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Abstract: Two-dimensional design and analysis issues on the meridional surface, which is important
in the preliminary design procedure of compressors, are highly dependent on the accuracy of empirical
models, such as the prediction of total pressure loss model and turning flow angle. Most of the
widely used models are derived or improved from experimental data of some specific cascades with
low-loading and low-speed airfoil types. These models may work for most conventional compressors
but are incapable of accurately estimating the performance for some specific cases like transonic
compressors. The errors made by these models may mislead the final design results. Therefore,
surrogate models are developed in this work to reduce the errors and replace the conventional empirical
models in the through-flow calculation procedure. A group of experimental data considering a
two-stage transonic compressor is used to generate the airfoils database for training the surrogate
models. Sensitivity analysis is applied to select the most influential features. Two supervised
learning approaches including support vector regression (SVR) and Gaussian process regression
(GPR) are used to train the models with a Bayesian optimization algorithm to obtain the optimal
hyper parameters. The trained models are integrated into the through-flow code based on streamline
curvature method (SLC) to predict the overall performance and internal flow field of the transonic
compressor on five rotational speed lines for validation. The predictions are compared with the
experimental data and the results of conventional empirical models. The comparison shows that
SVR and GPR respectively reduce the predicted error of empirical models by 62.2% and 55.2% for the
total pressure ratio and 48.4% and 50.1% for adiabatic efficiency on average. This suggests that the
surrogate models constitute an alternative way to predict the performance of airfoils in through-flow
calculation where empirical models are inefficient.

Keywords: surrogate model; through-flow approach; axial compressors; empirical correlation;
support vector regression; Gaussian process regression; total pressure ratio; deviation angle

1. Introduction

With the development of computation technology, the 3D computational fluid dynamics (CFD)
approach has become a mainstream numerical simulation tool for compressors. However, during the
preliminary design period, the 2D through-flow approach still plays an important role in design and
analysis issues of compressors. Unlike the comprehensive but time-consuming 3D simulation, 2D
approaches provide rapid and reliable estimation of the performance of compressors with few geometric
parameters, before the geometry of blades is specified, and direct the subsequent steps. The popular
through-flow approaches including streamline curvature method, stream function matrix method, or
time marching method, to solve the simplified Navier-Stokes equations on the median flow surface
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between adjacent blades with reasonable assumptions. The accuracy of these methods is determined
by empirical correlations [1] which give the control equations a closed-form expression. In general, the
empirical correlations originate from the qualitative boundary-layer theory and experimental data of
some classical cascades, some of which are listed in [2]. They have a limited suitable operation extent
while the accuracy becomes unreliable if they are applied to off-design conditions or high Mach number
cases. Given that, many efforts have been devoted to improve the accuracy and application scope
of the empirical correlations [3–5]. Besides the improvement works on the traditional correlations,
Schmitz et al. proposed the thought of using surrogate models to predict the performance of airfoils [6],
which inspired this work. They generated the airfoil database using S1-Solver MISES (a system for
cascade analysis and design developed by MIT [7]), built the surrogate models by Bayesian neural
networks, and integrated the Bayesian trained neural networks to S2-solver to evaluate a transonic
4.5-stage compressor [8]. In addition to the application in modeling the airfoil characteristics, the
surrogate model technique has been widely used in other works: Nonlinear unsteady aerodynamic
reduced-order models are developed for aeroelastic analysis of airfoils [9]; the convolutional neural
network (CNN) is used to approximate the high-fidelity CFD models to predict the property of turbine
vanes in an efficient and accurate way [10]; the adaptive machine learning framework, including
functions of dynamic selection and self-tuning surrogate models, are developed to accelerate the
optimization process of transonic compressors [11].

Surrogate models based on machine learning methods can solve the nonlinear issues such as the
problem in through-flow calculations. This work aims to build surrogate models from experimental
data of a certain transonic axial compressor to calculate total pressure loss and deviation angle of airfoils,
instead of using conventional empirical models. The availability of predicting the performance and
internal flow field by integrating the surrogate models with a through-flow program is also validated.

In brief, the procedure of building the surrogate models contains the following steps. A Kriging
model is used to approximate the experimental data with all input parameters. Then, the most
influential inputs are screened out based on the sensitivity analysis results of the Kriging model.
The SVR or GPR models are trained with selected inputs while the hyper parameters of surrogate
models are tuned by the Bayesian optimization algorithm. The experimental data is split into training
and validation sets via a cross validation scheme, and the score of the validation set is set as optimization
target during the optimization procedure. The final surrogate models are obtained by training the
models on the whole data set with the optimal hyper parameters.

2. Blade Element Database

A reliable database, including the necessary parameters of blade elements, is an essential
prerequisite to ensure the accuracy of the models. Empirical models are commonly derived from
experimental data of 2D cascades within design conditions. Additional correlations for correction are
required when empirical models are applied to estimate the performance of compressors since the
internal flow field is more complex compared to cascades. However, this correction process inevitably
introduces errors into the target values, which may mislead the prediction of overall performance.
Thus, a set of experimental data of the real compressor is used directly to build the surrogate models.
The experimental data are extracted from a two-stage axial transonic compressor developed by the
NASA Lewis Research Center. The design parameters are briefly listed in Table 1 and can be referred
to [12]. The experimental rotation speed and mass flow rate are corrected to the standard inlet condition
at sea level by Equation (1). This compressor has a supersonic inflow condition in the tip zones of
rotors with the existence of channel shock wave and subsonic flow field in the other zones. The airfoils
of both rotors and stators were designed by the multiple-circular-arc (MCA) rule, which can represent
the design concept of most the other transonic compressors developed in that age.

mcorrect =
m
√

T/288.15
P/101325

Ωcorrect =
Ω

√
T/288.15

(1)
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Table 1. Main design parameters of the compressor.

Variable Name Value

Overall Total Pressure Ratio 2.8
Overall Adiabatic Efficiency (%) 83.9

Tip Diameter (m) 0.787
Tip Speed (m/s) 441.96
Hub/Tip Ratio 0.4

Corrected Mass flow (kg/s) 83.5

The schematic of the test rig of this compressor is shown in Figure 1, and the other configuration
information of the experiment can be found in [13]. Nine probes are distributed non-uniformly along
the span of each blade row from 0.05 to 0.95 of span length, thus each test case contains 36 sets of
blade element data for the 4-blade row, including measured aerodynamic parameters. There are 35 test
cases conducted with rotational speed varying from 50% to 112% and 25 of them have detailed blade
element data in the report. The 900 measurements of blade element data from the 25 test cases are used
to construct the training samples for the next section. Based on the features of most empirical models,
each sample includes 6 aerodynamic and 7 geometric parameters as input variables. The structure of
the surrogate models is shown in Figure 2 in which the geometric and aerodynamic parameters are
defined as: SPAN represents the fraction of blade height from hub; STAGGER is the angle between the
chord line and axial direction; SOLIDITY is the ratio of chord length to pitch; T/C means the ratio of
maximum thickness to chord length; A/C is the fractional distance of the maximum thickness location
from the leading edge; CAM is the camber angle; LET/C is the ratio of the thickness of the leading edge
to chord length; INC indicates the incidence angle between inflow angle and inlet metal angle; B1 is the
inflow angle; M1 is the inflow Mach number; DF is the diffusion factor which represents the loading
of the cascade; MVDR refers to the meridional velocity-density ratio as ρ2Vm2/ρ1Vm1 where 1 and 2
represent the inlet and outlet respectively; REYNOLD means the Reynolds number of the cascade.
The total pressure loss ω and deviation angle δ are the outputs of the surrogate models. Figure 3
depicts the distribution of deviation angle and total pressure loss over incidence angle and Mach for
the 900 samples in the blade element database. The variety parameters cover a wide working range of
typical transonic compressors.
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3. Method for Building Surrogate Models

The steps for building the surrogate models for total pressure loss and deviation angle (flowchart
shown in Figure 4) are as follows:

1. Pre-process the experimental data: A Kriging approach is implemented to create a response
surface model based on the blade element database with all the features as input parameters.
Sensitivity analysis method is applied on the response surface to estimate the elementary effect
of each input feature. The features with a greater effect on the objects are screened out as input
parameters for training either the total pressure loss model or deviation angle model.

2. Train models and tune hyper parameters: support vector regression and Gaussian process
regression are used to train the surrogate models, respectively, with the input parameters
determined by Step 1. The optimal models are obtained by tuning the hyper parameters in these
models using a Bayesian optimization approach. The coefficients of determination (R2) of the
cross-validation results are used as criteria to evaluate the models during the optimization process.

3. Post-process with validation: Validate the final models using the whole experimental database.
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3.1. Features Selection

For the two targets of total pressure loss and deviation angle, either the mapping relationships or
the elementary effects between input features and targets is different. The noise may be brought into
the models and mislead the prediction if non-influential variables are selected as input. Therefore,
the sensitivity analysis method is required to screen out the features which have important effects
on the targets before training the surrogate models. An elementary effects (EE) method proposed by
Morris [14] is applied here to select the necessary input parameters for the two models respectively.
To simply exemplify the EE method, let the models have the form as Equation (2) with k input factors,
where X represents for the geometric and aerodynamic parameters, and Y for the total pressure loss or
deviation angle.

Y = f (X1, X2 . . .Xk) (2)

Morris provides two sensitivity measures for each input factor: µ to assess the importance of
the input factor on the output, and σ to describe the non-linear effects and interactions. These two
measures are obtained from a design based on the construction of a series of trajectories in the space of
the inputs, where inputs are randomly moved one-at-a-time (OAT). In this design, each model input
is assumed to vary across p selected levels in the space of the input factors. The region of space Ω
is thus a k-dimensional p-level grid. Each trajectory is composed of k + 1 points since input factors
move one by one of a step ∆ in

{
0, 1/(p− 1), 2/(p− 1), . . . , 1

}
while all others remain fixed. Along

each trajectory, the elementary effect for each input factor is defined as:

di(X) =
Y(X1, . . . , Xi−1, Xi + ∆, Xi+1 . . .Xk) −Y(X)

∆
(3)

where X = (X1, X2, . . . , Xk) is any selected value in Ω such that the transformed point is still in Ω.
Further, r elementary effects are estimated for each input di

(
X(1)

)
, di

(
X(2)

)
, . . . , di

(
X(r)

)
by randomly

sampling r points X(1), X(2), . . . , X(r). The two measurements µ and σ are respectively the mean and
standard deviation of the distribution of the elementary effects of each input:

µi =
1
r

r∑
j=1

di
(
X( j)

)
(4)

σi =

√√√
1

r− 1

r∑
j=1

(
di
(
X( j)

)
− µi

)2
(5)

These two measures rank the input factors in order of influence on the target. The input variable
with both low µi and σi can be confirmed as a non-influential factor. A low µ may occur when the
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model is not monotonic and elementary effects with opposite sign cancel each other out. An improved
method was proposed by Campolongo [15] to use the absolute value of di

(
X( j)

)
to calculate µ:

µi =
1
r

r∑
j=1

∣∣∣∣di
(
X( j)

)∣∣∣∣ (6)

A Kriging approach [16] is implemented to create a response surface model, giving all the
geometric and aerodynamic factors as input based on the blade element database since the exact
form of mapping function is unknown. The optimal model for sensitivity analysis is obtained by the
tuning of hyper parameters using an optimization algorithm described in the next section. For this
case, k is 13 while r and p are assigned to 1000 and 4, leading to 1000 trajectories and 4 levels on each.
The distribution of elementary effect of each input factors are shown in Figure 5, with ranking based on
importance. The results indicate that the influential features for each target are not consistent. The top
factors where the sum of elementary effects occupy greater than 90% are selected as inputs. The final
screened inputs for models of total pressure loss and deviation are listed in Table 2.
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Table 2. Inputs for either model.

Model Inputs

ω MVDR, DF, B1, M1, CAM, INC, T/C, LER/C, REYNOLD
δ INC, DF, MVDR, M1, B1, REYNOLD, LER/C, A/C, CAM, T/C, SOLIDITY

3.2. Hyper Parameters Optimization

The performance of surrogate models is strongly related to the configuration of the internal hyper
parameters, such as learning rates, kernel functions, or regularization factors, besides the reliable
samples. It is necessary to tune the hyper parameters to make sure that the models have optimal
performance. Various search strategies are thus developed to find the best hyper parameter. For the
cases with just a few hyper parameters, a manual search can easily be used to find the optimal values by
experienced experts, but it depends greatly on prior knowledge. The most common automatic search
strategies include grid search and random search. Grid search is a simple strategy for the investigation
of user-defined points. It may lead to either a miss of the optimal value if too few points are specified,
or excessive resource consumption if every possible combination of hyper parameters is considered,
especially for complicated cases. Random search [17] was developed to overcome the drawbacks of the
grid search and successfully used in many applications. It requires fewer random samples than grid
search, fewer computational resources, and performs more efficiently. Each search process of either
grid or random search is independent to the others, since they are both uninformed search algorithms,
thus the previous results of hyper parameters cannot guide the next evaluation. These algorithms can
be applied to a variety of search problems because the target information is not needed, however, at
the cost of search efficiency. Therefore, an informed search algorithm using Bayesian optimization
with higher search efficiency [18] (shown in Figure 6, dash denotes hand-tuned) is used optimize the
hyper parameters.
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Bayesian optimization, based on the sequential model-based global optimization [18,19] (SMBO)
algorithm that uses information from previous trials as advice for future exploration, has been applied
in the modeling cases where the calculation of a fitness function is expensive [20,21]. The true fitness
function of minimization problem f : χ→ R :

x∗ = argminx∈χ f (x) (7)

within domain χ ∈ Rd is considered to solve the optimal hyper parameters of x∗. SMBO approximates
f with surrogate models, usually as Gaussian Process (GP) or Tree-structured Parzen Estimator
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(TPE) approach since the true form is unknown. The schematic of the SMBO algorithm is shown in
Algorithm 1.

Algorithm 1 The pseudo-code of generic sequential model-based optimization.

1: Input : f , χ, S, M
2: D← InitialSamples( f , χ)
3: for i← |D| to T do
4: p(y

∣∣∣x, D)← FitModel(M, D)

5: x∗ ← argmaxxS(x, p(y
∣∣∣x, D))

6: y∗ ← f (x∗) B Expensive step
7: D← D∪ (x∗, y∗)
8: end for

Typically, a small set of samples from χ initialize the probabilistic regression model (or prior
function) M as cheap surrogate for the expensive fitness function f. Then a new set of values xi is
obtained by optimizing the acquisition function S. A new evaluation of yi corresponds to xi, and
is sequentially obtained by performing f directly and appended to the evaluation history set of the
best locations and targets D =

{
(x1, y1), . . . , (xi, yi)

}
. The model M refits the updated record D

and repeats the last steps for T times. The criterion of expected improvement (EI) [22] is chosen as S
because it is intuitive and well performing. Expected improvement is the expectation for f when the
evaluation of f (x) negatively exceeds a specified threshold y∗:

EIy∗(x) :=
∫
∞

−∞

max(y∗ − y, 0)pM(y
∣∣∣x)dy (8)

EI is always non-negative, either zero for y more than y∗, or positive when y is less than y∗, and the
minimum y corresponds to the maximum EI. Herein the higher budget TPE is selected to approximate
f . Unlike GP that models the prior p(y

∣∣∣x) directly, the TPE defines p(x
∣∣∣y) using two non-parametric

densities:

p(x
∣∣∣y) = l(x) if y < y∗

g(x) if y > y∗
(9)

From Bayes theorem, we get:

p(y
∣∣∣x) = p(x

∣∣∣y)p(y)

p(x)
(10)

Considering γ = p(y < y∗), the p(x) can be expressed as follows:

p(x) =
∫
R

p(x
∣∣∣y)p(y)dy = γl(x) + (1− γ)g(x) (11)

Putting Equations (9)–(11) into (8), the EI based on the TPE algorithm is given by:

EIy∗(x) =
γy∗l(x) − l(x)

∫ y∗

−∞
p(y)dy

γl(x) + (1− γ)g(x)
∝

(
γ+

g(x)
l(x)

(1− γ)
)−1

(12)

This expression indicates that x with high probability under l(x) and low g(x) points to the
maximum EI. The x which gives the greatest EI is x∗, and the optimal hyper parameters are the
best x∗ in the observation history D. The open source optimization package Hyperopt developed by
Bergstra et al. [18] is used as optimizer for the hyper parameters.
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3.3. Modeling by Support Vector Regression

Support vector machine (SVM) [23] is a type of supervised learning method usually used for
classification (SVC) [24] or regression (SVR) [25,26]. Its high efficiency in processing high dimensional
data spaces, and ability to use only a subset of samples (support vectors) in the decision function, has
allowed a wide application of SVM in solving real world problems. Attributed to the assistance of
kernel functions (called kernel trick) by mapping the original sample space R to a higher or infinite
dimensional space Rn (Hilbert space), while effectively avoiding the probable curse of dimensionality
without complicating the calculation, SVM can easily handle the nonlinear sample data on higher
dimensional space by using a linear method (optimal hyper plane). It’s flexible to adjust SVM
performance with versatile kernel functions for specific problem. Kernel functions such as linear,
polynomial, RBF, and sigmoid are commonly used. In this work RBF is chosen as the kernel function
with the form of:

k(x, x′) = exp
(
−γ‖x− x′‖2

)
(13)

The hyper parameter γ denoting the effect range of RBF function should be optimized by
SMBO. It works on the Euclidean distance ‖x− x′‖ between x and x′. For the given training vectors
xi ∈ Rp, i = 1, . . . , n and the target vector y ∈ Rn, the following target function of SVR needs to
be solved:

min
w,b,ζ,ζ∗

1
2 wTw + C

n∑
i=1

(
ζi + ζ∗i

)
s.t. yi −wTφ(xi) − b ≤ ε+ ζi

wTφ(xi) + b− yi ≤ ε+ ζ∗i
ζi, ζ∗i ≥ 0, i = 1, . . . , n

(14)

This is a convex quadratic program problem with linear constraints. An equivalent dual
formulation for simplifying calculation is transformed by introducing the addition of Lagrange
multipliers based on Lagrange duality. The dual function is:

min
α,α∗

1
2 (α− α

∗)TQ(α− α∗) + εeT(α+ α∗) − yT(α− α∗)

s.t. eT(α− α∗) = 0
0 ≤ αi,α∗i ≤ C, i = 1, . . . , n

(15)

where e is the unit vector, penalty coefficient C and margin ε are the other two hyper parameters
requiring optimization. C is dedicated to avoid over-fitting as the regularization approach, and ε is the
margin to tolerate the noise. Q is a n× n semi-definite matrix given by:

Qn×n =


K(x1, x1) · · · K(x1, xn)

...
. . .

...
K(xn, x1) · · · K(xn, xn)

, with K
(
xi, x j

)
= φ(xi)

Tφ
(
x j

)
(16)

where K is the RBF kernel function, φ is the mapping to high dimensional space and n is the amount of
samples. This dual optimization problem can be solved by sequential minimal optimization (SMO)
algorithm [27] whose structure is briefly shown in Algorithm 2. The decision function (formulation of
surrogate models) is as follows, where ρ indicates the interception of model.

n∑
i=1

(
αi − α

∗

i

)
K(xi, x) + ρ (17)

During this modeling task, the SMBO algorithm works on the domain of hyper parameters (first 3
columns in Table 3) defined by range of exponential function e(a,b) for 100 iteration steps, where [a, b]
is a uniform distribution.
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Algorithm 2 Pseudo-code of Sequential Minimal Optimization algorithm

1: Input : samples xi, yi, i = 1, . . . , n
2: Output : Lagrange multipliers αi
3: Initialize αi = 0
4: while not meet KKT condition do
5: choose a pair of αi and α j by heuristic algorithm
6: fix the other α and solve the optimization problem to get αi and α j
7: express α j by αi
8: end while

Table 3. Search domain and optimal values of hyper parameters.

Hyper Paras Lower Bound Upper Bound DEV OPT LOSS OPT

γ e−7 e2 8.305 × 10−2 3.741 × 10−2

C e−4 e4 4.024 × 101 1.342 × 100

ε e−7 e2 9.386 × 10−2 4.649 × 10−3

The coefficient of determination R2 is used as the score of fitness function f (yi means the true
target value, y denotes the mean value of yi and fi is the prediction values by SVR). The target of
optimization is to find an optimal set of hyper parameters maximizing the R2 in which high value
means good fit.

R2 = 1−
SSres

SStot
= 1−

∑
i
(yi − fi)

2

∑
i
(yi − y)2 (18)

The surrogate models are usually over-fitted if the validation set is consistent with the trained
one. The performance of models may deteriorate if the training data is simply split into two parts of
training data and validation set, since the training information does not cover both sets. The cross
validation [28] (CV) method is therefore developed to improve this situation. By splitting blade element
database to 5 sets randomly of similar size, where one set is for validation, and the other four are for
training sets with 5 loops. The mean of the 5 R2 of validation sets is taken as the criteria for evaluation
of models in this work.

Figure 7 shows the hyper parameters optimization history records for SVR models of the deviation
angle and total pressure loss. From observing the history of locations in Figure 7a,b, each hyper
parameter has reached the optimal value (last 2 columns in Table 3) within the search domain
corresponding to the highest R2 of the validation set. The optimization history curve in Figure 7c
indicates both models approached the optimal target within 40 iterations.

The trained models are validated by the whole blade element data set and the results shown in
Figure 8. The abscissa denotes the experimental data while the ordinate means prediction values.
Deviation angle model has a higher R2, very close to 1, as compared to the total pressure loss model,
with R2 = 0.788. It is observed that the loss model underestimated the total pressure loss in some cases
with high values. The high total pressure loss indicates that the airfoil works on inferior flow conditions,
like near stall or choke operations, which are far from the designed working region. For conditions
in the normal working range, the loss model is deemed reliable. Furthermore, considering that the
former has more importance than the latter in through-flow code, the R2 of loss is acceptable. More
work on the surrogate model should be developed in future to improve the loss prediction.
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3.4. Modeling by Gaussian Process Regression

Similar to SVR, Gaussian process regression [29] is another supervised learning method for
regression and probabilistic classing problems. Its advantages include the prediction’s interpolation
of the observations, the prediction is probabilistic (Gaussian) so that the prediction can be improved
in some concerned region based on the empirical confidence intervals, and can use various kernel
functions, as in SVR. However, GPR loses efficiency in high dimensional spaces.

From the function view, Gaussian process (GP) is used to describe a distribution over functions
considering Bayesian inference directly in function space. GP is a set of stochastic variables with any
combination of which has multivariate Gaussian distributions [29]. Its properties depend completely
on the mean function m(x) and the covariance function k(x, x′):{

m(x) = E[ f (x)]
k(x, x′) = E[( f (x) −m(x))( f (x′) −m(x′))]

(19)

where x, x′ ∈ Rd denotes the stochastic variables, and GP can be defined as:

f (x) ∼ GP(m(x), k(x, x′)) (20)

For simplicity, the mean function of the variables is usually preprocessed to zero. Considering the
regression problem, we have the generic model as follows:

y = f (x) + ε (21)

where x denotes the input vectors, f is the function, while y is the observation target values polluted
by noise ε. Further considering the noise subjected to standard normal distribution ε ∼ N

(
0, σ2

n

)
, the

prior distribution of y and the joint prior distribution of y and prediction f are respectively shown:

y ∼ N
(
0, K(X, X) + σ2

nIn
)[

y
f∗

]
∼ N

(
0,

[
K(X, X) + σ2

nIn K(X, x∗)
K(x∗, X) k(x∗, x∗)

])
(22)

In the formulas, K(X, X) is a n× n definite and symmetric covariance matrix composed by element
ki, j = k

(
xi, x j

)
measuring the correlation between xi and x j. K(X, x∗) equaling to K(x∗, X)T indicates the
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n× 1 covariance matrix between test point x∗ and input of training set X. k(x∗, x∗) is the covariance of
test point itself, and In is the identity matrix. The posterior of f∗ can be calculated as:

f∗
∣∣∣X, y, x∗ ∼ N

(
f
∗
, cov( f∗)

)
(23)

where
f
∗
= K(x∗, X)

[
K(X, X) + σ2

nIn
]−1

y

cov( f∗) = k(x∗, x∗) −K(x∗, X)
[
K(X, X) + σ2

nIn
]−1

K(X, x∗)

where µ̂∗ = f∗ and σ̂2
f∗
= cov( f∗) are the mean and variance of the prediction corresponding to x∗,

respectively. GPR has different selections of covariance function (kernel), where the most commonly
used is the squared-exponential covariance function with the following form:

k(x, x′) = σ2
f exp

(
−

1
2
(x− x′)TM−1(x− x′)

)
(24)

where M = diag
(
l2
)

and l is the so-called length-scale (analogic to γ in RBF), while σ2
f is the signal

variance. The hyper parameters set θ =
{
l, σ2

f , σ2
n

}
can be achieved by the optimization of the gradient

of negative log marginal likelihood L(θ) = − log p(y
∣∣∣X,θ) with quasi-Newton methods:

L(θ) = 1
2 yTC−1y + 1

2 log|C|+ n
2 log 2π

∂L(θ)
∂θ = 1

2 tr
((
ααT
−C−1

)
∂C
∂θi

) (25)

where
C = Kn + σ2

nIn,α = C−1y

Alternatively, the SMBO algorithm is used here to optimize the hyper parameters for comparison
with the SVR model. The search domain is listed in Table 4 (first three columns). The configuration of
iteration steps, score criteria, and CV scheme are equivalent with the SVR model.

Table 4. Search domain for hyper parameters.

Hyper Paras Lower Bound Upper Bound DEV OPT LOSS OPT

σ2
f e−4 e4 9.605 × 100 5.248 × 101

l e−4 e4 1.506 × 101 1.739 × 101

σ2
n e−7 e2 1.779 × 100 3.046 × 10−3

Figure 9a,b describes the hyper parameters tuning procedure of training GPR models for both
targets. As in the SVR cases, both models have reached the highest R2 over optimal hyper parameters
(last 2 columns in Table 4) within the search domain. The optimization record curve in Figure 9c shows
that both models converge in 20 iterations, which is faster than SVR. From Figure 9a,b, it is observed
that σ2

n affects the R2 more than the other two. This indicates that the prior distribution of noise is the
main influencing factor for the GPR model’s performance.
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Figure 10 shows the comparison of prediction values of trained GPR models with experimental
data. The R2 of GPR validation results is close to the SVR results, which demonstrates that the two
surrogate models perform nearly the same on the training data. In the next section, both models
are applied in through-flow code to predict both design and off-design operation performance of
the compressor.
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4. Results and Discussion

4.1. Streamline Curvature Approach Based through-Flow Program

The dominated through-flow method streamline curvature approach is implemented here to
simulate the flow field in the axial compressor, as well as its overall performance. Based on the general
through-flow theory [30,31] and actively developed since the 1960s [32], SLC has been successfully
applied to the design and analysis of various types of turbomachinery. It simplifies the computational
complexity greatly from real 3D flow simulations in blade channels to solve the Euler equations on 2D
(or quasi-3D) flow surfaces (Figure 11) on the premise of some assumptions including axial symmetric
flow, adiabatic, steady, etc. The governing formulas are composed of a radial equilibrium equation
and massflow continuity equation, with a constraint condition that the meridional velocity should
be subsonic:

∂Vm
∂n = 1

Vm

(
∂I
∂n − T ∂S

∂n −
Vθ−ωr

r
∂rVθ
∂n

)
−Vm

(
cos(ϕ+φ)

rm
−

sin(ϕ+φ)
Vm

∂Vm
∂m

)
G =

∫ tip
hub 2πrρVm cos(ϕ+ φ)dn

(26)
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Figure 11. Schematic of computation domain.

The computations are performed on the mesh grid formed by streamlines and quasi-orthogonal
stations. The discrete governing equations are solved by finite difference with specified boundary
conditions for loops until the location of streamlines do not change any more. A private SLC based
through-flow program developed by the authors is applied for this work [33]. The structure of this
program is shown in Figure 12. The entropy S and swirl rVθ in the governing equations are updated
by the total pressure loss and deviation angle formed below when solving the governing equations.

$ =
(P∗w2)id−(P∗w2)

P∗w1−P1

δ = β2 − β2k

(27)

Energies 2019, 12, x FOR PEER REVIEW 17 of 25 

 

The deviation angle δ  contains the correlations of design angle *δ  [33], off-design correction iδ  
[34] and AVDR correction avdrδ  [35] while the total pressure loss considers airfoil profile loss profϖ  

[36], shock loss shϖ  [37], and secondary flow loss secϖ  [37], These correlations have the similar 
inputs as the surrogate models. 

The research object is the transonic compressor described at the beginning. The through-flow 
program coupling with either empirical models or surrogate models are respectively run for 5 
rotational schemes (50%, 70%, 85%, 95%, 100% of design rotational 10,720 rpm), corresponding to the 
experimental cases. Figure 13 shows the meridional computation grids for this compressor, with 12 
streamlines along the spanwise direction, where the first and last streamline coincide with hub and 
shroud. 18 quasi-orthogonal stations are distributed in the axial direction, with 8 stations coinciding 
with the rotor/stator blades leading and trailing edges, and the others for the inlet and outlet channel.  

 
Figure 12. Structure of through-flow program. 

 
Figure 13. Computation grids for the two-stage transonic compressor. 

Figure 14 shows the overall performance maps of total pressure ratio (Figure 14a) and adiabatic 
efficiency (Figure 14b) computed by different types of models for the five rotational speed schemes. 
The experimental characteristic lines are also plotted for reference. SVR, GPR, EMP, and EXP 
represent SVR models, GPR models, empirical correlations and experimental data, respectively. In 

Figure 12. Structure of through-flow program.

4.2. Comparison with Empirical Models

With the development of SLC, versatile empirical correlations of loss and deviation angles are
proposed and improved by countless experts and engineers who design turbomachinery by SLC in
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practice. Some typical and widely used correlations are applied in this program to form the loss and
deviation angle for comparison with surrogate models:

δ = δ∗ + δi + δavdr
$tot = $pro f +$sh +$sec

(28)

The deviation angle δ contains the correlations of design angle δ∗ [34], off-design correction δi [35]
and AVDR correction δavdr [36] while the total pressure loss considers airfoil profile loss $pro f [37],
shock loss $sh [38], and secondary flow loss $sec [38], These correlations have the similar inputs as the
surrogate models.

The research object is the transonic compressor described at the beginning. The through-flow
program coupling with either empirical models or surrogate models are respectively run for 5 rotational
schemes (50%, 70%, 85%, 95%, 100% of design rotational 10,720 rpm), corresponding to the experimental
cases. Figure 13 shows the meridional computation grids for this compressor, with 12 streamlines
along the spanwise direction, where the first and last streamline coincide with hub and shroud.
18 quasi-orthogonal stations are distributed in the axial direction, with 8 stations coinciding with the
rotor/stator blades leading and trailing edges, and the others for the inlet and outlet channel.
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Figure 14 shows the overall performance maps of total pressure ratio (Figure 14a) and adiabatic
efficiency (Figure 14b) computed by different types of models for the five rotational speed schemes.
The experimental characteristic lines are also plotted for reference. SVR, GPR, EMP, and EXP represent
SVR models, GPR models, empirical correlations and experimental data, respectively. In general, the
SLC method has an intrinsic defect that is incapable of predicting performance in choke conditions
very well, since mass flow is the input for flow continuity equation and needs to be adjusted to predict
different performance. The SLC approach performs well for the operations points of low rotational
speed, where the flow in blade channel is not yet choked. However, for configurations where the Mach
number in the throat area of the blade channel is close to 1, which means the blade channel has reached
the maximum capability of through-flow, the mass of the compressor remains constant, although the
performance still changes. This situation usually happens in high rotational speed regions, where SLC
has a higher prediction error with the experiment as shown. Some alternative methods are developed
to solve this problem, such as the implementation of dedicated models for the choke regions, localized
choked flow treatment [39], or time marching through-flow method [40], which is out of the scope
of this article. For the comparison of the different models, treatment of this defect is not taken into
consideration in this work.
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The root mean squared errors (RMSE) of the predicted overall performance of different models
on the five characteristic lines compared to experimental data are listed in Table 5. The π and η
indicate RSME of total pressure ratio, adiabatic efficiency of each model and the ∆π and ∆η means the
percentage of increment of RSME for SVR and GPR compared to EMP. From the variation of predicted
errors of each model over the whole characteristic lines, the accuracy of EMP, GPR, and SVR keeps
improving with the reduction of rotational speeds. Regarding EMP, GPR, and SVR, the error of π
decreases from 0.6038, 0.2430, and 0.4146 to 0.0626, 0.0089, and 0.0057, respectively while the error of η
decrease from 0.1576, 0.0593, and 0.0679 to 0.0587, 0.0246, and 0.0163 respectively. The reduction of
RSME indicates that all the models have better performance on conditions of low speed than higher.
The reasons for surrogate models and empirical correlations are similar. The empirical correlations
work well for low-loading airfoil types and low Mach number conditions because they are derived
from data of some typical subsonic airfoils like NACA-65 series, but they are insufficient to simulate
transonic compressors with high rotational speeds. Similarly, most training data are low speed samples,
while a small part of high speed samples are located in rotor tip zones with high rotational speeds,
which makes the surrogate model have a higher accuracy for the low speed cases.

Table 5. RMSE of different models compared to experimental data for whole rotatioinal speeds and the
percentage of error increment relative to EMP.

ROT
EMP GPR SVR

π η π ∆π η ∆η π ∆π η ∆η

100% 0.4177 0.0668 0.2430 −41.81% 0.0491 −26.58% 0.4146 −0.73% 0.0679 1.66%
95% 0.6038 0.1576 0.2012 −66.68% 0.0593 −62.37% 0.2872 −52.43% 0.0501 −68.22%
85% 0.3334 0.1192 0.1661 −50.16% 0.0710 −40.39% 0.1306 −60.82% 0.0616 −48.33%
70% 0.1559 0.0907 0.0521 −66.62% 0.0412 −54.58% 0.0450 −71.13% 0.0334 −63.12%
50% 0.0626 0.0587 0.0089 −85.78% 0.0246 −58.10% 0.0057 −90.83% 0.0163 −72.30%

The increments of RMSE for GPR and SVR prove the notable improvement of predicted accuracy.
Compared with the empirical correlations, the surrogate models both show better agreement with the
experimental data than empirical models over all the characteristic lines. The accuracy improvement
of surrogate models also increase as the rotational speeds are decreasing. Compared with empirical
models, the increments of error of π change from −41.81% and −0.73% to −85.78% and −90.83%, while
the increments of error of η change from −26.58% and 1.66% to −58.10% and −72.30% respectively
for GPR and SVR. In addition, the GPR models have better performance compared to SVR for high
rotational speed conditions, while vice versa for low speeds. The characteristic lines of EMP are
smoother than the surrogate models since empirical models usually use parabolic curves to approximate
the function relationship between total pressure loss/deviation angle and incidence angle increments.
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In contrast, the surrogate models cannot get enough information from regions where training samples
are sparse and lead to inaccurate predictions, which is the same reason why characteristic lines of high
rotational speeds are rougher than the lower rotational speeds. This can be improved by adding more
training samples.

4.3. Predicted Flow Field Analysis

For further comparison of the models, the operatio point near the stalled margin of experimental
data on the 50% rotational speed line (the left endpoint with massflow 32.3 kg/s) is chosen as the
reference case, since all the models perform better at lower rpm. The total pressure ratio π, adiabatic
efficiency η, and the prediction errors ERR of all models are listed in Table 6. Both GPR and SVR have
a lower prediction error for both π and η than the empirical correlations. The source of the errors can
be seen in the following spanwise distribution of predictions.

Table 6. Errors of total pressure ratio and adiabatic efficiency.

EXP GPR SVR EMP

π 1.317 1.306 1.311 1.352
ERR - 0.84% 0.38% 3.13%
η 80.69% 78.19% 79.9% 86.12%

ERR - 3.1% 2.19% 7.78%

Figure 15 shows the distribution of deviation angle and total pressure loss along blade span for
blade rows. In Figure 15a, the measured deviation angle basically distributes like a bucket shape, with
higher values near endwalls and lower values in the mid-span, although a small difference exists in
the first stage due to the effects of part-span shroud of R1 at 61% span location [13] The predictions of
SVR and GPR models show a good agreement with the EXP data, while the empirical correlations
overestimated in S1, and underestimated in the second stage. The underestimated deviation angle
in rotors mainly results in a higher predicted total pressure ratio for empirical correlations, because
for a certain airfoil, a lower deviation angle means higher turning flow angle as well as more energy
provided. In Figure 15b, the SVR and GPR models also show a better performance than the empirical
correlations for total pressure loss prediction. The underestimation mainly happens in the tip region
of the first stage, where the actual total pressure loss is higher and makes the predicted adiabatic
efficiency of empirical correlations much higher than the experimental data. In contrast, the SVR and
GPR models accurately predicted the loss distribution for most span ranges, except the tip region of S1.Energies 2019, 12, x FOR PEER REVIEW 20 of 25 
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The predicted errors relative to experimental data at hub, mid-span and tip blade span are listed
in Table 7 for comparing the accuracy of EMP, GPR, and SVR models. For intuitive comparison, RMSE
are also calculated for each blade row as the criteria. Although the EMP model produces a lower
predicted error at a few local parts, GPR and SVR models have a lower RMSE for both deviation angle
and loss predictions, except the loss predictions for R2.

Table 7. Prediction errors at hub (0.05) middle (0.5) and tip (0.95) span location and RMSE.

Row SPAN
EMP Error GPR Error SVR Error

DEV LOSS DEV LOSS DEV LOSS

R1 0.05 73.24% −21.43% 30.63% −1.98% 27.44% 6.67%
R1 0.5 −9.19% −36.02% −33.58% 5.32% −30.31% −22.08%
R1 0.95 −54.92% −50.56% −38.39% −5.88% −14.68% −0.48%

RMSE 3.8738 0.0857 2.1004 0.0257 1.5869 0.0240

S1 0.05 −4.29% −17.77% −7.39% 1.05% 0.31% −6.87%
S1 0.5 86.50% −23.38% 7.38% 23.64% 7.96% −5.37%
S1 0.95 90.38% −75.58% 36.11% −29.82% 24.69% −23.67%

RMSE 4.0647 0.1020 1.2390 0.0371 0.8305 0.0277

R2 0.05 −52.01% 56.82% 0.16% 122.89% −6.29% 63.11%
R2 0.5 −38.98% 103.71% −5.97% 61.59% −8.36% 136.88%
R2 0.95 −73.41% 54.87% −6.32% 138.07% −12.91% 94.17%

RMSE 6.3577 0.0223 1.1035 0.0428 0.7833 0.0274

S2 0.05 −44.06% −72.24% 1.66% −23.75% −0.79% −45.19%
S2 0.5 −23.03% −3.02% −1.98% 69.07% −0.89% 9.18%
S2 0.95 −51.45% 71.84% 5.10% 37.98% 4.13% −5.23%

RMSE 4.2813 0.0527 0.5064 0.0319 0.3260 0.0280

Furthermore, Figure 16 shows the predicted meridional contour of relative Mach number and total
pressure (Pt) of different models comparing with measured data. For both variables, the contours of
surrogate models show better agreement with experimental data than does the empirical correlations.
As shown in Figure 16a, obvious discrepancy exists on the spanwise distribution of inlet relative
Mach number for stators between EMP and EXP results. Based on the velocity triangle of the blade
element section, the higher predicted inlet Mach number in the tip region of stators results from the
underestimation of the deviation angle for upstream rotor blades, which corresponds to the analysis of
EMP in Figure 15a. It’s also easy to notice the difference between EMP and EXP on the both stators
from Figure 16b. For the EMP result, the higher Pt at S1 tip inlet develops from the underestimation of
deviation angle at R1 outlet (Figure 15a), while the high Pt region through S1 channel is attributed
to the underestimation of total pressure loss at S1 tip (Figure 15b). Two notable high Pt zones are
located near the endwalls of the tip and hub after R2 due to the underestimation of R2 deviation angle
(Figure 15a). Table 8 lists the RMSE of Mach number and Pt corresponding to Figure 16 on both leading
edge (LE) and trailing edge (TE) of each blade rows. The predicted accuracy of surrogate models on
Ma and Pt has a notable improvement, which is up to 49.24% and 73.13% for GPR, and 71.62% and
87.19% for SVR.
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Table 8. RMSE of relative Mach number and total pressure compared to experimental data and the
percentage of error increment relative to EMP.

Row Edge EMP GPR SVR

Ma Pt Ma ∆Ma Pt ∆Pt Ma ∆Ma Pt ∆Pt

R1
LE 0.009 0 0.008 −19.85% 0 0.007 −22.56% 0
TE 0.025 3526 0.013 −45.70% 1948 −44.77% 0.013 −46.45% 1145 −67.52%

S1
LE 0.028 3529 0.025 −13.08% 1954 −44.64% 0.016 −43.51% 1148 −67.47%
TE 0.050 4473 0.033 −34.42% 2288 −48.86% 0.022 −56.66% 1425 −68.14%

R2
LE 0.025 4501 0.013 −49.24% 2303 −48.84% 0.007 −71.62% 1428 −68.26%
TE 0.039 6648 0.020 −48.97% 2062 −68.98% 0.012 −69.37% 856 −87.13%

S2
LE 0.046 6648 0.028 −40.28% 2057 −69.06% 0.015 −66.74% 852 −87.19%
TE 0.034 6218 0.029 −15.29% 1671 −73.13% 0.014 −59.10% 1048 −83.15%

In summary, the comparison suggests that the data-driven surrogate model provides an alternative
approach to get a reliable prediction of compressor performance when typical empirical correlations
are incapable.

5. Conclusions and Outlook

An alternative way of using surrogate models to predict the total pressure loss and deviation angle
was developed in this work. Experimental data measured along the blade spans of a two-stage axial
transonic compressor over a wide operation range constituted the samples database for the training
models. The most influential inputs were identified from seven geometric and six aerodynamic features
using a sensitivity analysis approach for both surrogate models. Two supervised learning methods,
support vector regression and Gaussian process regression, were applied to train the surrogate models.
The SMBO algorithm was implemented to tune the hyper parameters with cross validation scheme to
avoid an over-fit situation. Both models obtained the optimal hyper parameters within 100 iteration
steps. The validation showed that the SVR and GPR models have similar performance on the sample
database. The optimal models were then integrated into a through-flow program developed using the
streamline curvature method to predict the performance and flow field of the compressor. Some typical
empirical correlations were also introduced as reference. The results of surrogate models showed
good agreement with the measured data, whereas the problem of underestimation or overestimation
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exists for the empirical correlations. Compared to empirical correlations, the surrogate models notably
reduced the predicted errors of performance over all the operations. GPR reduced the RMSE of π
and η up to 85.78% and 58.10%, and SVR up to 90.83% and 72.30%, respectively. The comparison
suggested that the empirical correlations could cause considerable errors for the cases beyond the
scope of application. The surrogate models based on experimental data might be a substitute method
to achieve a reliable prediction.

In conclusion, the surrogate models in this work have the following advantages compared to the
typical empirical correlations:

1. The models depend directly on the experimental database of compressors, instead of 2D cascade
data used by empirical correlation. This means that the training data include all the information
about the complicated flow field in the blade channel of the compressor. There is no need
to build additional models to correct the 3D effects on total pressure loss or deviation angle
which is usually used for typical empirical correlations. This can avoid introducing errors in the
correction correlations.

2. Reference conditions are not needed in surrogate models. For empirical correlations, a definition
of airfoils called reference or design condition should be determined at first, since all the off-design
performance is based on the reference condition. Taking profile loss as an example, the profile
loss is comprised of the basic value in reference conditions, and a correction value when the
actual incidence angle deviates from the reference. Usually, the quadratic function is used to
approximate the relationship between corrected value and the increment value of the incidence
angle, while the reference condition needs to be predicted by another correlation, the result of
which will directly affects accuracy of the subsequent prediction. The empirical correlations divide
the nonlinear issue to some subset of linear issues for simplicity, at cost of accuracy. However,
this is not an issue for the surrogate models because, firstly, the training samples nearly cover the
whole operation range of the elementary airfoils, and secondly, the machine learning methods are
born to settle the nonlinear issue.

3. Surrogate models need fewer manual operations than empirical correlations. The empirical
correlations are constituted by redundant coefficients deduced from semi-experience and
semi-theory. Manual adjustment of the correlations is required in specific cases to reduce
errors. In contrast, surrogate models are generated by an automatic process and work as a black
box in the through-flow program, so that only inputs and outputs are concerned. The hyper
parameters can be obtained by an optimization algorithm. The characteristics of a black box make
it friendly to the user who has little experience in modifying the empirical correlations. The only
factor to be determined is which machine learning method to use.

4. The surrogate models have more flexible choices. The empirical correlations have seen limited
change to the structure of the functions, despite the long period of development. It’s difficult to
make great improvement on the prototypes of correlations, without making changes. Essentially,
the function relationship between inputs and outputs is highly nonlinear. The diversity of
machine learning methods introduces more possibility into the approximation of the nonlinear
relationship by surrogate models.

Besides the advantages, some drawbacks also exist and need to be improved in the future:

1. The distribution of the samples is not even, that makes the predicted characteristic lines fluctuate.
The sparse regions in the sample space should be filled with more data, especially for the
transonic/supersonic samples.

2. The scale of the database is small, so the trained surrogate models do not currently work well
for other compressors. The database will be extended, however it’s difficult to obtain enough
experimental data of advanced compressors from open literature. Given that, samples based
on CFD with appropriate modification by experimental data is an alternative way to extend
the database.
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3. The SVR and GPR models perform well on the small data set in this work, but are inefficient for

large databases because the computational complexity of them is O
(
n3

)
, where n is the samples

amount. Some measures will be taken to solve this problem in the extended samples.
4. Traditional models have a wide applicability for conventional compressors since the physical

knowledge is considered while surrogate models cannot reflect the physical knowledge explicitly.
Machine learning methods, which have the capability of nonlinear approximation, can be applied
to improve the accuracy of the traditional models, which reflect the theoretical knowledge, on the
cases out of the operational scope of traditional models.

It should be noted that the same compressors are used for training and testing because of the
limited database, but the over-fit situation is well controlled by the cross validation scheme because no
serious oscillation appears in the prediction of overall performance. In addition, the surrogate models
may perform better than traditional models on individual special compressors but cannot compete
with traditional models on the other conventional cases. Only 36 airfoils are used to build the surrogate
models while the traditional models have been deduced from a wider set of data. The improvement of
applicability to different geometries remains the main task for surrogate models in subsequent work.
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