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Abstract: Passive safety systems are an important feature of currently designed and constructed
nuclear power plants. They operate independent of external power supply and manual interventions
and are solely driven by thermal gradients and gravitational force. This brings up new needs for
performance and reliably assessment. This paper provides a review on fundamental approaches to
model and analyze the performance of passive heat removal systems exemplified for the passive heat
removal chain of the KERENA boiling water reactor concept developed by Framatome. We discuss
modeling concepts for one-dimensional system codes such as ATHLET, RELAP and TRACE and
furthermore for computational fluid dynamics codes. Part I dealt with numerical and experimental
methods for modeling of condensation inside the emergency condenser and on the containment
cooling condenser. This second part deals with boiling and two-phase flow instabilities.

Keywords: passive heat removal systems; condensation; system codes; CFD; emergency condensers;
containment cooling condensers; two-phase flow instabilities

1. Introduction

In part I passive decay heat removal concepts for GEN III(+) nuclear reactors and the modeling of
condensation heat transfer in the emergency condenser and in the containment cooling condenser were
extensively reviewed and discussed [1]. Especially with the containment cooling condenser, however,
not only condensation but also boiling is a relevant thermal hydraulic process that determines the
reliability of the system. In general in technical systems with thermal hydraulic circuits, either forced
or natural, in which phase change by evaporation takes place, two-phase instabilities may occur and
can decisively influence the heat removal and thus the dynamics of these thermal hydraulic processes.

Since these systems have safety-relevant functions such as decay heat removal and shutdown,
optimal design and knowledge of the mode of operation is fundamental. Recalculations with integral
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codes such as ATHLET, RELAP or TRACE are indispensable, but require valid analytical approaches
to describe thermal hydraulics with high accuracy. Finally, the integral codes are used to predict the
operating performance of the thermal-hydraulic processes in the nuclear power plant in the case of a
wide variety of accident scenarios. The modification and improvement of these integral codes in terms
of their analytic approaches and computational effort is and remains a subject of current research.

Compared to circuits with forced circulation, however, the mass flows to be achieved are much
lower. Due to the low mass flows, the correlations involves for natural convection are less validated
and also more critical in terms of accuracy. The comparison of these with experimental results showed
clear deficits to the usual approaches, which amounts to modifying or even developing these mostly
empirical approaches [2].

Like condensation, there is no generally valid approach to the totality of all flow patterns for
the heat transfer coefficient of the boiling process, but is described by empirical correlations that are
only valid in their flow-pattern. These two-phase flow patterns, such as nucleate boiling, transition
boiling and film boiling, are briefly introduced and described by the two-phase flow pattern map of
boiling within a horizontal tube [3]. In addition, CFD simulations serve to visualize the processes
on the secondary side with the focus on the formation of natural circulations and their influence on
temperature stratifications. So an extraction of boiling heat transfer models in CFD is discussed.

Since the beginning of the use of circuits with two-phase natural circulation flow, their instability
phenomena are well known, which occur in particular at low pressures and are mostly induced by
so-called flashing [4,5]. For example, the concept of core cooling by natural circulation was used for the
first time in the Kahl reactor in Germany (AEG-GE, operated from 1960-1985), the Dutch Dodewaard
BWR (GE, operated from 1969-1997), the Melekess VK-50 (operated from 1965-1989) and the BORAX-I
reactor (operated from 1953-1954). However, the electrical energy provided for such reactors is limited
due to their natural circulation, which is caused by differences in the density of the coolant at the inlet
and outlet of the core. Both, in natural and forced circulation systems two-phase flow instabilities
may typically occur. Thus, in forced circulation BWRs, higher coolant flow rates and power densities
are possible under stable operating conditions, resulting in more economical use of these systems.
What remains is the focus on using natural circulation for passive decay heat removal instead of
core cooling.

The mass flow oscillations occurring during the phase change pose the risk of undesired stagnation
of the mass flow and heat removal. In order to avoid possible mechanical ruptures of structural
components due to condensation-induced water hammer and to ensure a continuous heat removal,
the stability landscape must be known in the relevant parameter spaces. This is not only the purpose of
experimental studies, but also analytical ones to understand the phenomenology of the two-phase flow
instabilities and to carry out parameter studies. The ultimate objective should be to optimize the design
so that the unstable two-phase region that occurs is minimized. Most of the instability mechanism are
understood in principle but the analytical modeling of these phenomena remains limited as mostly
one-dimensional flow or incompressibility of phases is assumed. Excellent reviews of experimental
and analytical research regarding two-phase flow instabilities are published, for instance, by Wallis and
Heasley [6], Ishii [7], Bouré et al. [8], Kakag¢ and Veziroglu [9], Prasad et al. [10], Kakac and Bon [11],
Nayak and Vijayan [12], Bhattacharyya et al. [13] and Ruspini et al. [14]. This article as continuation
of the first part [1] gives a brief review of the two-phase flow instabilities and the involved thermal
hydraulic process boiling inside inclined tubes for passive heat removal systems.

2. Boiling Inside Inclined Tubes

The CCC of the KERENATM is a passive safety component for removing the residual heat from
the containment to the shielding and storage pool. During an accident, the CCC is activated by the
temperature increase caused by the steam release from the reactor pressure vessel or the flooding pool
into the drywell. In this case, steam condenses on the surface of slightly inclined tubes located at the
top of the drywell above the flooding pool. The heat released during the condensation is transferred
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by heat conduction through the tube wall and by convection to the water inside the tubes. The water
inside the CCC tubes in turn transfers the heat to the inventory of the shielding and storage pool.
The resulting buoyancy by the increasing density gradient leads to natural circulation, whose flow
direction is imposed by the slope of the condensation tubes.

Looking at the heat transfer during boiling inside inclined tubes, which occurs for instance in the
tubes of the CCC [1], the flow pattern has a significant influence on the transferred heat. Since the tubes
have a slight inclination, the applicable models are embedded into the scope of models for horizontal
tubes [15]. The influence of the flow pattern on heat transfer in a horizontal tube was described by
Collier and Thome Collier and Thome [16].

In the next section the various empirical correlations for the heat transfer coefficient implemented
in the system codes ATHLET, RELAP and TRACE are summarized. The section on experimental work
gives an overview of the origin of these correlations.

2.1. 1D-Codes of Boiling

The system codes ATHLET, RELAP and TRACE contain several correlations of the heat transfer
coefficient for the various flow patterns (cf. Figure 1). Differences are generally between subcooled
nucleate boiling, nucleate boiling and film boiling.

Tube wall dry

Slug Wavy Annular

ow flow flow flow flow
T I T T T 1

Liquid

Bubbl Plug
il

Figure 1. Flow patterns for convective boiling in a horizontal tube [16].

Subcooled nucleate boiling is initiated, when the saturation temperature of the fluid at the surface
is exceeded but the liquid is subcooled. This region is characterized by vapor formation at the heating
wall and vapor condensation in the subcooled center of the flow channel. When the fluid becomes
saturated, nucleate boiling is fully developed until annular flow starts. In the region of the annular
flow, there is a convective heat transfer to the liquid film.

Compared to vertical flow, there are some differences in the flow in horizontal or slightly inclined
tubes, because the liquid mainly flows in the lower half of the pipe and the steam mostly flows in the
upper one due to gravity. At low flow velocities, where the influence of gravity is large compared to
the frictional forces, the two phases are separated (laminar flow, wave flow and slug flow). Due to
the asymmetrical distribution of the two phases, the heat transfer coefficient changes over the tube
circumference.

2.1.1. ATHLET

Subcooled Nucleate Boiling

In ATHLET [17], a modification of the Chen correlation is implemented for calculating the heat
transfer during subcooled nucleate boiling [18]. The heat transfer correlation consists of two parts,
which consider the microscopic and macroscopic heat transfer mechanism (cf. Equation (1)). For these,
the heat transfer coefficient is given as
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where pp is a bundle factor and is defined as a ration of the pitch in meter and the outer diameter of
heat conduction volume in meter as well. For Rerp < 4 - 10° :

1

So = .
0 141631075 Rerp

(6)
For Retp > 4-10°:
So = 0.133 — 0.825- 107 (ReTp —1. 105) . @)

For horizontal tube bundles in cross-flow (7 = 90°), no suppression of the microscopic heat
transfer hpyjc could be observed, which results in a factor S = 1. For a tube bundle in a parallel
flow (y =0°) we have S = S0 (cf. Equations (6) and (7)). For all other flows (0° < ¢ < 90°) S is
interpolated with a cosine function between Sy and 1 according to [17]:

B 1+cosz('y-71)>

_ 14cos(y-m)

S 2

-Sp + (1 8)

Nucleate Boiling

The Chen correlation (cf. Equation (9)) is implemented to calculate the heat transfer during
nucleate boiling under saturation conditions. Compared with subcooled boiling, the correlation for
the macroscopic heat transfer coefficient considers the steam mass quality x (cf. Equation (10)) [18]:

h= hmic + hmac/ (9)

A
Fmac = 0.023 - D—l - [Re; - (1 —x)]°® Pr%* F pp. (10)
h

The microscopic heat transfer coefficient and the factor F are calculated with the same correlations
as for subcooled nucleate boiling (cf. Equations (3) and 4) [18].
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Film Boiling

Concerning film boiling, ATHLET distinguishes between film boiling at droplet flow and film
boiling at inverted annular flow. Starting with film boiling at droplet flow, ATHLET uses a modification
of a Dougall-Rohsenow correlation [17,19]:

A 0.8 0a ()"
h =0.023 Dy Re™® - Pry (Tw) PD- (11)

This correlation was developed to predict the heat transfer in a vertical tube or inclined tube by
assuming that the flow structure consists of a central liquid core and a thin annular film of vapor on
the heated wall [19]. The Groeneveld correlation is also implemented in ATHLET to describe the heat
transfer during film boiling at droplet flow [17]. This correlation is applicable in fully developed film
boiling within different geometries including tubes, annuli as well as tubes and annuli combined [20]:

h = 0.00327 - g - RO (P12 y 15 (12)
h
with

0.4
Y_1—o.1~<‘”—1) (1 x)%%, (13)

v

The third correlation for calculating the heat transfer during film boiling at droplet flow is a
Condie-Bengston IV correlation [17]:

(14)

005345 ( A9 (ppr) 22598 Re[O.6249+0.2043-1n(1+x)])

D085 . (x 4 1)2051%

This correlation was developed to predict the heat transfer coefficient of tube bundles [21].

Regarding film boiling at inverted annular flow, ATHLET uses a Berenson correlation at first [17].
This correlation neglects the effect of vapor velocity and film thickness on the liquid-vapor boundary
behavior during film boiling near the minimum temperature difference [22]:

0.25
3- . . —_— . ]
h—0425. | A8 v (p1=py) A”BE . (15)
e (e = 1) (5357)

The last correlation concerning boiling, which is used in ATHLET, is the Bromley correlation [17].
This empirical correlation for the heat transfer coefficient is based on forced convection film boiling for
an upward flow over a horizontal tube [23]:

0.25
A -gpy- (o1 — py) - A,
h=062- v) 16

( VV‘(TW_TV)'Dh ( )

where

2
0.4 -cpy - (Tw — Tl)) . (17)

Aif, = Aiy <1 + e
2.1.2. RELAP

As already described in [1], RELAP (Reactor Excursion and Leak Analysis Program) was
developed to simulate the transient behavior of light water reactor coolant systems during accident
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scenarios [24]. Regarding boiling, RELAP distinguishes firstly between different geometries. In this
paper the correlations for horizontal single tube and especially for cross flow are considered (cf.
Geometry 132 and Geometry 133 in [24]). In RELAP, three different mechanisms concerning boiling
inside tubes are distinguished: nucleate boiling, transition boiling and film boiling.

Nucleate Boiling

For saturated boiling, RELAP also uses the Chen correlation for calculating the heat transfer
coefficient in a single tube with and without cross flow (cf. Equations (1)—(3)). The difference between
the implemented models is the calculation of the factor F and the factor S, which is for RELAP:

—1
(1 1012 ReTpl‘M) . for Rep < 32.5

-1
S= (1 1042 ReTp0'78) . for32.5 < Regp < 70 / (18)
0.0797, for Regp > 70
09 05 01 0.736
r=235 = A7 .7 40213 . (19)
G Ov [

For subcooled nucleate boiling, a superheated liquid layer next to the hot wall, which is a source
of vapor, is assumed [24]. The adaption to subcooled nucleate boiling is provided by a modification of
the factor F, which was proposed by Bjornard and Griffith [25] as:

o {1, for Ty < (Tsat — 5 K) 20)

F—02 (Tt —T}) - (F—=1), for (Tsat —5K) < T} < Tear

Transition Boiling

For transition boiling a correlation based on the Chen correlation is used. The implemented model
considers wall-to-liquid as well as wall-to-vapor/gas heat transfer and finally the heat flux [24]:

Thoes =0str - ©Xp (k- (To = Toar)®) - My +0.0185 - Re Pri/3 (T, — T, (21)

: (1 —exp (—k- (Tw — Tsat)O'S) ‘Ml> /

with
k = max (kq,k2), (22)
0.05 -5
ky = (1_%40 +0.075- av) : (2.4 ~G-10 ) ) (23)
k=02 (2% 00754, )-G-10°5, (24)
1— a0
&y = min (ay,0.99). (25)
Film Boiling

Film boiling in RELAP is separated into three mechanisms: conduction, convection and radiation.
For film boiling conduction, a correlation by Bromley is implemented in RELAP [24]. The correlation
describes the laminar conductive heat flux from a horizontal tube to a fluid at rest:

g o A (o —p) iy \
h=062. v v AL V) Dy - M,. 26
( L- (Tw - Tsat) *Hv > (26)
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Subcooled film boiling conduction is considered by including a modification by
Sudo and Murao [26]:

B =h{1+0.025- max ((Tsat — T1),0)} . (27)

The heat transfer coefficient at convective film boiling is based on a Dittus-Boelter correlation for
turbulent forced convection [24]:

I = 0.023- Re™S . prot. (28)
Dy
Regarding film boiling radiation, three different interfaces for the heat transfer are described
based on Sun et al. [27]: wall-to-liquid (wl), wall-to-vapor (wv) and vapor-to-liquid (vl). The heat flux
for each interface is calculated by the following equations:

1
qi/(/l = R R "o (Tw4 - Tsat4> ’ (29)
1
qxlv = Rw . Ry 0 (Tw4 - TV4) ’ (30)
Ry - (1 + R + Tl)
1
qilll = Ry | Ru Y (Tv4 - Tsat4) ’ (31)
Ri- (145 +5)
with
1—ey
Ry=—7F7+—""— 2
Voey (1 —eve)’ (52)
1-— €1
Rl=—FF-—"—"—, 33
e (1-evd) 39
1 1—ew
Ry = . 4
Yl —eve Ew (34)
The emissivities € are given as:
€y =1l —exp(—ayLlm),
1—exp L (35)
e =1—exp(—aLm), (36)
ew = 0.7. (37)

where Ly, is a mean path length, and a, and a; are vapor/gas and liquid absorption coefficients, which

are defined as:
111

I
The vapor/gas absorption coefficient a, and the emissivity €, of a Zircaloy-wall are taken directly
from references for a fixed temperature [28].

LmZD, m =

2.1.3. TRACE

Analogously to RELAP, TRACE considers three mechanisms for the heat transfer coefficient
during boiling inside tubes: nucleate boiling, transition boiling and film boiling.

Nucleate Boiling

TRACE combines the heat transfer coefficient for pool boiling and flow boiling and uses it to
model the heat transfer coefficient for nucleate boiling within the Chen correlation. The convective flow
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part was retained to minimize potential unphysical oscillations, which may come up for low-pressure
conditions [29]. For pool boiling, various correlations such as Steiner and Taborek [30], Cooper [31]
and Gorenflo [32] were investigated under saturated conditions at pressures of 2.7 bar (typical for
reflooding and passive cooling conditions) and 70 bar (typical for PWR SBLOCA pressure and BWR
operating conditions). The correlations were compared to the McAdams correlation (low pressure) and
the Levy correlation (high pressure) as recommended by Holman [33]. The Gorenflo correlation [32]
was selected because of its satisfying values for low pressure and high pressure conditions as well as
the simplicity of the correlation:

.\ N(pY) 0.133
o (4 . Ra>
n=ho F(p)<qo> (Rao ‘ (38)
where
N(p*) =09 —03- (p*)°5, (39)
F<p*>—1.73-<p*>°~”+(6-1+0'682>‘<p*>2. (40)
1—(p*)

Represent the relative effect of the boiling pressure, the heat flux density and the heating surface
properties Ra. The correlation relates to a mean heat flux density of g4y = 20,000 W/m? and the
heat transfer condition of 1y = 5600 W/m?K at this heat flux in case of water. Finally the pressure
dependency is included by the exponent N (p*) and the function N (p*), where p* is the normalized
saturation pressure. The effect on the surface parameter is normalized by the cooper surface parameter
Rao = 0.4 pm.

Transition Boiling

The transition boiling regime provides the transition between the wet wall heat transfer of
the nucleate boiling regime to the dry wall heat transfer of the film boiling regime. For TRACE,
the minimum film boiling temperature is used as the regime transition criterion between film boiling
and transition boiling. The correlation at this point is simply the film boiling heat flux calculated for
the wall superheat, where the film boiling coefficient can be either that from dispersed flow film boiling
or inverted annular film boiling.

Film Boiling

Also in TRACE, three different film boiling regimes are distinguished: inverted annular film
boiling, dispersed flow film boiling and inverted slug film boiling. In the case of inverted annular
film boiling, the hot surface is separated from the subcooled liquid core only by a thin film of vapor.
The void fraction in this regime is less than 0.6. Three different correlations for the heat transfer
coefficient are implemented: wall-to-vapor (wv), wall-to-liquid (wl) and wall-to-interface (wi) [29].

how =2, @)
o+ (Tw?+Ts?) - (T + To)
hwl = 1 1 ’ (42)
ev1l-ay t (a - 1)
hyi = Av N
wi = 5 Ny, (43)

with

Nty = max (0, 1.3 (0.268 L §¥077 _ 0.34)) . (44)
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It is assumed that the dispersed flow film boiling is present at void fractions greater than 90%.
This regime consists of two parts: convection and radiation. For laminar forced convection, the constant
Nusselt number for fully developed flow with a constant heat flux boundary condition is applied [29]:

A
h= 4367 (45)

For turbulent forced convection, as recommended by both Bhatti and Shah and Incropera and De
Witt, the Gnielinski correlation is selected for implementation [29]:

- (Jzi) - (Re — 1000) - Pr
14127 (g)‘“’ (Pr - 1>‘

The correlation by Sun, Gonzalez-Santalo and Tien, which is has already been introduced for
RELAP, is also implemented in TRACE [29].

To ensure a smooth transition of the heat transfer coefficient between inverted annular and
dispersed flow film boiling, TRACE uses an inverted slug film regime to consider the subcooled liquid
flowing past the quench front. Therefore, the heat transfer coefficient comprises of the heat transfer
coefficients for inverted annular film boiling (IA) and dispersed flow film boiling (DF) [29]:

(46)

Byt = (x - (2=x)) - hyria + (1= (x- (2= x))) - hwi,DE/ (47)
hywg = (¥ (2—x)) - hwgia + (1= (x- (2 —x))) - hywgDF, (48)
hywi = (x- (2= x)) - hyi1a, (49)
where:
Y = 090—30(‘/ (50)

2.1.4. Boiling Heat Transfer Models in CFD

In addition to one-dimensional codes, more and more CFD codes are used in order to simulate
the flow behavior during the boiling, as they provide complete flow fields (i.e., velocity, pressure,
temperature, etc.) at all locations of the area of interest. To do this, wall-boiling sub-models must be
used to account for the heat input and phase change on a heated wall. In the following, a review of
works have been done on boiling with different multiphase flow approaches such as the one-fluid
volume-of-fluid model (VoF), level set, and the Euler-Euler two-fluid approach is given.

In recent decades, several CFD models were developed to investigate the bubble dynamics based
on simulation of a single-bubble. Lee and Nydahl [34] simulated a single-bubble generation during
nucleate boiling by use of moving mesh and the generalized arbitrary Lagrangian-Eulerian (ALE)
approach. However, the assumption of constant wall temperature and the lack of suitable modeling of
the detachment led to an only partially accurate prediction of the bubble dynamics.

Son et al. [35] modeled bubble dynamics with the level set method for tracking the liquid-vapor
interface. The calculated bubble dynamics were in good agreement with experimental results. However,
the model does not predict the bubble waiting time and frequency because a constant temperature is
assumed for the heat transfer surface.

Tryggvason and Lu [36] used direct numerical simulation (DNS) for modeling nucleate boiling
and bubble generation. The micro region was not considered and the heat release rate at the phase
boundary was defined as:

mfAi1V<1 1)
Viu=———|———]¢n), 51
r oo (n) (51)
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where £(n) denotes a delta function of the normal coordinate. Figure 2 shows a developing bubble
shape and the temperature profile during nucleation boiling on a vertical wall. The hot liquid layer is
generated near the hot wall, which leads to bubble growth. Since the flow moves upward, the generated
bubble diverts the thermal boundary layer near the wall so that the cold liquid gets near the hot wall.

Figure 2. Temperature field around a single bubble at three times, the fluid is flowing upward [36].

Sato and Niceno [37] developed a model based on a color/density function that is able to simulate
the dry spot underneath the bubble. Moreover, the bubble growth rate and the temperature distribution
over the heat transfer surface were predicted and validated with experimental data. Due to the large
computational time, the model is limited to a few nucleation sites and only available for nucleate pool
boiling. Moreover, the simulation domain is strictly limited to a millimeter to centimeter size of the
global boiling process. Later on, Sato and Niceno [38] proposed a new micro-layer model for nucleate
pool boiling using an interface tracking method. They defined the micro-layer thickness as a variable
which decreases during the boiling and is able to get vanished at the end of the evaporation process.
The model was validated with experimental data of Duan et al. [39] and Yabuki and Nakabeppu [40]
and showed a good prediction of the bubble growth rate and the temperature field at the interface.
By use of the developed models, Sato and Niceno [41] conducted a series of pool boiling simulations
covering the range of the nucleate boiling to the film boiling regarding critical heat flux (CHF).

Figure 3 shows the simulation results for two heat flux values. For the case with the low
heat flux value g = 50 kW/m?, isolated bubbles are formed and superheated liquid is detected.
By enhancement of the heat flux, the dry spot area increases and more part of the heat transfer
surface is covered with the gas phase. However, direct numerical simulations could provide essential
information for deriving a correlation that is valid over a wide range of parameters. For industrial
applications, simplification of the sub-process models based on microphysics is still required in
numerical simulation.
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Figure 3. Computed flow field for two heat flux values, (a) bubble shapes and solid temperature, (b)
fluid temperature on the center plane, (c) Micro layer thickness [41].

In the studies presented above, CFD simulates the boiling by resolving the interface between
liquid and vapor. This requires a large computational effort, which limits the scope of applications for
this CFD-approach. Therefore, the Euler-Euler two-phase flow approach has been considered useful
for the large-scale application [42—-44], because it does not resolve the interface, but applies submodels
to describe the conservation equations of mass, momentum, and energy. Two challenges exist for
modeling the boiling process with this approach. The first is the wall boiling model, which takes the
heat transfer to the liquid and the heat required for the vapor generation into account. The second
refers to the phase change that occurs in the bulk fluid, such as condensation and evaporation.

Regarding to the first, most of the Euler-Euler CFD models follow the heat flux partitioning
approach initially proposed by Judd and Hwang [45] and further developed by Kurul and
Podowski [46,47]. In this approach, a given total heat flux Qo is split into various terms according to
a microscopic model concept (see Figure 4). The total wall heat flux Qo is determined as a sum of
three terms:

Qtot = Qc + Qo + Ok, (52)

where Qc, Qq and Qg denote the heat flux components due to single phase turbulence convection,
quenching and evaporation, respectively. The terms Qc, Qg and Qg are modeled as functions of
local flow parameters and local wall temperatures. Several investigations have been carried out to
determine the heat flux terms such as Tolubinsky and Kostanchuk [48], Kocamustafaogullari [49],
Unal [50], Klausner et al. [51], Zeng et al. [52,53]. However, until 2013 a critical review of the different
correlations applied in the heat flux partitioning model has shown that the parameters are still not
suitable for a wide range of application for different fluids or pressure levels. These parameters have
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to be carefully calibrated for the intended purpose [54]. Colombo and Fairweather [55] as well as
Ding et al. [56] used a multiscale bubble growth model and considered the force balance equations for
predicting bubble dynamics. However, it has been found that the complex bubble model cannot be
easily implemented in CFD codes. Ding et al. [57] succeeded in implementing these bubble models in
the CFD approach using a library-interpolation method. In the implementation, libraries of bubble
parameters were generated under different conditions, which in turn were implemented in the CFD
code and interpolated by the local flow parameters. However, the complexity of this method still limits
its wide application.

SRR

Figure 4. Concept for the heat flux partitioning model [58].

In the CCC, film boiling may occur that leads to a vapor film covering the wall surface. In this
case, the heat transfer to the vapor phase has to be formulated. Lifante et al. [59] extended the heat
flux partitioning model according to Equation (52) with the heat flux which is transferred to the vapor
phase (Qy) due to convection:

Qtot = Qc’ + Qo' + Q&' + Qv. (53)

They applied a switch function f(a) to determine the heat transfer to liquid and vapor phase by
assuming the critical liquid volume (ay, it) equal to 0.2:

flap) = {1 . aexpz(o_aigu( L Se)) o for Z e (54)
Fas) for . < o ert

Qc" = f(ar)Qc, (55)

Qq' = f(arL)Qq, (56)

Q' = f(aL)Qk, (57)

Qv = (1-f(ar)) hev (Tw — Tv), (58)

where oy is the liquid volume fraction, Ky is the vapor heat transfer coefficient, Ty, and Ty, represent
the wall and the vapor film temperature. The calculated results were validated with two experimental
data sets of Bartolomej [60] and Hoyer [61] and gave satisfactory results. Bruder and Sattelmayer [62]
investigated the extended wall boiling model with experiments performed at the Technische Universitét
Miinchen in Germany. The work was carried out for a one side heated cubic channel at atmospheric
pressure. They found that the void fraction at the critical heat flux (CHF) varies between 0.35 and
0.75 at different operating conditions. Therefore, a constant void fraction at CHF (ay it = 0.2)
limits the model of Lifante et al. [59] to a few specific cases only. Ding et al. [63] developed a new
model for the prediction of critical heat flux based on bubble dynamics. The model is able to predict
the void fraction at CHF under different conditions, which has been validated with the data of
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Bruder and Sattelmayer [62]. As a conclusion, the model of Lifante et al. [59] is more accurate when
the fixed void fraction at CHF is replaced by the estimated value from the model of Ding et al. [63].

The second challenge is the modeling of the bubble size change in the bulk. To describe the
size change of polydispersed bubbles, different bubble size groups i with a specific bubble size dj,
similar to the MUSIG model, are considered [64]. Between these bubble size groups, mass transfer is
assumed both due to bubble coalescence and fragmentation, as well as condensation and evaporation.
Krepper et al. [65] developed the inhomogeneous MUSIG model based on the original MUSIG model
with the sign of buoyancy changing due to bubble size.

During boiling inside the tubes of the containment cooling condenser, flow pattern transitions
may occur due to the increase in void fraction.

In order to simulate different flow morphologies and the transition between them, the interface
has to be resolved. For this purpose Hénsch et al. [66] developed the GENTOP concept based on
the inhomogeneous MUSIG approach by adding a group for continuous gas phase (cf. Figure 5).
The combination of the wall boiling model and the GENTOP concept is able to detect the flow pattern
transitions [67].

iMUSIG

velocity groups I ! ! ! !

. sizefractons Tt T T T 1 M 1
- K=1LEM d dvidmier dmiemz  dagmax dy
breakup coalescence
new models for
coalescence
and breakup
T 1 1 breakup to dg |

Figure 5. Schema of the extended iMUSIG model including a continuous gas phase [66].

Consequently, the Euler-Euler CFD approach has a high potential to simulate the boiling process
in the CCC because it can represent nucleate boiling and film boiling as well as morphologies transition
almost realistically.

2.2. Experiments

In 1995, Gupta et al. [68] carried out experimental investigations to determine the convective
boiling heat transfer coefficient of the local flow in small tube bundles. There was distilled water in the
tubes with low cross-flow velocities at atmospheric pressure. The schematic diagram of test facility is
represented in Figure 6.

The experimental set-up includes a vessel, heaters, a preheater, a receiver unit, a condensing and
cooling water system, and the necessary measuring devices. The horizontal tubes are arranged in a
vertical array through a large channel in test vessel. The experiments were performed in three distinct
sets of bundle arrangements: (1) a single tube in a channel to represent a basic building block; (2) two
horizontal tubes placed one above the other at different pitch distances, and (3) three horizontal tubes
one above the other at a constant pitch distance. All conducted experiments are carried out under
a system pressure of 1.0019 bar. The heat flux and mass flux ranged from 10 to 40 kW / m? and 0 to
10 kg/ (m?s). The effects of the impressed heat flux, cross-flow velocity and tube geometry on the heat
transfer characteristics have been investigated. A Chen-type relation has been used to correlate the
data on local forced convective heat transfer coefficients of upper tubes with reasonably accuracy.
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14 By-pass line
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Figure 6. The test set-up of boiling experiments from Gupta et al. [68].

Yu et al. [69] studied the two-phase pressure drop, boiling heat transfer, and critical heat flux to
water in a small horizontal tube of 2.98 mm inner diameter and 0.91 m heated length.

The test loop is shown in Figure 7. The liquid is pumped through the circuit and pressurized
by an expansion vessel that is connected to a high pressure nitrogen bottle. Pressure at the
experimental test section is maintained within specifications by adjusting the pressure in the
expansion tank. The experiments were performed at a system pressure of 200 kPa, mass fluxes
of 50 to 200 kg/(m?s), and inlet temperatures from ambient to 80 °C. Based on the comparison
between experimental results and state-of-the-art analytical approaches are developed. Yu modified
the Chisholm two-phase multiplier correlation and put it in the Argonne National Laboratory
small-channel boiling heat transfer.

Vent port

Relief valve

Nitrogen/Air in DC power supply
Expansion tank I

Preheater

]
DC power supply

440 pm filter

Drain port ‘

Pressure gauge X

Condenser

% — Water out

Flowmeter

—N—:}—I — Water in

Rotameter

Pump Filter

Figure 7. The experimental scheme from Yu et al. [69].

Woijtan et al. [70,71] built up a test facility to acquire the experimental data of flow boiling in
horizontal tubes. Based on the dynamic void fraction measurements described in [72], he developed a
new flow pattern map to divide the stratified-wavy region into three subzones: slug, transition regime
and stratified-wavy. And the annular-to-dryout and dryout-to-mist flow transition curves were added
and integrated as well. Additionally, Wojtan developed a new heat transfer model for stratified-wavy,
dryout and mist flow regimes. Figure 8 shows a simplified layout of intube refrigerant test loop with a
close up view of the set-up used for the dynamic void fraction measurements.

The refrigerant first goes through a series of horizontal electrical preheaters and then passes
an insulated tube without any sharp elbows. Then, the refrigerant enters the tubular test section
and is heated by counter current flow of hot water in the shell side of the double pipe system.
In stratified-wavy region, the experiments measured for R-22 at mass velocity conditions of 70, 100,
150 and 200 kg/ (m?s) and R-410A for 70, 150, 200 and 300 kg/(m?s). The saturation temperature
was set at 5 °C and the heat fluxes in the heat transfer section ranged from 2.0 to 7.5 kW /m?. In post
dryout regime, the measurements were taken for mass fluxes from 70 to 700 kg/(m?s) and heat fluxes
ranges from 2.0 to 57.5 kW /m?.
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Figure 8. The layout of the experimental facility from Wojtan et al. [70].

Kundu et al. [73] investigated the boiling of the refrigerant R407C flowing inside a smooth tube
with an inner diameter of 7.0 mm and tube inclinations from 0 to 90° of the flow direction of the
refrigerant.

The schematic diagram of the experimental facility is shown in Figure 9. The test facility includes
a semi-hermetic compressor, a water-cooled condenser, an expansion device, a preheater, a postheater
and a evaporator. The experiments were carried out at inlet temperatures from 6 to 9 °C, heat fluxes
between 3 and 6 kW/m? and refrigerant mass fluxes from 100 to 300 kg/(m?s). During the boiling
of the refrigerant steam mass qualities between 0.1 and 0.9 were reached. Based on the experimental
results an empirical correlation for the prediction of the heat transfer coefficient of R407C during
boiling inside inclined tubes was developed.

Figure 9. Schematic diagram of the experimental facility from Kundu et al. [73]: 1-compressor,
2-condenser, 3-subcooler, 4-flow meter, 5-filter-dryer, 6-expansion device, 7-preevaporater,
8-postevaporater, 9-accumulator, 10-test section, 11-sight glasses, 12-shut off valves, 13-pressure gauges,
14-thermocouples, 15-test tube cross section, 16-hoses, 17-electrical heat supply, 18-angular fixture,
19-pressure transducers, 20-o0il separator.
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3. Two-Phase Flow Instabilities

For the passive removal of the decay heat from the containment into the storage pool above by
the CCC, the principle of natural circulation is applied. Depending on the supplied heat, the fluid
passes from a single-phase flow into a two-phase flow by the boiling process. The phase change from
single-phase flow to two-phase flow initiates two-phase flow instabilities, whose phenomenology is
known in both natural and forced circulation systems. The instability mechanisms are associated with
the propagation of perturbation in a two-phase flow due to feedback effects, which involve delays [74].
Generally, these mechanisms are divided in two mechanisms; first, microscopic mechanisms, which
address instabilities occurring at liquid-gas interfaces and are neglected in this article, and second,
macroscopic mechanisms, which refer to instabilities in the whole system. Bouré published the
most cited classification of the macroscopic instability, the static and dynamic mechanisms as first
distinction [8] (c.f. Tables 1 and 2).

Table 1. Static instabilities according to Bouré [8].

Classification

Type

Mechanism

Characteristic

Fundamental
static instabilities

Ledinegg instability

Boiling crisis

aAF’int < aAPext
G — 0G

Ineffective removal of heat
from heated surface

Sudden large change of
flow parameters to a new
stable operating point
High wall temperatures
and flow oscillations

Fundamental Flow pattern Change from bubbly to Cyclic flow pattern
relaxation transition instability =~ annular flow transition and flow
instabilities oscillations
Compound Geysering, Periodic adjustment of Periodic process of
relaxation bumping, chugging  metastable conditions, superheating and violent
instability caused of lack of nucleation  evaporation with possible
sites expulsion and refilling
Table 2. Dynamic instabilities according to Bouré [8].
Classification Type Mechanism Characteristic
Fundamental Acoustic Resonance of pressure High frequencies (10 Hz to
dynamic oscillations waves 100 Hz), related low
instabilities amplitudes of flow
oscillation
Density wave Delay and feedback effects ~ Low frequencies (~1 Hz),
oscillations in relationship between large amplitudes of flow
flow rate, density and oscillations
pressure drop
Compound Thermal induced Interaction of variable heat ~ Occurs in film boiling
dynamic oscillations transfer coefficient with
instabilities flow dynamic
BWR instabilities Interaction of void Strong only for a small fuel
reactivity coupling with time constant and under
flow dynamic and heat low pressure
transfer
Parallel channel Interaction among small Various modes of flow
instabilities number of parallel redistribution
channels
Compound Pressure drop Flow excursion initiates Very low frequency

dynamic instability
as secondary
phenomena

oscillations

dynamic interaction
between channel and
compressible volume

periodic process (~0.1 Hz)
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The Sections 3.3 and 3.4 address a brief overview of experimental and numerical results concerning
two-phase flow instabilities in natural circulation systems. The static instabilities mainly differs from
the dynamic instabilities, that the thermal dynamic equilibrium of the two-phase flow is restored
after perturbation in case of static instabilities. Concerning static mechanisms, the unstable threshold
can be predicted by solving the steady state conservation equations. Whereas the various dynamic
feedback effects which occur regarding dynamic mechanisms influence the threshold of unstable
behavior significantly.

3.1. Static Instabilities

3.1.1. Ledinegg Instability

The Ledinegg instability is well known and intensively investigated. Ledinegg introduced this
type at first in Ledinegg [75].

The flow excursions occur when the slope of the channel characteristic for boiling systems is more
negative than the external characteristic at small perturbation around an equilibrium point [8]:

aAPint < aAPext
oG — oG

(59)

Figure 10 shows the trend of the internal pressure drop in the cases of all vapor (x = 1), all liquid
(x = 0) and mixture (0 < x < 1) in a cross-flow channel. Furthermore, two cases of external pressure
drop trends induced by several pumps are shown. In case one, the characteristic curve of the pump
has three intersections within the mixture characteristic curve.

~| Apexi (case 2)

pressure drop Ap —

Apei(case 1)

mass flux G —

Figure 10. Internal and external pressure drop vs. mass flux of a boiling system [76,77].

The operating point B is unstable according to the stability criterion (cf. Equation (59)) and a
small perturbation causes a change to the operating point A or C. If the new stable operating point A
is reached, the system will be at the risk that the necessary cooling of the heated wall is not guaranteed
and the critical heat flux is reached. This instability can be avoided by installing an inlet throttle valve,
which leads to the characteristic curve of case two [8]. The stability criterion according to Equation (59)
is now fulfilled and operating point B is stable. The external pressure drop of a natural circulation
system is the buoyancy due to the gradient of the density. Whereas the internal pressure drop includes
all losses in the inlet, boiling channel, exit and downcomer but the pressure drop due to gravity.

Detailed studies of the nonrecurring excursive instabilities with experimental background are
published by Maulbetsch and Griffith [78], Bouré et al. [8] and Padki et al. [77]. Padki et al. discovered
that the static Ledinegg instability is caused by a saddle-node bifurcation [77].
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Nayak et al. [79] studied the stability behavior of the AHWR concept by prediction of the instability
threshold in 1998. They concluded, inter alia, that the Ledinegg instability will disappear, if the system
pressure is higher than 7 bar or the subcooling less than 10 K during start-up.

Rao et al. [80] carried out a linear stability analysis in a frequency domain in 1995. They figured
out that the Ledinegg instability does not occur at the simultaneous presence of a neutronic and
hydrodynamic feedback.

Ruspini et al. [81] investigated this phenomenon under low flow conditions by applying model
order reduction (c.f. Figure 11). The solution of steady state results in the typical N-shape curve. If the
slope is smaller than the external characteristic, the point will be unstable. Two simulations with
different perturbation lead to a lower (in the case of an outlet pressure of 996.51 kPa) or higher (in the
case of an outlet pressure of 996.49 kPa) mass flow rate.

6
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<
% unstable initial state
~ 4t
ISy
q ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
jon
%k
o
g stable state stable state
5 2r
7
3

1k

0 | | | | | |

0 200 400 600 800 1000 1200 1400
k
mass flux G / —Zg
m-s

Figure 11. Two different flow excursions at 1 m, 5 mm hydraulic diameter, 6 kW constant heat source,
1 bar inlet pressure, 20 °C inlet temperature, neglected inlet and outlet pressure drop. Perturbation at
996.51 kPa and 996.49 kPa outlet pressure [81].

3.1.2. The Boiling Crisis

The boiling crisis is caused by a non-wetted wall of a boiling channel and is characterized by an
insignificant degradation of the heat transfer. At systems where the heat flux is fixed (e.g., nuclear
reactors or electrical heating), the non-wetted wall leads to a steep increase of the wall temperature.
This can even lead to the failure of heated surface (e.g., burn-out). If the heat is supplied by a given
temperature gradient (e.g., steam heating), the heat flux will be strongly decreasing [82]. A review of
the boiling crisis in nuclear reactors is given by Theofanous in 1980 Theofanous [83]. There are two
existing types of the boiling crisis. The first type occurs by exceeding a certain CHF at a low vapor
quality. The steam bubbles coalesce and form a steam film on the surface of a heated wall [84,85].
In case of a higher flow velocity and pressure, the small steam bubbles break away from the surface
and form a high viscose bubble layer near the wall. This layer leads to the wetting of the heated wall.
The second type of the boiling crisis occurs at the end of an annular flow (c.f. Figure 1). The liquid
layer on the wall surface becomes very thin and disappears finally. This causes the degradation of the
heat transfer because the heat is transferred to the steam.

Kim et al. [86] investigated the influence of the flow oscillation on the CHF under low power
and low flow conditions in 1999. Nikolayev et al. [87] presented experimental investigations of the
layer forming and concluded that their results are not compliant to the theoretical aspects of the Zuber
model and the macrolayer evaporation theory.
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3.1.3. Flow Pattern Transition Instability

The flow pattern transition instability is classified as fundamental relaxation instability. As shown
in Figure 1, there are various configurations of gas and liquid flow in a channel, in which these phases
arrange themselves. These characteristic configurations are known as flow regimes. Instability occurs
during the transition of bubbly to slug or annular flow. A small perturbation or reduction in the
volumetric flow increases the quality, which changes the flow regime to the annular flow. The annular
flow is characterized by a significantly lower pressure drop than the slug flow. Therefore, the flow
rate increases and hence the quality decreases, these two effects lead to the happening of transition
again [8].

The great challenge concerning the investigation of this type of instability is the prediction,
when the slug flow is initiated. Griffith and Wallis [88] proposed an empirical flow regime map in
1961. Haberstroh and Griffith [89] figured out that the transition depends on the liquid flow rate and
created an annular-slug transition criterion. Krussenberg et al. [90] investigated the two-phase flow
concerning the transition to slug flow with a reasonable agreement to Taitel flow maps experimentally
in 2000 (c.f. [91]). Krussenberg concluded that the slug flow occurs, when the bubble size distribution
reaches higher values than the tube diameter. Further, analytical studies are presented by Nayak et al.
[79] and Jeng and Pan [92].

3.1.4. Geysering

In general, the compound relaxation instabilities are non-periodical trends of flow dynamics
and are irregular. The prediction of these instabilities bases on a steady state solution. General
characteristics (e.g., amplitudes, frequencies) cannot be estimated analytically. The geysering instability
is a classic example of a compound relaxation instability (c.f. [8]). By reaching the boiling boundary
within the boiling channel, the increasing void fraction leads to a decreasing hydrostatic pressure along
the channel. This results in an additional boiling above the detached steam bubble with an associated
increasing mass flow. The steam bubble is condensing at the inlet of vessel filled with subcooled liquid
and causes an eruption in the channel outlet.

Thereupon, the overlying subcooled liquid returns to the channel, which leads to the stagnation
of the natural circulation flow [93]. This phenomenon was reported for the first time by Griffith [94].
He observed periods between 10 s and 100 s and finally concluded the occurrence of it at a low pressure
and a low power.

Ozawa et al. [95] investigated this phenomenon experimentally on a forced circulation loop for the
refrigerant R-113 in 1979. The three main processes of geysering reported by Griffith [94] (single-phase
flow, ejection of vapor-liquid mixture and backflow) have also been observed. The period and the
amplitude increase with an increasing heat flux and a decreasing inlet velocity. An increasing riser
length also results in an increasing geysering-amplitude [95]. Aritomi et al. [96] also discovered in
1990, that the geysering period correlates with the boiling delay time, 7,4, which is the required time
for the boiling of subcooled water, which flows through a boiling channel. The boiling delay time is
defined as:

Tog = 01 (lsat/,/ll_ 11), (60)
q
where p is the liquid density, igy) the liquid saturation enthalpy, 7 the inlet liquid enthalpy and 4"’ the
volumetric heat generation rate.

In 2007, Marcel [97] observed only geysering instabilities in the test-facility CIRCUS with
a parallel chimney configuration. At low pressure, the phenomenon was observed to be the
most prevalent during the investigations on the open natural circulation test facility GENEVA by
Cloppenborg et al. [98].
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In Figure 12, two-phase-flow oscillations are shown, which are induced by geysering. If the large
slug bubbles reach the riser outlet, the pressure drop in the riser will be reduced by the frictional
pressure drop and the gravity of about 670 mbar. The gravity pressure drop results from the riser
length of about 6 m. The time lag between the mass flow and the riser inlet temperature is nearly 18 s.
During the reversal flow, the riser inlet temperature decreases to the subcooled temperature 90 °C and
increases during the first phase according to the geysering phenomenon (c.f. Figure 13).
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Figure 12. Two-phase flow oscillations in the test facility GENEVA at a power of 45 kW and an inlet
temperature of 80 °C in a steam heated boiling channel.
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Figure 13. Scheme of the geysering phenomenon in the riser section above the boiling channel:
(1) boiling is initiated in the heated section. (2) a large slug of bubbles is formed. (3) the large slug of
bubbles reaches the outlet and condenses. (4) subcooled liquid flows back and the natural circulation
stagnates [99].

3.2. Dynamic Instabilities

Dynamic instabilities were classified according to their causes for propagation of disturbance:
density wave oscillations (DWO), pressure drop oscillations (PDO), thermal oscillations and acoustic
oscillations. Table 2 represents the classification according to Bouré et al. [8]. Generally, there are two
types of transportation of disturbances: pressure and void waves.

3.2.1. Acoustic Oscillation

Acoustic oscillations, also described as pressure wave oscillations, have been observed in the
subcooled boiling, the bulk boiling and the film boiling. These oscillations appear at rather highly
subcooled operating systems. A high frequency of about 10 Hz to 100 Hz was reported by several
investigators [8]. The DWO produces lower frequency waves of about 1 Hz. Bishop et al. [100] detected
audible frequency oscillations of 1000 Hz to 10,000 Hz during their experimental investigations in
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near-critical temperature and supercritical pressure operational conditions in 1964. The amplitudes
are relatively small at such high frequencies. The thermal feedback of the vapor film to the passing
pressure wave is assumed to be the mechanism for the oscillations during film boiling [12]. Detailed

studies are published in [101-103].

3.2.2. Density Wave Oscillation

The density wave oscillation is the most common type of flow instabilities. The mechanism is
clearly understood and consists of two sub-mechanisms concerning the generation and propagation of
the disturbance: the delay of the propagation and the feedback effects on the inlet conditions [104].
Fukuda and Kobori [105] classified these oscillations into two main types. The Type-I (DWOy) occurs
at a very low exit quality, whereas a high quality at the exit is the characteristic feature of Type-II
(DWOrp). The pressure of the system is the key indicator for the dominant DWO type. Systems with a
pressure below 20 bar (e.g., reactor start-up) are defined as low-pressure system and high pressure
systems are specified with a higher pressure than 20 bar [106].

The saturation conditions in a low-pressure system strongly depend on the pressure level, which is
shown in Figure 14b,c.

DWO types are low frequency oscillations in a low pressure systems (c.f. Figure 14b) with a low
exit quality. The gravity pressure drop of the adiabatic chimney dominates the system and is very
sensitive to flow rate fluctuations. Therefore, the length of the riser plays an important role. With a
small perturbation concerning the quality, the void fraction and finally the driving head undergoes
a large change. An increasing heat supply suppresses the fluctuation of the driving head for small
changes in the quality because of a decreasing slop of the void fraction versus quality [12].
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Figure 14. Liquid saturated enthalpy and the position of the boiling boundary in a heated channel

with an adiabatic riser.

The high frequency DWOy; is important for a high pressure (c.f. Figure 14a) and a power, at which
forced or natural circulation reactors operate. The oscillations are caused by the interaction of single
and two-phase pressure drops, the mass flow and the void fraction in the two-phase region. A different
propagation time delay in the single and two-phase region leads to pressure drop variations, which are
out-of-phase.

Furthermore, the high-order DWOyy is analytically explained by Yadigaroglu and Bergles [107]
and Yadigaroglu and Bergles [108]. During the experiments under atmospheric conditions, the DWOyy
appears at a high subcooling and low power. In 1985, Achard et al. [109] applied the stability island to

describe this phenomenon.



Energies 2020, 13, 109 22 of 38

Fukuda and Kobori [105] subdivided these types into gravity or frictional effects of a heated
section or riser (DWOLr, DWOyy, DWOjRr, DWOy.g) in 1979. Based on their experimental results
in [110], these different types of instabilities are obtained by a linear stability analysis in a frequency
domain and were observed at different configurations.

An important appearance, where density wave oscillations are induced, is flashing, which is also
known as adiabatic boiling. The common flashing induced oscillations appear during a low-pressure
operation, for example at the start-up of BWRs (c.f. Figure 14c). The steam is generated in the adiabatic
riser because of the decreasing gravitational pressure drop and the saturation temperature along the
riser. The steam generation causes an increase in the flow rate and a decrease in the hydrostatic head.
The higher flow rate reduces the quality in the heated and riser section resulting in the upwards
motion of the boiling boundary. The temperature in the channel becomes lower and the flow rate
decreases, which leads to a higher dwell time in the heated section. The process starts again. Flashing
is affected by the hydrostatic head and hence sometimes referred as DWOj. The phase difference
of the temperature between the heated and the adiabatic section is similar and the dwell time of
the fluid and the oscillation period is nearly the same [111]. This phenomenon was experimentally
investigated by many researchers such as Schuster [112-114], Furuya et al. [5,115], Manera [116,117]
and Cloppenborg [98,99].

3.2.3. Thermally Induced Oscillations

The thermally induced instabilities mostly appear in combination with DWO and are the result
of the occurring critical heat flux. The high frequency DWO effects a disturbance in film boiling
[8]. Due to the changes concerning the flow regimes (c.f. Figure 1) and finally in the heat transfer
mechanism, the occurring critical heat flux is moving downward or upward the boiling channel.
These instabilities are characterized by a large amplitude of the wall temperature oscillations subjected
to a constant heat flux.

3.2.4. Parallel Channel Instabilities

The parallel channel instabilities can occur in single and two-phase systems, in which the channels
are connected to a header. The pressure difference is same for all the channels. In and out of phase
oscillations are observed, whereby out of phase oscillations play a dominant role. Kakac et al. [118]
found a phase shift of 180° during experiments with two channels in 1974. In 1964, Berenson discovered
a phase shift of 72° for five channels [119]. Summarizing the experimental results, the general statement
of a phase shift with 27t /n is formulated, where n is the number of channels [120].

3.2.5. Pressure Drop Oscillations

In general, pressure drop oscillations are caused by interactions between the channel and a
compressible volume (e.g., surge tank or pressurizer) at the inlet of the heated channel and occur
commonly at forced circulation system, because of the destabilization by the pump. Contrary to DWO,
PDO occurs at higher flow rates and smaller frequencies. PDO is able to stand the same amount of the
risks of occurring CHF as Ledinegg.

3.2.6. Natural Circulation Instabilities

According to Aritomi et al. [121], natural circulation oscillations occur during an increasing heat
supply, when geysering is suppressed. This in-phase instability is induced by fluctuations of the
hydrostatic head in an adiabatic long channel and disappears with a further increasing heat supply
and vaporization rate.
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3.3. Experiments

The experimental investigations provide the basis for the evaluation of the analytical
investigations with respect to the modeling. The following section gives a brief overview of the
experimental investigations of natural circulation loops concerning two-phase flow instabilities.

Wallis and Heasley [6], the most cited publication, investigated the oscillatory behavior in a
natural circulation loop experimentally (cf. Figure 15) and numerically. They discovered DWOj and
DWOy; during their natural circulation loop operated with pentane.
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Figure 15. Sketch of the natural circulation test facility of Wallis and Heasley [6].

Dijkman et al. [122] investigated the stability of a water operated natural and forced circulation
system in 1967. The transfer functions have been measured for the investigation of the stability at
steady state conditions. The heated section is electrically heated. The system pressure was varied
between 2, 14.7 and 30.4 bar and the power supply was adjusted up to the burnout. The estimated low
frequencies of about 0.9 Hz suggest the occurrence of DWOy;.

A vast parameter analysis was published by Mathisen [123], who varied the system pressure,
inlet and outlet restriction of a single and parallel boiling channel. Mathisen concluded, that the
increase of the system pressure, the initial inlet restriction in the separate channels and the ratio of
the effective head to the riser length have definitely stabilizing effect regarding the onset of Ledinegg
phenomenon. The best performance was observed at minimum subcooling and minimum main flow
restriction with parallel boiling channels.

The classification of DWO according to Fukuda and Kobori [105] is based on their experimental
investigations. The results were published in [110]. They observed DWOy, where the gravitational
factor is the governing factor, and DWOy, where the frictional pressure drop is dominant. It was also
shown that the PDO is included in the DWO;.

Schuster investigated the transient behavior of a two-phase natural circulation, which occurs in
the test facility DANTON. This test facility represented the axial main dimension of the soviet nuclear
district heating station AST-500 in scale 1:1. The start-up was performed in 1985 with respect to the
investigation of the thermal hydraulic behavior [113].

In 2000, Schuster et al. [124] stated that the passing through an unstable two-phase region to
reach a stable two-phase flow is unavoidable without external pressurizing. During the start-up three
types of instabilities are observed: flashing, geysering and DWOy;. The main results generally agreed
with [96,125]. The study of the start-up procedure was not relevant for the future because the AST-500
is not pursued anymore. But the detailed study of the flashing phenomenon published in [112-114]
was not yet been done before. The observed flashing at a low pressure near ambient conditions and a
low heat flux density induced oscillations with frequencies lower than 0.5 Hz.
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Figure 16 shows results of the simplified model, which bases on the steady-state equations of
energy, momentum and mass. This dependence agrees with the experimental results qualitatively.
The riser inlet subcooling has a greater influence on the flashing onset than the riser inlet temperature.

N
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w
T

(]
T

riser high Ly /m —

1 K riser inlet subcooling

[

0
100 120 140 160 180

inlet temperature ¢¥/°C —

Figure 16. Onset of flashing depending on the riser inlet temperature and subcooling [114].

It was shown that this phenomenon has been taken into account for a sufficient start-up procedure
and an effective reactor configuration in natural circulation BWR. A detailed discussion of a natural
circulation BWR is introduced, inter alia, by Aritomi et al. [96,121]. The experimental investigation of a
natural circulation boiling process is carried out in a single vertical boiling channel [96] and parallel
boiling channels [121] under the atmospheric pressure. Based on the low-pressure natural circulation
experiments in [121] at a heat flux density up to 800 kW /m? in a 1 m long heated section, Aritomi et al.
estimated three types of two-phase flow instabilities. With an increasing heat flux density, the natural
circulation rate is increasing and the geysering is initiated. When the inlet velocity enhances due to an
increasing heat flux, the geysering is superseded by a so-called natural circulation oscillation induced
by the hydrostatic head fluctuation (cf. Figure 17). The density wave oscillations are following them.
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Figure 17. Stable flow map of a low pressure natural circulation loop with two parallel boiling channels
by Aritomi et al. [121].
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At a high subcooling (N, = 156) and a low power (Np, = 16), a chaotic behavior of the low
pressure natural circulation loop was detected by Wu et al. [126]. This results are nearly compliant
with [124].

A further natural circulation nuclear reactor is developed by the Institute of Nuclear Energy and
Technology (INET) and is in operation since 1989. This 5 MW nuclear heating reactor (NHR-5) operates
at system pressure of 15 bar. Jiang et al. [127] investigated the start-up at HRTL-5, which represented
the geometric and the system design of NHR-5, experimentally in 1995. They observed geysering,
flashing (at a pressure lower than 3 bar) and DWO; during the start-up and proposed a stable start-up
procedure. The intense research on the physics of the static and dynamic behavior of the natural
circulation operating Dodewaard reactor is published by [106,128-130]. Table 3 shows a brief overview
of the experimental investigations in the test facilities with respect to the two-phase flow instabilities
in BWR’s.

Large integral test facilities such as INKA, PANDA, PUMA and KATHY were established to
observe various feedback effects and boundary conditions, which are realistic in BWRs.

The results of the experimental investigations contain the following main statements to stabilized
the two-phase flow in general, which are also summarized by [78]:

¢ Increasing the single-phase flow pressure drop in the heated section
¢ Increasing the system pressure
¢ Decreasing the inlet subcooling

Table 3. Experimental investigation on natural circulation test facilities.

Test Geometric Characteristics Operational Authors and Findings
Facility Conditions
Dodewaard Small BWR, 1.79 m fuel length, 164 fuel =~ 183 MW thermal power, Kleiss [128],
bundles high pressure (7.5 MPa), Stekelenburg [129],
17.7 kW/m van Bragt [106], van der
Hagen [130]: DWOy, DWOy;
DANTON  Vertical 3 m electrically heated section, =~ Low pressure Schuster [113], variation of
5.4 m adiabatic section (<2.5 MPa) inlet flow resistance, flashing
SIRIUS-N  Vertical 1.7 m (2 channel) electrically Low pressure (0.1 MPa  Inada et al. [131], Furuya et al.
heated section, 5.7 m chimney section to 0.5 MPa) [5]
HRTL-5 0.58 m heated section height, 3 m riser Pressure <2 MPa, Jiang et al. [127]: geysering,
length 0.6 MW /m? power flashing, DWOy
DESIRE Scaled model of the Dodewaard natural ~ High pressure (because Kok [132], Zboray [133],
(formerly  circulation reactor. Freon-12 used as of scaling with Furuya et al. [115]: DWOy;,
SIDAS) scaled liquid for 75 bar and 1.12 MW Freon-12), 1.6 kW per supercritical Hopf bifurcation
BWR, 35 electrically heated rods, rod, 8 bar to 13 bar at the threshold of linear
830 mm fuel length, riser length 1.1 m to stability analysis,
19m periodic-doubling bifurcation
PANDA Large scale thermal hydraulic test 1.5 MW, Low pressure ~ Auban et al. [4], Paladino et al.
facility for containment investigation, <10 bar [134], Paladino and Dreier
1.3 m electrically heated section, 9.5 m [135]: flashing, no limit-cycle
riser length oscillations
PUMA Design to simulate transient behavior of =~ Low pressure 1.03 MPa  Kuran et al. [136]: flashing
LOCA for parallel electrically heated
channels
CIRCUS Full-height scaled loop of Dodewaard, Low pressure (1 bar to ~ Manera [116], Manera and van
channels made of glass, 4 electrically 5bar), 0 kW to 3 kW der Hagen [117], Marcel [97]:
heated fuel rods, 4 separate bypass per rod flashing, DWOy
channels, 3 m riser, fuel length 1.95 m
PCL Based on BWR such as Indian AHWR, Pressure <20 bar, Jain et al. [137]: DWOj and
four parallel electrically heated channels 200 kW (50 kW per DWOy;, PCI
with 0.8 m length, 2.8 m vertical riser channel)
GENEVA Inclined 4 m (14 channel) steam heated Low pressure (1 atmat  Cloppenborg et al. [98,99,138]:

section, vertical 6.5 m adiabatic section

the top)

variation of number of
channels, geysering, flashing
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3.4. Numerical Investigations

The boiling of a fluid flow within a channel is characterized by a two-phase flow and the resulting
disequilibrium. The various spatial and time-dependent distributions of the state variables in the vapor
and liquid effects stochastic interactions at the phase boundary interfaces. The analytic formulations
of the complete complex system require a spatial averaging as a simplification due to their large
computational effort. With averaging the state variables for an one-dimensional flow in general,
three conservation equations (mass, momentum and energy) for each phase exist. The complexity
increases at the transition from a mixture to multi component model. Mixture models are developed
for describing a two-phase flow (liquid and vapor) within a defined validation range and assumptions
as a pseudo-single phase fluid.

The first most famous cited lucid treatment of the natural circulation instabilities was presented by
Wallis and Heasley [6]. They studied the effect of the inlet throttling of the two-phase flow instabilities
and concluded that the increasing single-phase pressure drop stabilized the system. A linear stability
analysis using a homogenous equilibrium model based on a lumped parameter system was carried out
by Zuber [139]. He has given the first introduction of the drift velocities and finally the first approach
of the drift-flux mixture model. For example, he discovered that the gravity terms in the single-phase
heated section are damping, whereas the gravity terms in the two-phase section are driving terms [125].

Beside the classic method of linear frequency-domain stability analysis, which has been used to
study density wave oscillations in [7], the nonlinear stability analysis has attracted considerable interest
since 1990s. The nonlinear analysis was used at first by Achard et al. [109], Uddin and Dorning [140]
and Clausse and Lahey [141]. The nonlinear effects of two-phase flow dynamics have also been
investigated by Pinheiro Rosa and Podowski [142]. The observed results strongly depend on the
numerical approaches and the applied spatial discretization, especially for the operating conditions in
the linear unstable regions. Pinheiro et al. compared the effects of perturbation on various two-phase
flow approaches: the homogenous equilibrium model and two different models of subcooled boiling,
which seems to be a significant stable criterion. Furthermore, the results show, that the HEM agrees
well with the experimental data at a low subcooling number and phase change number, whereas
the drift flux model approximates more exactly at a higher subcooling number and phase change
number [142]. Dokhane [143] concluded that the influence of subcooled boiling on the dynamic
behavior is sensitive at a low subcooling.

Table 4 represents a brief overview of numerical investigations of two-phase flow instabilities
in boiling channels or of a whole BWR system. The nonlinear effect was investigated in detail
by application of various techniques of model order reduction, especially with the respect to the
bifurcation theory. This theory is explained in detail by Hassard et al. [144]. The advanced BWR-ROM
of Lange et al. [145] and the application of the nonlinear stability analysis shows a good agreement
with the oscillatory behavior of several operating points of the Swiss nuclear power plant in Leibstadt.
But the application of the weighted residual method of DFM based on a two-phase model requires a
high computational effort. In contrast, the proper orthogonal decomposition (cf. Prill [146]) offers the
opportunity to obtain the ROM based on a set of data time series and provides the best approximation.

Table 4. Numerical investigation of two-phase flow instabilities.

Author Stability Anaylsis Two-Phase Notes
Model
Zuber [139] Linear HEM Discussion of the influence of the relative velocity,
prediction of flow excursion, stability analysis in time
domain
Ishii [7] Linear by Mikhailov =~ DEM Evaluation with experimental data

criterion (kind of
Niquist)
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Table 4. Cont.

Author

Stability Anaylsis

Two-Phase
Model

Notes

Achard et al.
[147]

Achard et al.
[109]

Uddin and
Dorning [140]

Clausse and
Lahey [141]

Inada et al.
[111]
Karve et al.
[150]

van Bragt et al.

[151]

Dokhane
[143]

Zhou [154]

Lange [155]

Ruspini [104]

Prill [146]

Linear, D-Partition
method

Linear and nonlinear

Linear and nonlinear

Nonlinear

Linear

Linear and nonlinear

Linear

Linear and nonlinear

Linear and nonlinear

Linear and nonlinear

Linear

Linear and nonlinear

HEM

HEM

HEM +
DFM

HEM

DFM

HEM

HEM

DFM

HEM

DFM

HEM

HEM

Simplification of the model with subject of parallel
channels, Prediction of the excursive instability for a
zero-frequency limit

¢ Indication of cycle limit

supercritical case .
¢ Prediction of excursive instability boundary
¢ Lumped parameter model of pressure drop by

momentum equation
¢ Marginal stability boundary obtained by transfer
function, compared with Ishiis simplified

stability criterion [7] and Saha and Zuber [148]
¢ Evaluated with experimental data (DFM agree

better than HEM)
Supercritical Hopf bifurcation

Galerkin nodal approximation method
Supercritical Hopf bifurcation was found
Periodic limit cycle and aperiodic chaotic

response
e Evaluated with experimental results by
Furuya et al. [149] and Inada et al. [131]
Model order reduction by weighted residual for enthalpy,
eigenfunction expansion method/variational method for
heat conduction
¢ Extension of the thermal hydraulic model used

by Clausse and Lahey [141] with point kinetics
e Simplified dynamical system of BWR with

nonlinear ODEs
e Evaluated with experimental

Dodewaard
¢ Non-linear effects were blended out
e Inada model extended in time domain,

linearized energy balance for simple differential
equation

Complete BWR reduced order model:

* Model order reduction by weighted residual

method and modification of Karve [152]
¢ Evaluation with experimental results of

Saha et al. 1531] in good agreement
* Subcooled boiling important for low values of

inlet subcooling
¢ Sub- and supercritical Hopf bifurcation

Reduced order model for the natural circulation and the
forced circulation BWR
* Low pressure and high pressure systems are

modeled
¢ Evaluation with the experimental data of

SIRTUS-facility [111] and Dodewaard reactor
[106] with nuclear coupling
BWR reduced order model with nuclear coupling
* Approach of Dokhane [143] extended with recirculation

loop model and model feedback reactivity coefficients
* Model order reduction with the weighted residual

method
Numerical and experimental investigation of Ledinegg,
PDO and DWO
¢ Least squares spectral method is used
Reduced order modeling by application of proper
orthogonal decomposition
¢ Evaluated with the experimental results of
Solberg [156]

oscillations in

results of
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Table 4. Cont.

Author Stability Anaylsis Two-Phase Notes
Model
Paul and Linear and nonlinear =~ DFM Nodalized reduced order model using weighted residual
Singh [157] procedure for forced and natural circulation system,
DWO;, DWOy

¢ Comparison with experimental data from

Kumar et al. [158]
¢ Stability maps (plotted in parameter space of

phase change number and subcooling number)
of the variation of the riser length, in-/outlet
flow resistance and downcomer level

Pandey and Nonlinear DFM Based on the verified model of Paul and Singh [157]
Singh [159] * Model order reduction by weighted residual
method
¢ Comparison with experimental data given
in [148]

¢ Theoretical explanation of DWO and Ledinegg
and application of bifurcation analysis
¢ Ledinegg identified as saddle-nodeé bifurcation,

DWO identified as Hopf bifurcation
¢ Interaction between Ledinegg and DWO

In 2017, Pandey and Singh [159] published the results of the nonlinear stability analysis
of a high pressure natural circulation loop based on previous verified and developed ROM
by Paul and Singh [157]. The formulated two-phase region is based on the drift-flux mixture model.
The approaches are comparable with those of [150], whereupon they use a linear approximation for
the single phase density. Super- and subcritical bifurcation were detected at certain design parameters,
especially when DWO;j and DWOy; stability boundaries diverged from each other [157].

In Figure 18, the DWO are represented by a Hopf bifurcation and the Ledinegg instabilities are
characterized by a saddle-node bifurcation [159]. At low-pressure conditions, the pressure dependency
of the saturation condition is pronounced (cf. Figure 14b). Zhou introduced a linear approximation of
the saturation enthalpy as function of the pressure in the single-phase region [154]. But his two-phase
region considered a homogeneous mixture model. This aspect and the high sensitivity of the saturation
condition are the keynotes for a realistic formulation of a ROM and finally the application of nonlinear
stability analysis.

20 T Neutral Saddle Hopf <
=0. Saddle Node Bifurcation: Limit Points
=1.0

Excursive Instability Regions

15 Region IIT |

BT
, Region II

Subcritical Hopf
Type IDWO
_—yrSubcritical Hopf

Stable Region

GH

Reglon I Type Il DWO -

> Supercritical Hopf
GH,
GH, S Subritical Hopf

Supercritical Hopf, T

0 5 10 15 20

Npch

Unstable Region

Figure 18. Stability map plotted in parameter plane of phase change number and subcooling number
resulting of the nonlinear stability analysis of a high pressure natural circulation system at 70 bar,
a riser length of 0.8, a downcomer level of 1.6, an inlet flow resistance of 2 and an exit flow resistance of
3 Pandey and Singh [159].
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4. Conclusions

The KERENA™ concept pursues the strategy to simplify the systems, to achieve a higher
reliability and a higher safety standard by the application of passive safety system for shutdown and
decay heat removal. The simulation of these systems by integral codes, however, shows potential for
further development, since the current empirical correlations for the heat transfer at the occurring low
mass flows are not reliable. The purpose of this paper (part I and part II) is to summarize and discuss
these existing empirical correlations to the relevant thermal hydraulic processes in the emergency
condenser (EC) and the containment cooling condenser (CCC). These relevant thermal hydraulic
processes can be categorized as: steam condensation inside incline tubes (EC), steam condensation
on inclined tubes (CCC), boiling on inclined tubes (EC), boiling inside inclined tubes (CCC) and the
natural circulation as a driving force. The first part covers the first three topics [1]. This article is
the continuation of the first part with a focus on the boiling process inside inclined tubes and the
two-phase instabilities in natural circulation systems. The correlations of the heat transfer implemented
in the one-dimensional integral codes ATHLET, RELAP and TRACE are introduced and discussed.
Several experimental investigations and the used test facilities are described and summarized, which
have formed the base for the formulation of the heat transfer correlation in this special case of
low mass flux. In addition, an overview is given to already performed simulations using CFD.
Furthermore the scientific work on analytical and experimental investigations of the two-phase
instabilities is summarized.
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Abbreviations

AHWR Advanced heavy water reactor
AST-500 Soviet small nuclear reactor for district heating station, 500 MW thermal power
ATHLET  Analysis of thermal-hydraulics of leaks and transients

BWR Boiling water reactor
CFD Computational fluid dynamic
CHF Critical heat flux

CIRCUS Circulation during start-up, Delft University of Technology, Netherlands

DANTON Dresdner Anlage fiir Naturumlauf mit teilweiser originaler Nachbildung, Technische
Universitdt Dresden, Germany

DESIRE Delft simulated reactor, Delft University of Technology, Netherlands

DFM Drift-flux mixture

DWO Density wave oscillation

GENEVA Generische Einschleifen-Naturumlauf-Versuchsanlage, Technische Universitit Dresden,
Germany

GF Ghost fluid

GRS Gesellschaft fiir Anlagen und Reaktorsicherheit

HEM Homogeneous equilibrium mixture model
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HRTL-5 Heating reactor test loop with a thermal power of about 5 MW, Tsinghua University, Beijing,
China

INKA Intgral Teststand Karlstein, AREVA, Karlstein, Germany

KATHY Karlstein thermal hydraulic test loop, AREVA, Karlstein, Germany

LB Lattice Boltzmann

LOCA loss of coolant accidents

NHR-5 5 MW nuclear heating reactor, Institute of Nuclear Energy and Technology, Tsinghua University,
Beijing, China

PANDA Large scale, thermal-hydraulics test facility, Paul Scherrer Institute (PSI), Villigen, Switzerland

PCI Parallel channel instabilities

PCL Parallel channel loop, Bhabha atomic research centre, Trombay, Mumbai, India

PDO Pressure drop oscillation

PUMA Purdue university multi-dimensional integral test assembly, USA

PWR Pressure water reactor

RELAP Reactor excursion and leak analysis program

ROM Reduced order model

SBLOCA Small break loss of coolant accidents

SBWR Simplified boiling water reactor

SIRIUS-N Simulated reactivity feedback implemented into thermal-hydraulic stability for natural
circulation BWR

TRACE TRAC/RELAP Advanced computational engine

VoF Volume-of-fluid

VOSET Volume of fluid level set

Nomenclature

A1r Wall fraction cooled by single-phase convection

Aop Wall fraction cooled by quenching

c Relaxation factor

p Isobar specific heat capacity [J/ (kgK)]
d Droplet diameter [m]

D Hydraulic diameter [m]

f Fanning friction factor

F Reynolds number factor

Fo Fourier number

g Gravitational constant [9.81 m/s?]

G Mass flux [kg/(m?s)]

Gr Grashof number

h Heat transfer coefficient [W/ (m?K)]
i Enthalpy [k]/kg]

Ja Jacob number

K Constant

L Length [m]

Is Capillary length [m]

M Vertical stratification and mixture level tracking models multiplier
1 Mass flow [kg/s]

Mg Void fraction factor

N Exponent

i Normal vector to the surface

Npch Phase change number

Nsub Subcooling number

Nu Nusselt number

p Pressure [Pa]

Pr Prandtl number

q Heat flow [W]

q" Heat flux [kW/m?]

q" Volumetric heat generation rate [kW /m?]

R Radiation terms
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Re Reynolds number

S Boiling suppression factor

T Temperature [K]

u Averaged flow velocity at phase boundary [m/s]

x Steam mass quality

Y Constant

Aij, Latent heat of evaporation [k]J/kg]

Greek

o Volume fraction

0% Inclination angle /grad

1) Vapor film thickness

0% Non-dimensional vapor film thickness

€ One dimensional delta function of normal coordinate n

A Thermal conductivity [W/(mK)]

U Dynamic viscosity [kg/(ms)]

0 Density [kg/m3]

o Surface tension [N/m)]

Thd Boiling delay time [s]

€ Emissivity

Indices

b Bubble

CHF Critical heat flux

E Evaporation

ext External

F Convection

int Internal

1 Liquid

mac Macroscopic

mic Microscopic

Q Quenching

rel Relative

sat Saturation

tar Target

tot Total

TP Two-phase

v Vapor

w Wall
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