a compromise between accuracy and computation time.

Table 1. Comparison among different approaches to parametric identification of SDM.

Methods/
Features

Core of the
Procedure

Implemen-
Tation
Complexity

Speed
Conver-
Gence

Robustness
with
Noisy
Data

Initial
Condition
Impact

Require-
Ment of
Algorithm
Setting

Analytical Set of equations
solved explicitly Low High Medium High Medium

Iterative
non-linear
minimization

Equations must be
solved by numerical
methods

High Low Medium High Low

Heuristics

Fitting I-V curve
model to measured
data by a soft
computing algorithm

High Medium Medium High High

Hybrids

Combining
non-linear
minimization and
heuristics

High Medium/
Low Medium High High

Proposed
IA Based
D&C

Parameters are
intervals divided and
tested using
feasibility conditions

Low Medium/
High High Low Low

The paper is organized as follows: In the first section an introduction of SDM is done.
Then, IA theory is briefly recalled and it is applied to the SDM. Later on, D&C algorithm is presented.
In Section 4, the proposed method using IA and D&C algorithm is detailed. In Section 5, the results
obtained to estimate Rs, Rh, Isat, B and Iph parameters of the SDM model are analyzed. The sixth
section proposes a discussion about the results presented in the paper and closes with the conclusions.

2. Photovoltaic Generator Single Diode Model

Figure 1 shows the SDM circuit: it includes the photoinduced current generator Iph, which models
the photovoltaic effect; a diode D modeling the P-N junction; and the resistances Rs and Rh representing
the ohmic losses and the recombination losses respectively. Thus, the following five parameters appear
in the model:

Isat,d: saturation current in the P-N junction;
Iph: photo-induced current;
Rs: series resistance;
Rh: parallel resistance;
B: it includes the ideality factor n, which is the fifth parameter to be identified. It is: B = Ns · n ·

k · T/q, where Ns is the number of series connected cells, T is the cells operating temperature, k is the
Boltzmann constant and q is the electron charge.

It is worth noting that the five parameters mentioned above show some dependencies from
physical parameters that are typical of the semiconducting material used for the cells’ fabrication and
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also from irradiance G and temperature T. As in the majority of the literature concerning I-V curve
based parametric identification, in this paper also, the identification focuses on the five parameters
mentioned above, thereby neglecting their dependencies on other physical parameters. This further
correlation, and the dependency on G and T especially, can be exploited after having identified
the set {Isat,d, Iph, Rs, Rh, B} to the aim of having, in turn, the values of the physical parameters,
including G and T.

The output current I of the PV array is obtained by combining the Kirchhoff voltage and current
laws and the characteristic equations of the components appearing in the SDM.

ph

d

d

h

h

s

I

I

V D

I

R

R

I

V

Figure 1. Circuit model of a PV module based on single-diode.

I = Iph − Id − Ih (1)

Id = Isat,d(eVd/B − 1) (2)

Vd = V + Rs · I (3)

Ih =
Vd
Rh

=
V + Rs · I

Rh
(4)

In [30] it is shown that the resulting function expressing the relationship between the current I
and the voltage V at the PV generator terminals is implicit, but the Lambert W-function is useful for
achieving an explicit non-linear relation between I and V, which is given in (5).

I =
Rh(Iph + Isat,d)−V

Rh + Rs
− B

Rs
LambertW(θ) (5)

wherein: θ = {(Rs//Rh)Isat,de[(RhRs(Iph+Isat,d)+RhV)/B(Rh+Rs)]}/B
Later on, without loss of generality, the discussion is referred to one PV module. The set of

unknown five parameters is P = {Isat,d, Iph, Rs, Rh, B}.
In Figure 2 a PV module I-V curve is shown by blue marks: it has been obtained by placing the

values listed in Table 2 into Equation (5). The parameters in Table 2 refer to a 140 W PV Yingli solar
panel working in STC, which have been obtained by the method proposed in [31] in STC. This PV
module consists of 36 polycrystalline solar cells connected in series. In the same figure, the I-V curves
corresponding to 30% variations of the parameters Rs, Rh, Isat and B are also shown in magenta, cyan,
red and black respectively. The I-V curve exhibits a significant sensibility with respect to variations of B
and Isat in proximity to the MPP and a dependency on Rs in the high voltage range. The parameter Iph
depends on, almost directly, irradiance, and its value is usually assumed to be equal to the short-circuit
current [2].

In the literature, SDM parametric identification of the parameters has been often addressed by
minimization algorithms, which are aimed at fitting the experimental I-V curve with the one generated
by the SDM. The result is a set of five real values, one for each of the five parameters in the SDM
(Table 2). IA, instead, should be used to identify the parameters by starting from the I-V curve, and by
exploiting the IA properties, guaranteeing that the I-V ranges correspond to the set of parameters
bound to the experimental measurements. Later on, the main IA features and properties are recalled in
order to appreciate how they are suitably exploited in the PV parametric identification context.
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Table 2. STC Parameters for a 140 W PV Yingli solar panel.

Parameter Meaning Value

Isat,d[A] Saturation current in cell 5.359647 × 10−10

Iph[A] Photoinduced current 8.3
Rs[Ω] Series resistance 0.1793
Rh[Ω] Shunt resistance 150.70
B Ns · n · k · T/q 1.0532
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Figure 2. I-V curves of a PV module simulated using the parameters of Table 2 with 30% variations.

3. Interval Arithmetic for I-V Curve Representation

The basic mathematical entity used in IA is the interval. Thus, the parameters appearing in
the model can be treated as intervals [X] instead of real numbers X. The approach consists of
treating parameters or variables as having ranges of values, instead of discrete values. The bounds
of the interval [X], using the nomenclature proposed in the IEEE Std 1788.1 [32], are called x and x.
Thus, [X] = [x, x]; it is defined by x = {x ∈ </x ≤ x ≤ x}. Basic arithmetic operations among
interval variables are well defined in the IA foundations [33]. The operation among two intervals
results in an interval too, having the property that it contains all the possible results obtained by the
combination of all the values included in the intervals corresponding to the operands. The values
in the intervals are assumed to have the same probability of occurring, so that the probabilities
of the values are uniform. This means that all the values in [X] are equi-probable. IA theory also
shows that the simple representation of the operands, which consists of the lower and of the upper
bound of the intervals thereof, does not allow one to take into account any correlation among the
variables. As a consequence of this, the IA result is an over-estimation of the true range of the result.
This means that the IA result is guaranteed to contain all the possible results of the operation, but the
over-estimation might be too much wider than the real interval. In order to reduce this IA drawback,
the number of occurrences of the same parameter in the IA-based operations must be minimized.
For instance, in the Equation (5), which allows one to calculate the PV generator current, θ includes
the computation of an equivalent resistance resulting from the parallel between Rs and Rh; thus,
Rs ·Rh

Rs+Rh
. This expression involves two occurrences of each one of the resistances. By using the ranges

Rs = [0.01, 1]Ω and Rh = [500.5, 700.5]Ω, the IA gives the result [0.00713471, 1.39957]Ω. By using the
real arithmetic, obviously the equivalent expression 1

1
Rs +

1
Rh

gives the same results, but this is not true

if IA is used. Indeed, a reduced number of variables’ occurrences results in [0.0099998, 0.998574]Ω.
Therefore, the lower the number of occurrences of the interval valued parameters in (5), the more
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accurate the IA-based evaluation of the result. As widely shown in [33], this is not the only cause
of overestimation of the interval of variation of the result of an operation by using IA, because the
non linearity of the function operating over interval valued parameters and variables contributes to
widening the resulting range.

In the PV-oriented problem treated in this paper, the PV current given by the SDM (5) is the
explicit function I = f ([P], V) where [P] is the interval valued vector of the parameters to identify
and V is the real value of the voltage at which the current is evaluated. In case the set of interval
values parameters is limited to two only, with the others being real values, the domain and co-domain
of [I] = f ([P], V) is qualitatively depicted as in Figure 3. In the bi-dimensional plane representing
the domain, [P]0 is a initial square region in gray resulting from the two interval parameters [P1]0
and [P2]0. This corresponds to the co-domain [I] = f ([P]0, V). A contraction of the domain, which is
represented by a smaller rectangle resulting from the sets [P1]1 and [P2]1, corresponds to the co-domain
[I] = f ([P]1, V). If performed through the classical real valued analysis, e.g., by a Monte Carlo
approach, the computations of the gray and the red envelopes in the I-V plane should require the
selection of a high number of samples in the gray and the red rectangles in the parameters domain,
and thus, a high number of Monte Carlo trials. The higher the number of [P1, P2] couples, the more
accurate the evaluation of the corresponding envelope in the I-V plane, which is obtained by merging
all the curves obtained, and the voltage value by voltage value, by taking the maximum and the
minimum I values. Such a computation should be able to reveal whether the experimental I-V curve
is included or not in the envelope, and thus whether the corresponding sets [P]0 or [P]1 are feasible.
A reliable evaluation of the envelopes, if performed by using the classical real numbers, thus, through
a Monte Carlo method, should be more time consuming the more significant the non-linearity and
non-monotonicity of the function I are with respect to the parameters. Instead, IA is a tool that allows
one to evaluate the envelopes corresponding to each set [P]0 and [P]1 by a single computation. Thanks
to the IA properties, the result will be guaranteed to bound the true I range.

In the next section, on the basis of such conclusions, the proposed IA parametric identification
method is shown: it starts from a large rectangle in the parameters domain exemplified by the gray
rectangle in the qualitative example of Figure 3, and contracts it in order to bound as much as possible
the experimental points, which are marked in blue in Figure 3, in the I-V domain.

[P ]
2 1

[P ]
2 0

P
2

P
1

[P ]
1 1

[P ]
1 0

[P]
0

[P]
1

I

V

[I ] = f ([P] ,V)
1

[I ] = f ([P] ,V)
0

Domain Co-domain

Figure 3. Domain and co-domain of interval function.

4. Parametric Identification by the IA-Based Divide-and-Conquer (D&C) Algorithm

In this paper, the identification of all the five parameters in (5) is considered. As a consequence,
the rectangles shown in Figure 3 have to be considered hyper-rectangles in a 5-dimensional space.
Iteration by iteration, the initial intervals [P] are contracted in order to contract the [I] around
the experimental data. The iterations end when a termination condition fixed by the user is
fulfilled. The divide-and-conquer (D&C) algorithm is an algorithm design paradigm for discrete
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and combinatorial optimization problems. The algorithm starts evaluating the largest candidate set
of parameters assigned by the user, which is named [P]0 in Figure 4. If the [I] bounds include the
experimental I-V samples (Iexp, Vexp), then all the five parameters intervals of [P]0 are halved, so that
25 sub-intervals are generated.

For each of the 25 sub-intervals the I-V boundary is calculated by using IA. If the experimental
points (Iexp, Vexp) are not included in the boundaries, the corresponding subset is marked as infeasible
and it is not partitioned into smaller subsets anymore. On the contrary, the subset is partitioned
by halving again the intervals it is made of and these ones are analyzed at the next iteration level.
Thus, the algorithm continues with the next dividing level until a termination condition fixed by the
user is fulfilled.

In summary, the proposed D&C algorithm consists of the following main elements appearing
in Figure 4.

[P]
0

[P] = [R ];[R ];[I   ];[B];[I    ] s  h sat

[P]
1,1

[P]
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[P]
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Termination condition? Termination condition? 

Figure 4. IA-based D&C approach.

Dividing Level (i): it is identified by the sub-index i. At each level, the parameters’ intervals sets
that fulfill the feasibility condition are halved, so that 25 new sub-intervals are generated. Thus, in case
all the intervals are feasible, at the dividing level i a number 25xi is generated and its feasibility
has to be tested. Each interval in the subset takes a new sub-index j, so that a particular set of
parameters is called [P]i,j. For instance, at the branching level i = 1, each element in the interval
[P]0 = [[Rs]; [Rh]; [Isat]; [B]; [Iph]] is halved, and all the 25x1 = 32 combinations of these sub-intervals,
which are called: [P]1,1...[P]1,32, have to be tested through the feasibility condition.

Feasibility condition: at the i-th branching level, the subset of intervals [P]i,j is substituted in (5)
for each voltage value Vexp of the experimental data set. A current interval [I] results at each voltage
value and it is verified that the all the Np experimental points fall within the calculated intervals:

Iexp,np ∈ [I([P], Vnp)], f or all np = 1, . . . , Np (6)

Parameters’ sub-intervals [P]i,j that do not fulfill the feasibility condition are not divided anymore
and are not transferred to the next algorithm iteration.

It is worth noting that the infeasibility of these sub-intervals is guaranteed by the use of IA.
Indeed, IA properties recalled in Section 3 ensure that the co-domain [I] = f ([P], V) evaluated over
a set of parameters [P] is an overestimation of the true range spanned by the current I for that domain
[P]. As a consequence of the overestimation, if the range [I] does not fulfill the feasibility condition,
namely, does not include all the experimental I-V samples, then it is guaranteed to be infeasible.
The same guarantee would be achieved by classical methods, e.g., Monte Carlo, only at a very high
cost, even tending towards an infinite computational cost, thanks to the trials in the Monte Carlo
approach. This represents a relevant advantage of the proposed IA based approach.
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Termination condition: Feasible intervals [P]i,j falling below a minimum width, which is wid[P]i,j,
fixed by the user, are not divided further. Thus:

wid[P]i,j ≤ ∆D ·mid[P]i,j (7)

where mid[P]i,j represents the midpoint of [P]i,j. When the termination condition imposes that no
more feasible intervals have to be partitioned further, then the union of the feasible intervals achieved
by the algorithm represents the final result. The proposed IA-based D&C algorithm is presented
in Algorithm 1.

Algorithm 1: IA-based D&C algorithm.
Data: [P]0 = {[Rs]0, [Rh]0, [Isat]0, [B]0, [Iph]0}: Initial Interval set of parameters
Result: [P]i = {[Rs]i, [Rh]i, [Isat]i, [B]i, [Iph]i}: Union of feasible intervals j of each parameter in

the set, at a dividing level i that fulfill the termination condition
Initialization: i = 0, j = 1,∆D = 0.015;
The five parameters intervals [P]i are halved, thus i = 1 and j = 1, ..., 32, obtaining the set:
[P]i,j = {[P]1,1...[P]1,32} ;

Calculate the width and midpoint of the intervals: wid[P]i,j; mid[P]i,j f or all i, j ;
while (wid[P]i,j ≥ ∆D ·mid[P]i,j f or all i, j) do

if Iexp,np ∈ [I([P]i,j, Vnp)], f or all i, j and all np = 1, . . . , Np then
Each [P]i,j is halved, i++;
The maximum value of j, Jmax, depends on the number of feasible intervals;

else
Infeasible intervals [P]i,j are discarded;

end
end
Union ∪ of feasible intervals [P]i,j, at the maximum dividing level i, for all j = 1..., Jmax:
[Rs]i = [Rs]i,1 ∪ [Rs]i,2 ∪ ...[Rs]i,Jmax ; [Rh]i = [Rh]i,1 ∪ [Rh]i,2 ∪ ...[Rh]i,Jmax ;
[Isat]i = [Isat]i,1 ∪ [Isat]i,2 ∪ ...[Isat]i,Jmax ; [B]i = [B]i,1 ∪ [B]i,2 ∪ ...[B]i,Jmax ;
[Iph]i = [Iph]i,1 ∪ [Iph]i,2 ∪ ...[Iph]i,Jmax ;

5. Identification of the Parameters Rs, Rh and Isat through the IA-based D&C Method

The identification of the SDM parameters almost consists of identifying Rs, Rh and Isat. Indeed,
the Iph parameter is assumed as equal to the short-circuit current [2], whose value is experimentally
measured. On the other hand, once having measured the cells’ temperature and by assuming that the
number of series connected cells in the module is known, the value of the parameter B is fixed if, as it
is quite common in literature, (see [8,34,35]), n assumes a value between 1 and 2. Typical values are
below 1.5, but the search range has been extended up to 2 in order to account for more extreme cases
documented in literature [36]. It has to be kept in mind that the range is subjected to the contraction
due to the IA based approach proposed in this paper. Thus, a smaller upper limit would not affect
the final result of the identification process, but its rate of convergence. With those assumptions,
the identification process limited to the three parameters Rs, Rh and Isat is of practical interest and
allows one to demonstrate the performance of the proposed D&C algorithm on a reduced scale case.
The algorithm in this case is tested by using I-V samples that are obtained by using the parameters in
Table 2 in the SDM (5). Samples are calculated at a fixed voltage step 0.1V, so that the Np = 222 I-V
samples shown in Figure 5 are considered.

The D&C algorithm has run on the following search space: [Rs] = [0.1, 1]Ω; [Rh] =

[1, 1000]Ω; [Isat] = [1e−8, 1e−12]A. The nominal values for B and Iph given in Table 2 have been
also used. ∆D = 1.5% has been used for settling the termination condition.
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Figure 5. Performance of D&C by using noiseless I-V simulated data.

The algorithm has created the number of dividing levels shown in Table 3. The third column of
Table 3 reveals the effectiveness of the proposed IA approach. Indeed, as pointed out before, the main
advantage of applying IA to the feasibility condition is the immediate and guaranteed classification of
the infeasible sets of the search space. It is evident that, for this example, just at the first dividing level,
50% of the search space is immediately classified as infeasible. The same result would require a number
of Monte Carlo trials instead of four IA based computations. The fourth column of Table 3 gives
a measure of the volume of each subset at the corresponding dividing level. The solution is reached
at the tenth dividing level, at which two sets of interval solutions have been identified. The union of
those two intervals is shown in Table 4. It reveals that the interval set solution contains the values of
parameters Rs, Rh and Isat used to generate the I-V samples. This is the expected result, so that the
convergence property of the D&C algorithm is confirmed. A personal computer (PC) equipped with a
Corei7-3632QM processor @ 2.20 GHz, four cores and 8 GB of RAM memory is used. The executable
file, produced by starting from the C++ source, was run on a PC. With this software and hardware,
the algorithm reaches the solution in 1.02 s after 360 iterations. Figure 5 puts into evidence that all the
I-V samples fall inside of interval current [I] determined by the IA based method.

This first test has been done by identifying the parameters by using I-V samples obtained through
the same model, the SDM, adopted for the identification thereof. In this way, the process has not been
affected by inaccuracies of the SDM in fitting experimental data and by inaccuracies and noise over
I-V measurements. These effects will be more evident in the next sections wherein experimental I-V
data are used.
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Table 3. Number of feasible intervals, percentage of infeasible intervals and volume of the subsets at
each dividing level for the example using noiseless data.

Dividing Level Number of Feasible Intervals % of Infeasible Intervals Subsets Volume

1 4 50.00% 1.2361 × 10−6

2 9 71.88% 1.5452 × 10−7

3 3 95.83% 1.9315 × 10−8

4 4 83.00% 2.4143 × 10−9

5 5 84.38% 3.0179 × 10−10

6 4 90.00% 3.7724 × 10−11

7 6 81.25% 4.7155 × 10−12

8 4 91.60% 5.8944 × 10−13

9 5 84.38% 7.3680 × 10−14

10 2 95.00% 9.2100 × 10−15

Table 4. Interval solution by D&C algorithm in the example using noiseless data.

Parameters Initial Intervals Union of Intervals in the Space of Solutions

[Rs] [0.1,1] Ω [0.179189,0.180156] Ω
[Rh] [1,1000] Ω [150.265,151.24] Ω
[Isat] [1 × 10−12,1 × 10−8] A [5.28291 × 10−10,5.4782 × 10−10] A

6. D&C IA-Based Approach Applied to Experimental Data

Experimental I-V data are commonly affected by noise due to, e.g., sensor quality and the data
acquisition system’s resolution. The low voltage region usually is the most critical because it requires a
high resolution of the current sensor. Similarly, although not so seriously as in the previous case, at low
current the voltage sensor has to show a significant resolution. In the presence of noise, such critical
aspects become more and more significant. Therefore, the proposed D&C method has been made
more robust in order to cope with noisy experimental data. Firstly, the decision on whether the
experimental value is within or outside the IA determined [I] interval is taken by account for a suitably
small noise band around the experimental value. Additionally, the feasibility condition is relaxed by
considering that an interval set of parameters is feasible if a number, but not all, of the experimental
data fulfill the condition (6). The effects of these two additional conditions are analyzed in detail in the
following subsections.

6.1. Relaxation of the Inclusion Property: First Approach

In Figure 6, the blue circles, which are the experimental data, are surrounded by blue bars
representing a noise band, named [Iexp]. The red bars bound the interval of the current [I], which is
computed by IA on a given interval parameters set. Thus, the inclusion property is reformulated by
considering that the experimental value (blue dots) is included in the interval range (red interval) if
the intersection between the red range and the blue range of that experimental point is not empty.
The larger the noise or the uncertainty, e.g., related to the sensors used, affecting the experimental data,
the wider the band [Iexp] and the higher the probability that the intersection between [Iexp] and [I] is
not empty, and thus that the corresponding set of parameters is feasible.
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Figure 6. Inclusion property of experimental data.

6.2. Relaxation of the Inclusion Property: Second Approach

In (8), the feasible condition that relaxes the (6) by marking as feasible a parameter set for which
N−p < Np experimental points fall within the I-V boundaries is formalized. This approach allows one
to restrict the application of the feasibility condition to some regions of the I-V curve wherein the major
information content is concentrated. For instance, the experimental I-V samples that are more affected
by measurement noise can be excluded, or the feasibility condition can be limited to a region including
the MPP, to the short circuit and to the open circuit conditions.

[Iexp,np ] ∈ [I([P], V)], f or np = 1, . . . , N−p (8)

6.3. D&C Parametric Identification by Using Noisy Experimental Data

Figure 7 shows an experimental set of I-V data referring to a 140W PV Yingli solar module
that have been acquired at an irradiance equal to 849 W/m2 and at a temperature equal to 336.15 K:
they have been measured by using a low cost system described in detail in [37], which has the drawback
of providing a high number of data in the low current range and a low density of measurements at
low voltages. The I-V curve is obtained by the capacitor charging method, which takes an acquisition
time of 0.05 s. The experimental setup is described in detail in [37]: the PV module output is made
available in the laboratory through a 10 m long cable. Thus, the acquired I-V curve also takes into
account the parasitic resistance of the cables, which is 60 mΩ. Figure 7 shows that the module under
test has suffered degradation, due to 3.5 years of long operation.
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Figure 7. Experimental I-V curve.



Energies 2020, 13, 932 13 of 22

6.3.1. Identifying [Rs], [Rh],[Isat], [B] and [Iph]

The parameter N−p in (8) has been settled to 216, so that 90% of experimental points have been
taken into account for the feasibility condition. Thus, 10% of points are excluded, regardless of their
position in the I-V curve, but the short-circuit current Isc and the open circuit voltage Voc have been
always included in the 90%, so that the feasibility condition for this example has been formalized as
in (9):

[Iexp,np ] ∈ [I([P], Vnp)], f or np = 1, . . . , N−p

[Iexp,1] ∈ [I([P], V1)]

[Iexp,Np ] ∈ [I([P], VNp)]
(9)

The current samples at low voltage show noise close to 1% of their values; thus, the parameter
appearing in the termination condition ∆D is fixed at 10%. Table 5 collects the number of feasible
intervals at each division level. Additionally, in this example, from the third column of Table 5, it comes
out that the IA approach guarantees the infeasibility of 56.25% of the initial search space at the first
dividing level. Indeed, of the initial 25 = 32 subsets, 18 are guaranteed to be infeasible by a direct
computation of [I] through IA. These results reveal that the IA-based D&C proposed algorithm finds
the solution at the dividing level 5, in which there are 5817 interval sets that have been classified
feasible. The algorithm spent 11.68 min to run 242,496 iterations. It is worth noting that these numbers
are significantly higher than those ones achieved in the example presented in Section 5. This is due
to the presence of noise, affecting the experimental samples and not the simulated samples of the
previous case, and it is also a consequence of the chosen value of the termination threshold, which is
now fixed at ∆D = 10%, and thus greater than ∆D = 1.5% used in the previous example. The union
of the feasible intervals sets achieved at the last dividing level is given in the third column of Table 6.
The contraction of the intervals with respect to the initial search space has been also shown.

Table 5. Number of feasible intervals, percentage of infeasible intervals and volume of the subsets at
each dividing level for the example using experimental I-V data.

Dividing Level Number of Feasible Intervals % of Infeasible Intervals Subsets Volume

1 14 56.25% 8.3219 × 10−4

2 148 66.96% 2.6006 × 10−5

3 1089 77.00% 8.1269 × 10−7

4 6326 81.85% 2.5396 × 10−8

5 5817 97.13% 7.9364 × 10−10

Table 6. Interval solution by the D&C algorithm at the final dividing level in the example using
experimental I-V data.

Parameters Initial Intervals Union of Feasible Intervals

[Rs] [0.1, 1]Ω [0.26875, 0.60625]Ω
[Rh] [300, 800]Ω [300, 800]Ω
[Isat] [1 × 10−8,1 × 10−4]A [3.12569 × 10−5,7.81272 × 10−5]A
[B] [0.7,1.5] [1.375,1.5]
[Iph] [7.0271,7.7669]A [7.397,7.42012]A

In Figure 8, red bars give the current intervals calculated by substituting the interval solution
of Table 6 in (5) and using IA. At least 90% of experimental data, those in blue marks, fall inside
the interval current [I]. Nevertheless, although a significant contraction of the search space has been
achieved by the D&C method (see Table 6), the interval solution (red bars) still gives a large range
around the experimental points. As it will be shown in the next subsection, an improved identification
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accuracy is achieved by analyzing the feasible sub-intervals achieved by the D&C method at a given
dividing level.

The identified intervals achieved and shown in Table 6 can be used to identify, in turn, some
additional SDM parameters. For instance, the interval B = [1.375, 1.5] can be used to identify the
corresponding interval of the diode ideality factor n, again by using IA. Indeed, it results that:

n =
B · q

Ns · k · T
=

[1.375, 1.5] · 1.60217662 · 10−19

36 · 1.38064852 · 10−23 · 336.15
= [1.31854, 1.43841] (10)

Additionally, the uncertainty of the devices used in the temperature measurement system can
account for: a LM35 installed on rear side of the PV module, a non-inverting amplifier and a
10 bit ADC. In this case, the uncertainty affecting the temperature measurement is equal to 0.8%.
Thus, it results that:

n =
[1.375, 1.5] · 1.60217662 · 10−19

36 · 1.38064852 · 10−23 · [333.461, 338.839]
= [1.30808, 1.45001] (11)

Both the intervals achieved for n are in a suitable range for this parameter. The same procedure
might be applied by identifying further physical parameters underlying the set of five shown in Table 6.
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Figure 8. Experimental I–V curve vs. SDM using the interval solution set of Table 6.

6.3.2. Analysis of the Feasible Sub-Intervals

In the previous example, the final solution obtained through the IA based algorithm was
determined as the union of all the feasible sets of intervals achieved at the final dividing level.
Each sub-interval can be examined in more detail by calculating the current obtained, at each voltage
value of the experimental samples, through SDM (5) using the midpoints mid[P] of the interval of each
parameter. This calculated current is called I(mid[P], V). Then, the root-mean-square error (RMSE) of
the identified current with respect to the experimental Iexp is calculated. In (12), the RSME formula is
shown, which takes into account the number of samples Np. The sub-interval giving the I-V curve
having the minimum value of the RMSE is considered as the best. This analysis has been applied to the
feasible sub-intervals in Table 5, so that 5817 set of intervals have been evaluated. The second column
of Table 7 shows the mid[P]5,best found in the 5817 sets in the space solutions, which correspond to
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the interval set [P]5,4350. The fit of the I-V curve generated using mid[P]5,best is presented in Figure 9.
The minimum RMSE value achieved is 0.0659.

RMSE =

√√√√∑
Np
i=1(Iexp − I(mid[P], V))2

Np
(12)

Table 7. mid[P]best and the corresponding interval solution with the smallest RMSE value.

Parameters mid[P]5,best Best Interval Solution

Rs 0.4797 Ω [0.4656, 0.4938] Ω
Rh 792.1875 Ω [784.3750, 800] Ω
Isat 4.5318 × 10−5 A [4.3756 × 10−5, 4.6880 × 10−5] A
B 1.4625 [1.4500, 1.4750]
Iph 7.4086 A [7.3970, 7.4201] A
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Figure 9. I-V curve: experimental data vs. SDM using mid[P]5,best.

In Figure 10, the I-V curve generated by SDM using the best sub-interval, which is shown in
the third column of Table 7, is depicted: the contraction of the initial interval set with respect to the
Figure 8 is evident.
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6.3.3. Identifying [Rs], [Rh],[Isat], [B] and [Iph] by the D&C Algorithm with Emphasis Around the MPP

The experimental points of the I-V curve across its MPP are of primary importance for the
parametric identification of the SDM, and they might be excluded by the procedure described above.
In this example, the experimental data around the MPP and limited to the range [80%, 100%] of the
power at the MPP, which is PMPP, are considered. The left and right extremes are shown in Figures 9–11
in black and gray, and are named 0.8P−MPP and 0.8P+

MPP. Those power values correspond to the samples

called N0.8P−MPP
p and N0.8P+

MPP
p , respectively. All the experimental points in this range have been included

in the feasibility condition (13). The tolerance around experimental data Iexp and the termination
condition ∆D have been fixed at 1% and 10% respectively.

Relaxed feasibility condition with constraints of Isc and Voc and less data.

[Iexp,np ] ∈ [I([P], Vnp)], f or np = N0.8P−MPP
p , . . . , N0.8P+

MPP
p

[Iexp,1] ∈ [I([P], V1)]

[Iexp,Np ] ∈ [I([P], VNp)]
(13)
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Figure 11. Maximum power point (MPP) and points ensuring the 80% of PMPP in the experimental
I-V curve.

The results of D&C algorithm are shown in Table 8. Again, in this example, at the first dividing
level, IA classifies as infeasible 18 subsets over 32, just by a direct IA based computation of the current
interval [I]. The solution is reached at the dividing level 5, in which the space of solutions contains
2890 sub-intervals. In this case the algorithms needs 213,952 iterations; thus, the computation time and
memory are reduced with respect to the previous examples. The number of feasible sub-intervals in the
final dividing level is reduced by 51.4% and the number of iterations is reduced by 11.7%. The union
of the final sub-intervals is given in Table 9, and it reveals the contraction with respect to the initial
search space. The set of intervals is similar to the one obtained by using all the experimental values; Rs

is the only one showing an improved contraction.
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Table 8. Number of feasible intervals, percentage of infeasible intervals and volume of the subsets at
each dividing level for the example using a reduced set of experimental data.

Dividing Level Number of Feasible Intervals % of Infeasible Intervals Subsets Volume

1 14 56.25% 8.3219 × 10−4

2 144 67.86% 2.6006 × 10−5

3 1032 77.60% 8.1269 × 10−7

4 5495 83.36% 2.5396 × 10−8

5 2890 98.36% 7.9364 × 10−10

Table 9. Interval solution by the D&C algorithm in the example using a reduced set of
experimental data.

Parameters Initial Intervals Union of Feasible Intervals

[Rs] [0.1,1]Ω [0.325,0.55]Ω
[Rh] [300,800]Ω [300,800]Ω
[Isat] [1 × 10−8,1 × 10−4]A [3.12569 × 10−5,7.81272 × 10−5]A
[B] [0.7,1.5] [1.375,1.5]
[Iph] [7.0271,7.7669]A [7.397,7.42012]A

In Figure 12, the red bars correspond to SDM evaluated by IA for the solution presented in
Table 9. As in the previous case, large ranges result from the union of the feasible sub-intervals at the
final dividing level where the algorithm terminated. The analysis of the RMSEs for all the feasible
sub-intervals at the division level 5 gives a narrower range. The best sub-interval is the same as that
achieved in the previous example, and is shown in Table 7 and Figure 10. The best sub-interval set is
[P]5,2272, and the minimum RMSE value is 0.0776.
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Figure 12. I-V curve: experimental vs. SDM using D&C algorithm with a reduced set of
experimental data

7. Discussion of the Results

Some aspects concerning the results presented in the previous examples deserve further comments.
The first one concerns the way in which the initial interval set of parameters, and thus the search space,
is chosen. The proposed IA-based D&C algorithm was run on an initial interval set [P]0 that was
generally very large, just in order to test the convergence and contraction capabilities of the approach.
In the first example, which referred to the identification of the values of three parameters only and
used I-V data generated by the same model used for the identification thereof, a large initial interval
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set was used. The initial intervals for the two resistances were set to include typical values; thus,
they were in the order of magnitude of hundreds of mΩ and hundreds of Ω for series and parallel
resistances respectively. Such initial intervals might also include values corresponding to a degraded
PV module. The initial interval of Iph has been chosen across the short-circuit current value Isc.

By using the I-V experimental measurements around the MPP, the Iph is settled at values that
are close to the MPP current Impp; thus, an initial interval across Impp is used. The initial ranges of
B and Isat have been determined by keeping account of some physical relationships. The parameter
B depends on temperature T and n: it has been assumed that T has been measured with a known
accuracy and that the ideality factor, as can be deduced from the literature referring to silicon cells,
assumes values ranging from n = 1 up to n = 2. The larger the uncertainty affecting the measure
of the temperature, the wider the initial interval [B]0. As for Isat, it has been assumed that, for new
PV modules, it assumes values of the order of nA while µA is used for aged modules. The [Isat]0
width affects the convergence features of the approach significantly. The proposed examples show the
convergence capability of the D&C algorithm even using a [Isat]0 that is four orders of magnitude and
has n ranging up to 2, instead of stopping at 1.3, as can be deduced by reading some papers; e.g., [35].
However, a better trade-off between accuracy and computation time should be reached by having a
more accurate estimation of the initial range of the parameters.

The second aspect deserving further comments concerns the selection of the value ∆D involved
in the termination condition (7), because it affects the accuracy of the result and the computation time
required by the algorithm. In the case a low noise level affecting the I-V samples, a tiny termination
condition does not affect the computation time significantly, as in the first example. Indeed, any
relaxation of the inclusion property is required and a small number of feasible intervals at each
dividing level is obtained. In the case of I-V experimental data exhibiting a significant noise level,
a trade-off between accuracy and computation time needs to be achieved. Some relaxation of the
inclusion property and a higher value of ∆D help to achieve the convergence. It is worth noting that
the number of feasible subsets obtained at the end of each algorithm run depends on both the ability
of the SDM to fit the experimental curve and on the chosen ∆D value. The additional step using the
RMSE calculation discussed in some examples presented in Sections 5 and 6 helps to improve the
accuracy of the IA solution.

The third remark concerns the size of interval current [I], as it is shown in Figures 8, 10 and 12.
In the SDM solution shown in Figure 8 and Table 6, the relative width of the interval parameters’
solution (widm[P]), is calculated by wid[x,x]

mid[x,x] . The results are widm[Rs] = 0.7714, widm[Rh] = 0.9091,
widm[Isat] = 0.8570, widm[B] = 0.0870 and widm[Iph] = 0.0031. Figure 12 shows the I-V curve
boundaries corresponding to the same interval solution, by neglecting the range of [Rs]. In this case,
the relative width is 0.5143; thus, the important effect of the [Rs] interval on [I] becomes evident.
By using the RMSE calculation in Table 7, the relative interval sizes are reduced to the following
values: widm[Rs] = 0.0588, widm[Rh] = 0.0197, widm[Isat] = 0.0689, widm[B] = 0.0171 and
widm[Iph] = 0.0031. The significant effect of this contraction on the range [I] is evident by looking at
Figure 10. The contraction is close to one order of magnitude for all the parameters, but not for [Iph].
Figure 2 shows that [Isat] and [B] have significant effects on the [I] width. Figure 13 shows that the true
range of [I] is overestimated because of the use of IA, especially at high voltage. The overestimation is
evident by comparing the IA results with those ones obtained by means of a Monte Carlo run over 2000
random trials. The corresponding I-V curves are shown in black color, which have been generated by
randomly choosing sets of parameters in the ranges shown in Table 7. It is worth noting that the Monte
Carlo method giving a narrower range with respect to the IA method does not mean that the former
result is more accurate than the latter one. Indeed, only if both of them are taken into account, exact
information about the true range spanned by I at the different voltages is obtained. Indeed, the Monte
Carlo range would approach the true one by running an infinite number of trials; otherwise it gives an
underestimation of the true range of I. The IA overestimation is reduced by reducing the width of the
interval parameters [33]. The true range is placed in the middle, bounded by the Monte Carlo range,
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which is an underestimation of the true range, and the IA range, which is an overestimation of the
true range.

Figure 13. Monte Carlo analysis of interval solution.

An additional advantage of the proposed IA-based D&C algorithm can be put into evidence by
referring to the results shown in Table 10. The Matlab Fit APP tool has been used to identify the five
parameters of SDM. It minimizes the root mean square error between the experimental I-V data and
I-V curve obtained through the SDM with the identified values of the parameters. The trust-region
method has been selected, the function tolerance value has been settled at 1e-5 and the maximum
number of iterations has been fixed at 400. In the second column the results achieved by this tool
are given. The initial interval of the parameters has been set equal to the initial interval used in the
proposed IA-based D&C algorithm; thus, the one given in the second column of Table 6. The third
column of Table 10 shows the result when the initial search space used in Matlab Fit APP is the union of
the feasible intervals obtained by the the proposed IA-based D&C algorithm; thus, the one in the third
column of Table 6. It is evident that the proposed IA based approach has contracted the initial search
space towards the solution in an effective way, so that the Matlab Fit APP converges to the identified set
by a number of iterations and function evaluations that is 80% lower than the one required if the search
is started from the wider search space used by the IA D&C method. Moreover, the step size is reduced
by four orders of magnitude, so that a higher accuracy in the parameter identification is achieved.
This result reveals that the feasible intervals obtained by the proposed IA-based D&C algorithm are
reliable guess solutions for gradient based minimization methods. The cascade of the methods thus
allows one to improve the convergence and the accuracy of the result. The RMSE value obtained by
Matlab Fit APP is equal to 0.0587, which is close to the one obtained by the proposed analysis procedure
of the feasible sub-intervals (mid[P]5,best shown in Table 7), which is 0.0659. The D&C IA-based method
uses a simple partitioning of the intervals and feasibility test, and thus, any gradient or minimization
method, also guaranteeing the infeasibility of the discarded intervals.

Table 10. Performance comparison of Matlab Fit APP tool using the intervals of Table 6.

Feature Using the Initial
Intervals

Using the Union of
Feasible Intervals Improvement

Number of iterations 67 13 80%
Number of function evaluations 408 84 79%
Step Size 0.0707 5.2217 × 10−6 Four orders of magnitude
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As a further comment concerning the implementation of the IA-based D&C algorithm, it has to
be evidenced that it might profit significantly from a parallel implementation of the IA operations.
Indeed, in any IA operation, the computations of the lower bound and of the upper bound of the result
can be done in parallel, because these two computations are independent. Moreover, the computation
tree derived from the proposed D&C method is also prone to a parallel computation. Consequently,
the proposed algorithm, which has been already developed in C++ by means of a suitable library
including all the IA operations, can be implemented in embedded devices including multi-core
processors or field programmable gate arrays (FPGAs).

8. Conclusions

In this paper an interval-arithmetic-based approach has been applied for identifying
the five parameters of the single-diode model of crystalline silicon photovoltaic modules.
The divide-and-conquer computational paradigm has been used to contract an initial interval set
of parameters, that is, the search space, towards an interval parameters set of a suitably small
width. The proposed method generates feasible and infeasible intervals by successive divisions
of the initial search space. Each interval is evaluated by a feasible condition through interval
arithmetic: this key operation allows one to discard infeasible portions of the search space with a
single operation, without involving any iterative procedure or any minimization algorithm. Moreover,
interval arithmetic guarantees the infeasibility of the discarded sets, meaning that no combinations of
parameters in those sets give a current vs. voltage curve that is more close to the experimental samples
than the curves obtained by the feasible sets. After discarding the infeasible intervals, the proposed
method reduces the widths of the feasible ones until they fall below a threshold fixed by the user
through the termination condition. The performance of the proposed algorithm has been tested on
three examples, including simulated data and experimental data, the latter affected by measurement
noise. The analysis of the case using experimental measurements has evidenced the need for a further
computation step that profits from the interval contraction capabilities of interval arithmetic, allowing
one to refine the final interval solution. In addition to the main feature of parametric identification,
the proposed algorithm gives some information that should be useful in the detection of aging,
malfunctioning and faults of the photovoltaic generator. Indeed, the final result of the application of
the method gives an indication about the sensitivity of the model with respect to the five parameters
appearing in it. Moreover, the ranges provided by the method and including the experimental current
vs. voltage samples give a mask for linking the variation of the module performance to the variation
of its parameters. Thanks to the interval arithmetic inclusion properties, current values acquired
in the same operating conditions and falling outside the interval ranges would reveal variations of
the parameters that are outside the corresponding ranges. For instance, by applying this on-site
evaluation to the series resistance, the aging of the module exceeding a fixed threshold can be detected.
The offline computation of the interval boundaries in the current vs. voltage plane and their uploading
on a low cost processor would allow a straightforward and on-site verification of the violation of these
boundaries with negligible computation effort.
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