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Abstract: Proper planning of the installation of Battery Energy Storage Systems (BESSs) in distribution
networks is needed to maximize the overall technical and economic benefits. The limited lifetime and
relatively high cost of BESSs require appropriate decisions on their installation and deployment, in
order to make the best investment. This paper proposes a comprehensive method to fully support the
BESS location and sizing in a low-voltage (LV) network, taking into account the characteristics of
the local generation and demand connected at the network nodes, and the time-variable generation
and demand patterns. The proposed procedure aims to improve the overall network conditions, by
considering both technical and economic aspects. An original approach is presented to consider both
the planning and scheduling of BESSs in an LV system. This approach combines the properties of
metaheuristics for BESS sizing and placement with a greedy algorithm to find viable BESS scheduling
in a relatively short time considering a specified time horizon, and the application of decision theory
concepts to obtain the final solution. The decision theory considers various scenarios with variable
energy prices, the diffusion of local renewable generation, evolution of the local demand with the
integration of electric vehicles, and a number of planning alternatives selected as the solutions with
top-ranked objective functions of the operational schedules in the given scenarios. The proposed
approach can be applied to energy communities where the local system operator only manages the
portion of the electrical grid of the community and is responsible for providing secure and affordable
electricity to its consumers.

Keywords: distribution system; batteries; storage; planning; scheduling; decision theory

1. Introduction

The progress of technologies concerning different types of batteries and their control systems,
together with the evolution of a regulatory framework in which energy storage is considered more
explicitly, are making Battery Energy Storage Systems (BESSs) progressively more cost-effective for
energy system applications. A BESS is specified by its power rating and energy capacity. Both of these
specifications impact the BESS investment cost and need to be defined separately [1]. Typical BESS
applications for power and energy systems include improvement of the quality of service, assistance
with primary and secondary frequency control to enhance network stability, the smoothing of power
fluctuations in the generation profiles for better integration of Renewable Energy Sources (RES), and
the promotion of higher users’ participation in demand management through time-shifting of the
energy usage [2]. Most BESS applications in electrical networks refer to times of 1–2 h and to BESS
sizes smaller than 50 kW. However, the number of applications for longer times (e.g., 2–5 h) and sizes
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up to 500 kW is already significant, and applications for bigger sizes (also in the range 1–10 MW)
are increasing.

In the transmission system, the positive impacts of BESSs for providing a fast response to frequency
deviations [3], mitigating under-frequency transients [4], and being exploited for energy arbitrage [5]
have been observed. The integration of BESSs with appropriate control strategies has been shown
to be able to improve the frequency stability [6]. At the distribution system level, a BESS is mainly
used for enhancing the grid integration of RES by mitigating the effects of the uncertainty on load
and distributed generation [7,8], improving the distribution system reliability by avoiding operations
close to the line thermal limits and thus more exposed to the risk of protection trips [9], enhancing
the quality of the supply with relatively high-power and low-energy solutions [10], reducing the
need for grid expansion, shaving the power demand peaks through load shifting or load leveling [9],
optimizing the energy transaction costs [11], and integrating BESSs with the demand response in
microgrid applications [12]. In [13], a distinction is made between a centralized BESS (that participates
in reducing the demand deviation, avoiding the reverse power flow and correcting the power factor),
and a distributed BESS (that aims at annual energy loss reduction, reduction of the demand deviation,
and improvement of the voltage profile).

A key challenge is to determine the power rating, energy capacity, and location of BESSs in the
distribution network. A number of contributions have been published on the siting and sizing of
BESSs. Different objectives, such as peak shaving, voltage regulation, and reduction of the energy
not supplied, are combined in [14] in an optimal power flow-based approach. In [15], reliability
improvement, together with peak shaving, is considered as an objective. The review [16] presents
a categorization of the methods used to determine the BESS siting and sizing, in which four main
groups are identified (analytical methods, exhaustive search, mathematical programming, and heuristic
methods). Decision-making tools are also applied. For example, in [17], the optimal BESS sizing and
siting is identified in a microgrid with RES taking into account demand and generation uncertainty by
using decision theory criteria. In [18], hybrid energy storage systems, including BESSs, are addressed,
by determining the energy storage capacity in distribution systems through an assessment of the risk
tolerance of the investors. The results of BESS installations in terms of providing different services at
different voltage levels are reported in [19].

A specific aspect generally not highlighted in the reviews on BESS siting and sizing is the
distinction between applications for Medium Voltage (MV) and Low Voltage (LV) systems. The
literature contributions mainly refer to Medium Voltage (MV) distribution systems. However, the
formulation of a planning problem referring to the installation of BESSs in LV systems has various
differences with respect to what happens in MV systems. First of all, in MV systems, the study can
be conducted by assigning growth in the local generation and demand aggregated at the MV node
level. In this case, it is possible to mix up the contributions from different energy sources at the LV
level, without looking at the details of the individual sources. Additionally, the uncertainty that
characterizes the local generation is seen with respect to the aggregation of the generations, typically
taking into account possible correlations between the generation patterns due to external variables
(e.g., solar irradiance and temperature for photovoltaic systems). Then, it is possible to exploit the
smoothing effect due to the aggregation of a number of individual demands, define typical patterns for
the aggregated demand, and associate these typical patterns to predefined evolutions in time.

Conversely, for an LV system, the level of aggregation of demand and local generation is much
lower, and many more critical aspects appear. In particular, the local characteristics of the generation
and demand at each LV node have to be considered individually. The uncertainties of local generation
and demand increase as the smoothing effect of the aggregations is reduced. The setting up of scenarios
of development of the local generation cannot proceed with a generic aggregated effect at each LV node,
but has to take into account where there are different types of local generation and what reasonable
increment can be established for that type of generation. Some relevant differences between MV and
LV systems are summarized in Table 1.
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Table 1. Summary of relevant differences between Medium Voltage (MV) and Low Voltage (LV) systems.

Characteristics MV Grid LV Grid Consequences

Structure Weakly meshed Radial

LV grid cannot be reconfigured, thus the
proper network operation has to be

guaranteed thanks to the devices
connected to the grid

Load Balanced Unbalanced In the LV grid, it is advisable to apply
three-phase load flow

Branch R≈X R>>X

In the LV grid, the voltage drop is
strictly correlated to the active power,

and voltage control can thus be
effectively conducted by modifying the

net nodal active power

Load profile Aggregate Not aggregate

LV grid represents the last mile of the
grid and supplies the customer. A more

detailed representation of loads and
generation profiles is then necessary

and the aggregation impact is less
evident than in MV grids

To achieve the best BESS performance and to maximize the overall benefits, proper planning is
necessary. For instance, in [20], several configurations of BESSs are compared and the overall network
impact is evaluated and compared for different placements of BESSs in the network. In the relevant
literature, there are some contributions related to the optimal planning (sizing and placement) of
energy storage systems in LV distribution networks. The method applied in [21] aims to optimally
configure the energy storage systems to alleviate over- and under-voltage problems. The problem of
the optimal location is solved by a heuristic method based on voltage sensitivity analysis. Uncertainties
due to stochastic generation and demand are also considered in the optimal sizing and the worst-case
approach is applied to select the sizes.

Some contributions refer to LV distribution networks characterized by a high penetration of
photovoltaic generation, and consider the possibility of alleviating the negative impacts by the
installation of storage systems. In [22], a heuristic method is applied to determine the optimal location
and sizing of storage systems and the objective to be minimized is a cost function accounting for the
cost of storage systems and the cost due to voltage deviations. The optimal planning of BESSs proposed
in [23] aims at maximizing an objective function that includes both benefits and costs (i.e., energy
arbitrage, environmental emission, energy losses, transmission access fee, capital, and maintenance
costs of a BESS). Daily charge/discharge of the storage systems is also determined considering a proper
model of the BESS operation. In [24], the authors propose a procedure for the optimal placement and
sizing of distributed energy storage systems in low voltage distribution systems aimed at maximizing
the utilization of photovoltaic plants and minimizing the battery degradation. The multi-objective
optimization problem proposed by [25] is focused, from one side, on the minimization of energy losses
and, from the other side, on the minimization of costs associated with distributed generators and energy
storage systems. A distribution system with a high penetration of photovoltaics generators is considered
in [26]. A heuristic procedure for reducing the search space for the location of storage systems in a
low voltage microgrid is proposed in [27], where analytical considerations on the voltage sensitivity,
voltage unbalances, and line loading drive are included in the selection of candidate locations.

This paper proposes an overall procedure to address the BESS location and sizing in an LV
network, taking into account the characteristics of the local generation and demand connected at the
LV nodes and the time-variable generation and demand patterns. The proposed procedure aims to
improve the overall network conditions by considering both technical and economic aspects. This
condition aims to represent the conditions that could be found in the case of energy communities
where the local system operator only manages the electrical grid of the community and is responsible
for guaranteeing secure and affordable electricity for its consumers.
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An original algorithm is presented to consider both the planning and scheduling of BESSs in an LV
system. This algorithm combines the properties of metaheuristics (to explore the solution space as much
as possible), and a greedy algorithm able to find viable BESS scheduling in a relatively short period
of time, considering a specified time horizon. The final solution is obtained by using a multi-criteria
decision making (MCDM) approach based on the application of decision theory concepts [28] to a
number of selected planning alternatives evaluated for different weighted scenarios. Decision theory
is an appropriate tool for dealing with cases in which the uncertainty on possible future situations is
very large and is handled through scenario analysis.

The next sections of this paper are organized as follows. Section 2 describes the details of the
methodology used to address the planning problem. Section 3 presents the application to an LV
distribution system and discusses the results. The last section contains the concluding remarks.

2. Description of the Methodology

The BESS location and sizing is analysed as a planning problem seen from the point of view of
the electricity manager of an energy community, which is responsible for guaranteeing secure and
affordable electricity for its customers at a minimum cost, as well as for both the infrastructure and
quality of the service.

2.1. Data Resolution and Reference Period

The data used are assumed to have a constant time resolution ∆t. A reference period of duration
Tref is assumed, in which the operation of the LV distribution system is analysed in detail by considering
the generation and demand patterns and a specific model for BESS scheduling. The planning problem
is set up for a time horizon multiple of Tref, namely, with an overall duration of TH = NH × Tref,
where NH > 1 is an integer number. It is assumed that the BESSs that will be chosen by the proposed
procedure will be installed at the beginning of the time period of analysis. The planning time horizon
chosen is longer than the lifetime of the BESS, in order to include the replacement of the BESS during
the planning period.

2.2. Definition of the Scenarios

The electricity prices, diffusion of the local generation, and diffusion of electric vehicles have been
assumed to be uncertain data inputs that affect the solution of the planning problem. Several methods
can be applied to handle uncertain variables; in this proposal, several scenarios will be identified to
represent different instances.

Starting from the results determined for the reference period, a number of scenarios are constructed
to represent possible paths of evolution of selected quantities that affect the LV network operation. The
scenarios are defined by taking into account the long-term changes in time that may appear in the
following quantities:

(a) Electricity prices: the consumers or prosumers connected to the LV system are considered as price
takers, namely, they do not participate in the definition of energy prices in the wholesale electricity
market. MP trends of variation of the electricity prices are established by the user by considering
the final increase (or decrease) of the electricity price at the end of the planning time horizon;

(b) Diffusion of the local generation: the distributed generation (DG) connected to the LV network can
change at selected locations in different ways. For LV systems, it is likely that more prosumers
will install their local generation systems at locations where there is no local production. From
the point of view of the scenario definition, MDG trends of variation of the local generation are
considered, and each one is defined by assuming a rate of increase of the energy production from
local generation (not of the power installed);
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(c) Diffusion of electric vehicles: in the present situation, the diffusion of EVs is still relatively limited
in many jurisdictions. The number of EVs will increase in the future, and different hypotheses
about their number can be represented by MEV trends.

Under the hypotheses provided for the scenarios, the number of scenarios considered is equal to
M = MP ×MDG ×MEV.

The scenarios obtained are applied to calculate the objective function for the planning problem
(Section 2.4), and are weighted in order to be used in the decision-based approach illustrated in
Section 2.6.

2.3. Definition of the Sizing Alternatives

Due to the particular use of the BESS, which includes load leveling, the indication of [29] to use
the energy to power ratio equal to 2 is followed. In this way, data are described in terms of their energy
capacity, and the power rating is then directly linked to the energy capacity through the energy to
power ratio.

In the distribution network, there are K nodes, but it is assumed that a user-defined number KBESS

< K of nodes is taken into account for possible BESS location. A maximum value for the BESS energy
capacity Ck,max is assigned to each node k = 1, . . . , KBESS, depending on the characteristics of the
node. The final BESS energy capacity to be assigned to each node will be determined by the proposed
approach in the range from zero to Ck,max at the nodes k = 1, . . . , KBESS. To avoid the use of continuous
variables, this range is partitioned into a given number Λ of BESS energy capacity levels. Without loss
of generality, the number Λ is chosen as a constant for all the nodes, that is, it is independent of k. In
this way, the total number of alternative combinations of BESS sizes is S = ΛKBESS . Even for relatively
small numbers of nodes and BESS energy capacity levels, the number of combinations S can become so
high that even their enumeration becomes intractable with an exhaustive search process. For example,
if KBESS = 20 nodes and Λ = 5 BESS energy capacity levels, the result is S = 520 = 9.54 × 1013. In this
situation, only parts of the combinations will be reached during the planning procedure, for instance,
that conducted by using a metaheuristic algorithm able to explore the solution space with a conceptual
direction of evolution towards the global optimum of the objective function employed in the definition
of the planning problem.

2.4. Definition of the Objective Functions

The solution of the power flow at each time step h = 1, . . . , H, together with the BESS operational
schedules, provide the data required to calculate the power flows and the LV network losses, and to
determine whether there is a reverse power flow with the power injected at the supply point. These
results are used as the contribution of the distribution system operation to the formulation of the
objective function for the planning problem.

The general objective function formulated for the planning problem is a penalized objective
function defined on the basis of the investment and operation and maintenance (O&M) costs, and of
penalty terms associated with violations of the voltage limits and with the presence of reverse power
flow to the MV distribution system. The expression of the objective function is constructed, starting
from a reference function fref and including some penalty terms to obtain the penalized objective
function fP:

fref = ∆cinv + cO&M (1)

fP = fref × (1 + πV + πR), (2)

where the addends have the following meaning:

• ∆cinv: investment costs for BESS purchasing and installation, determined by using the cost per
kWh, depending on the BESS energy capacity, and the cost per kW applied to the inverter for grid
connection of the BESS (depending on the BESS power rating) [29];
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• cO&M: operation and maintenance costs, calculated by considering the costs of network losses
(evaluated using the electricity prices), the BESS aging applied as a reduction of the maximum BESS
energy capacity [29], and the maintenance costs considered as a percent of the investment costs;

• πV: penalty term associated with the violation of the upper voltage limit Vmax or the lower voltage
limit Vmin, with a penalty coefficient ρV assigned by the user in such a way that the penalty
is significantly higher than the terms of fref, without being excessive (otherwise, only feasible
solutions would be accepted during the optimization problem, going against the goal of the
metaheuristics to open the search space by also accepting penalized cases):

πV =
K∑

k=1

H∑
h=1

ρVmax{Vkh −Vmax, Vmin −Vkh, 0}; (3)

• πR: penalty term associated with the total energy injected at the supply point in the cases of
reverse power flow from the low voltage to the medium voltage network that can impact the
voltage regulation, as well as the protection systems [30–32]:

πR =
H∑

h=1

ρRmax{−P0h, 0}∆t. (4)

2.5. Overall Calculation Procedure

The calculation procedure is composed of two main steps, as shown in Figure 1:

(1) Step A, essentially based on the exploitation of the features of a customized genetic algorithm, and
(2) Step B, where the calculation of potential scheduling for all batteries installed is suggested through

a greedy algorithm.

On the basis of the outputs of Step B, the objective function related to that particular set of BESSs
is evaluated.

First of all, all the input data are introduced: in particular, the code requires information about
the network data, number of nodes KBESS where the BESS can be installed, time horizon (through the
number of days Nd) analysed, time discretization (i.e., number of time steps per day Nt), and number of
chromosomes Nc for the genetic algorithm. Thanks to the above information, the procedure continues
with Step A (planning) and Step B (dispatching). After the calculation of the objective function at the
iteration nG for all the chromosomes, the convergence criterion is checked.

2.5.1. Step A

The initial population
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Figure 1. Scheme of the proposed procedure.

It is worth noting that according to the number of BESSs installed (indicated by gene 1), the number
of elements composing gene 2 and gene 3 will vary. This implies that a number of pre-defined rules are
needed to handle the genetic operators applied to the chromosomes, to make the creation of successive
generations possible.

1. Selection and Crossover
The selection process is based on the application of the biased roulette wheel.
Once the parents’ selection is made, the crossover may be applied according to the probability of

crossover pc.
The crossover follows some general rules:

• The number of batteries is inherited from the parent#1, and
• The crossover is only applied to the values contained in gene 2 and gene 3.
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Due to the particular codification used, some fixed rules have been used to apply crossover in the
presence of chromosomes with different characteristics. These rules are clarified with reference to the
chromosomes shown in Figure 2.
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Different cases do exist:

• If parent#1 = chr#1, the offspring will be that shown in Figure 3a (offspring#1), and
• If parent#1 = chr#2, the offspring will be that shown in Figure 3b (offspring#2). In this particular case,

the number of batteries imposed by parent#1 is higher than that available in parent#2. Therefore,
information regarding the remaining nodes and capacities is randomly picked up from a repository
containing all the nodes (and related capacities) referring to the current population (e.g., nodes
{15, 24} and capacities {5, 10} in offspring#2).
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Figure 3. Example of offpring when the parents have different lengths.

2. Mutation
As the crossover operator, the mutation is only applied to the contents of gene 2 and gene 3. This

operator is only applied when the value of a random number extracted from a uniform distribution is
lower than the probability of mutation pm. If the mutation is allowed, the values to be substituted are
picked up from the repository containing all the nodes and relative capacities of the current population.

2.5.2. Step B

During Step B, the procedure calculates the operation setpoints of all the installed batteries.
These setpoints are required to calculate the objective function related to the configuration (number
of batteries, their positions, and their capacities) specified in every chromosome comprising the
population in the generation nG. The flow chart related to Step B is shown in Figure 4.
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Figure 4. Flowchart related to Step B.

For every node k = 1, . . . ,K where the batteries are installed, the net load n(nG)

d,k ∈ R(Nt,1) is
calculated as the difference between the load and local generation. With this information, it is possible
to calculate the mean value of the nodal net load n(nG)

d,k ∈ R(1,1) and thus an indicative value of unbalance

of the net load with respect to its mean value, i.e., u(nG)

d,k ∈ R(Nt,1), calculated as

u(nG)

d,k =
∣∣∣∣n(nG)

d,k − n(nG)

d,k

∣∣∣∣, k = 1, . . . , K. (5)

The vector u(nG)

d,k , k = 1, . . . ,K, provides information regarding the time steps during which the use
of the battery system can be useful to level the net load.

On the basis of the value of u(nG)

d,k , the daily time steps are reordered in a descending way, by

obtaining the unbalance ranked vector r(nG)

d,k ∈ R(Nt,1) and the corresponding ranked index vector

ν
(nG)

d,k ∈ R(Nt,1): by knowing the time steps when the unbalance is higher, it is possible to apply the
scheduling algorithm by starting from the “most critical” time steps.

The pseudo-code of the scheduling algorithm is shown in Figure 5. Algorithm 1 tries to set the best
option for the current time instant, which is according to the order of solving, more critical with respect
to the next time instants, and pushes the battery constraint violations towards the lowest priority time
steps. First of all, the set-points for a single battery (collected in the vector called p(nG)

BESS) are instructed,

starting from the value of unbalance u(nG)

d,k . The feasibility of that desired pattern depends on the

maximum exploitable storage level of the battery and its maximum charging power, called P(−)
max, as

well as its maximum discharging power P(+)
max. According to the indices value collected in r(nG)

d,k , the
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algorithm starts from the most critical time step that is the first element of ν(nG)

d,k and sets the set-point
at that step by respecting the battery’s power constraint, as shown at line 5.
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Then, an auxiliary variable called I (that stands for integrator) is initialized at line 6 with the last
value of energy stored in the battery. Following this, the integration operation is executed to check
whether the energy constraint is respected or not. The parameter ω is defined as follows:

ω =

 0, p(nG)
BESS,t = NaN

1, else
.

Line 8 indicates that a temporary value for an integral operation equal to the maximum availability
state is considered at the time step t. The maximum availability state changes if either a charging or
discharging mode is considered: in the discharging mode, the state is the fully charged state, whereas, in
charging mode, the maximum availability state is the empty one.

Once the integration operator goes beyond the maximum and minimum state of charge (SoCmax

and SoCmin), a correction factor called C f resets p(nG)
BESS, j and breaks integration execution. This operation

is similarly carried out for the charging mode with corresponding signs.

2.6. Selection of the Planning Alternatives

For each scenario, the ranking of the solutions is made on the basis of the objective function (from
the best solutions to the worst ones), and the Z top-ranked solutions are selected. The rationale for
this selection is that there is no guarantee that the global optimum will be reached from the execution
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of the metaheuristic, so, taking more than one solution from the ranking, enhances the possibility of
having good candidates to compare with the MCDM approach.

The number of planning alternatives is then defined as A = M × Z, that is, with the Z top-ranked
solutions for each one of the M scenarios analysed.

Since each planning alternative a = 1, . . . ,A exhibits a different performance according to the
scenario, fP(a, m) is the value of the objective function fP defined in (2), evaluated for the alternative a
when the scenario m occurs. The objective function values are then arranged into a matrix with A rows
(planning alternatives) and M columns (scenarios).

The MCDM approach is based on the application of decision theory criteria to the A planning
alternatives by considering the M scenarios. In the framework of the decision theory concepts, several
criteria can be applied to select the optimal planning alternative, taking into account that each scenario
m has a probability of occurrence pm.

2.6.1. Criterion of Minimum Expected Cost

The criterion of the minimum expected cost attempts to minimize the costs [33]. The optimal
planning alternative a∗ec is the one that minimizes the expected cost EC:

a∗ec = arg min
a=1,...,A

{
EC(a)

}
, (6)

where the expected cost EC(a) for each alternative a = 1, . . . ,A is determined as

EC(a) =
M∑

m=1

pm fp(a, m). (7)

The assignment of the probabilities of occurrence is crucial; when the equal likelihood criterion is
adopted [34], each scenario has the same probability of occurrence.

2.6.2. Criterion of Minimax Weighted Regret

The criterion of minimax weighted regret attempts to minimize the regret corresponding to the
worst case [34]. For a given scenario m, it is possible to identify the best planning alternative as the one
corresponding to the lowest cost; if a planning alternative different from the optimal one is chosen,
a greater cost will be experienced and, therefore, the regret can be calculated. Let us consider the
scenario m, where the best planning alternative a∗m is

a∗m = arg min
a=1,...,A

{
fp(a, m)

}
(8)

and, when scenario m occurs and the alternative a different from a∗m is chosen, the regret can be
quantified as

R(a, m) = fp(a, m) − fp(a∗m, m). (9)

Considering the probability of occurrence of each scenario, the weighted regret Rw(a, m) is
determined as

Rw(a, m) = pm R(a, m). (10)

According to the criterion of minimax weighted regret, the optimal planning alternative a∗wr is the
one that minimizes the maximum weighted regret, that is,

a∗wr = arg min
a=1,...,A

{
max

m=1,...M
(Rw(a, m))

}
. (11)

As in the case of the criterion of Section 2.6.1, the equal likelihood criterion can be adopted [33].
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2.6.3. “Optimist” and “Pessimist”Criterion

When the “optimist” criterion is applied [28,31], for each planning alternative, the best value
of the costs (i.e., the minimum value) over the possible scenarios is selected and, then, the selected
planning alternative a∗opt is the one that minimizes the cost corresponding to the best possible outcome
for each scenario, that is,

a∗opt = arg min
a=1,...,A

{
min

m=1,...M
fp(a, m)

}
. (12)

Conversely, the “pessimist” criterion [28,31] attempts to minimize the worst outcome of the
planning alternatives. Therefore, the worst value of the costs (i.e., the maximum value) of each
alternative over the possible scenarios is selected and, then, the selected planning alternative a∗pes is the
one that minimizes the worst outcome, that is,

a∗pes = arg min
a=1,...,A

{
max

m=1,...M
fp(a, m)

}
. (13)

In addition, an “optimist”-“pessimist” criterion can be considered as a mixed approach. In this
case, both the worst and best outcome of each alternative are considered and these values are weighted
by a proper factor α ∈ [0, 1]:

a∗opt−pes = arg min
a=1,...,A

{
α min

m=1,...M
fp(a, m) + (1− α) max

m=1,...M
fp(a, m)

}
. (14)

When applying the “optimist”, the “pessimist”, and the “optimist”-“pessimist” criteria, the
decision does not depend on the probabilities of the scenarios.

3. Case Study Application and Results

3.1. Network Data

The application presented in this paper is based on a rural LV network with 22 nodes, including
the slack node (Figure 6). The network is radial and is supplied by the MV system through an MV/LV
transformer (not represented in the figure). The network contains mainly residential and agricultural
customers. The number of nodes considered for BESS installation is KBESS = 5. The BESS data are
shown in Table 3. For discretization of the BESS energy capacity, the number of levels used is Λ = 47,
with BESS energy capacities considered to lie in the range 3 ÷ 49 kWh, and the energy to power ratio is
equal to 2, as indicated in Section 2.3 [29]. The total number of alternative combinations of BESS sizes
is S = ΛKBESS = 475 = 2.29 × 108. Such a number is practically intractable with an exhaustive search
process. In this situation, the use of a metaheuristic algorithm to identify the solution of the planning
problem is justified.

Table 3. Battery Energy Storage System (BESS) capacity data.

Minimum Energy
Capacity (kWh)

Maximum Energy
Capacity (kWh) Discretization Steps Energy to Power Ratio

3 49 47 2
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Figure 6. Rural LV network.

3.2. Input Data

Without loss of generality, the reference period Tref is assumed to be one year, and the planning
time horizon is assumed to be 15 years (i.e., NH = 15).

The batteries chosen are Lithium Ion (type Nickel Manganese Cobalt): the cost used in this paper
is the one expected in 2020 and equal to 167 $/kWh, whereas the inverter cost is equal to 50 $/kW. The
operation and maintenance cost is equal to 1% of the investment cost per year. The BESS lifetime has
been considered to be equal to 13.4 years [29]. The BESS degradation has been modeled as a reduction
of the energy capacity of the battery, equal to 2.4% per year [35].

For execution of the genetic algorithm, the probability of crossover is imposed as pc = 0.75, and
the probability of mutation is set to pm = 0.05.

3.2.1. Loads

Regarding the calculation of the load profiles, it takes into account the real contractual delivery
powers of each load. Two nodes are considered as commercial consumers, while the other ones
refer to residential customers. For the profiles, due to a lack of complete information from the actual
profiles, relevant (residential and commercial) profiles have been taken from an open-source dataset
(OpenEI) [36], normalized and multiplied by the nominal powers.

3.2.2. PV Generation

The considered PV production, in the simulation, is calculated based on yearly solar irradiance
and the nominal installed power [37]. Yearly solar irradiance data was obtained through collected data
from a third party weather service provider [38] for the specific location of the case study with the
coordinates of 46.4746◦ N, 11.2479◦ E.

3.2.3. EV Relevant Information

EVs are considered in some scenarios, through the load profile caused by their charging. Within
this analysis, the number of EVs that determines the EV charging profile is set to 10 at the beginning of
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the scenarios with EV and that number gradually increases by the rate of one EV per year. The nominal
power of the EV chargers is considered to be 3.6 kW, i.e., a standard power level of charging stations,
and charging events mainly occur during the night.

3.2.4. Energy Price Evolution

Energy price evolutions increase and decrease linearly, with the granularity of one year along
entire scenario horizons.

3.3. Definition of the Scenarios

The scenarios are defined by assuming the following entries:

(a) Electricity prices: MP = 2 trends of variation are considered, namely, with a 50% increase and 20%
reduction of the prices in the planning time horizon of 20 years. Linear variations of the prices
are assumed during the years;

(b) Diffusion of the local generation: MDG = 2 trends of variation of the local generation are considered,
with a 20% and 50% increase of the energy production from local generation in the planning
time horizon of 20 years. Linear variations of the local generation diffusion are assumed during
the years;

(c) Diffusion of charging points for electric vehicles: MEV = 2 trends are assumed, in which (i) no parking
lot and no battery charging stations will be built, and (ii) one parking lot considering 10 active
(i.e., with an EV connected for charging purposes) charging points at node 13 is assumed, with
the increase rate of the number of active charging points of 1 per year.

3.4. Calculation of the Objective Function

The objective function has been evaluated for each planning alternative and scenario. The best
three solutions for each one of the eight scenarios have been calculated for all the scenarios to provide
the starting matrix to carry out the calculations based on decision theory. The number of alternatives is
then 24. Table 4 shows the objective function values: it is worth noting that, with respect to scenario
2, the values of the objective function for alternatives 3, 8, and 12 are 0.5135, 0.5136, and 0.5140,
respectively. Scenarios 5–8 (associated with a large deployment of EVs) exhibit higher values of the
objective function. Table 5 reports the technical data of the alternatives, including the number of BESSs
installed, the nodes where each BESS is located, and the BESS energy capacity at each node. The
solutions include one to three BESSs. Looking at the BESS locations, it can be seen that, in three cases,
the slack node is chosen to install a BESS. In this way, the BESS acts to limit the reverse power flows. In
the alternative number 23, node 8 is selected two times, because the energy capacity of the BESS in one
installation reaches the limits, and the procedure did not find a better alternative to place the BESS in
another node.
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Table 4. Values of the objective function for each planning alternative and for each scenario (×1012).
Values in bold indicate the best solution for each scenario.

Scenarios

Alternative 1 2 3 4 5 6 7 8

1 0.373 0.600 2.44 3.39 5.98 8.31 16.7 23.2
2 0.371 0.515 1.78 2.47 5.84 8.10 16.3 22.6
3 0.371 0.514 1.78 2.47 5.83 8.10 16.3 22.6
4 0.381 0.529 2.07 2.88 5.15 7.15 16.5 22.9
5 0.351 0.543 1.78 2.47 5.46 7.58 16.2 22.5
6 0.393 0.545 2.09 2.90 5.55 7.71 16.9 23.5
7 0.412 0.572 1.38 1.92 5.65 7.84 14.2 19.8
8 0.370 0.514 1.39 1.93 5.82 8.08 14.6 20.3
9 0.431 0.598 1.39 1.92 6.00 8.33 13.5 18.7
10 0.366 0.601 1.49 2.07 5.97 8.29 14.8 20.6
11 0.366 0.628 1.45 2.01 5.97 8.28 14.3 19.9
12 0.350 0.514 1.78 2.10 5.97 8.29 15.0 20.8
13 0.406 0.564 2.20 3.06 5.22 7.24 17.0 23.6
14 0.433 0.601 1.73 2.41 5.18 8.31 15.7 21.8
15 0.432 0.600 1.74 2.42 5.35 8.31 15.8 22.0
16 0.402 0.559 2.19 3.04 5.17 7.17 16.9 23.4
17 0.404 0.561 2.12 2.94 5.19 7.21 16.1 22.3
18 0.402 0.559 2.20 3.06 5.49 7.62 17.0 23.6
19 0.378 0.525 1.75 2.43 5.13 7.12 16.5 23.0
20 0.404 0.561 1.28 1.78 5.24 7.28 14.7 20.4
21 0.431 0.598 1.91 2.65 5.96 8.28 16.5 22.9
22 0.348 0.567 1.46 2.03 5.84 8.11 14.9 20.6
23 0.351 0.600 1.80 2.50 5.96 8.28 15.8 21.9
24 0.366 0.602 2.20 3.05 5.99 8.31 17.0 23.6

Table 5. Technical data of the planning alternatives.

Alternative Number of BESSs Nodes Energy Capacity (kWh)

1 1 14 21
2 2 0, 18 23, 49
3 2 15, 18 39, 49
4 2 10, 11 47, 12
5 2 18, 20 36, 40
6 2 20, 13 28, 11
7 3 14, 17, 10 21, 42, 9
8 2 11, 18 3, 47
9 3 7, 11, 17 34, 36, 19

10 2 9, 17 28, 40
11 2 17, 16 38, 21
12 2 8, 18 24, 34
13 1 10 29
14 1 19 38
15 1 19 21
16 3 10, 1, 8 36, 6, 18
17 2 10, 7 32, 28
18 2 10, 12 15, 43
19 2 13, 10 42, 16
20 2 10, 17 28, 45
21 3 17, 8, 0 12, 49, 16
22 3 13, 17, 8 13, 41, 20
23 3 8, 17, 8 16, 23, 49
24 3 9, 8, 0 15, 49, 28

3.5. Decision Theory-Based Assessment of the Planning Alternatives and Scenarios

Several cases have been considered, with different values of probability of occurrence assigned
to each scenario (Table 6). In Case 1, all scenarios have the same probability of occurrence and, then,
the equal likelihood criterion is considered. Cases 2 and 3 consider that it is more probable that the
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scenarios with higher and lower price increases will occur, respectively. Cases 4 and 5 are focused on
the deployment of EVs. In particular, in Case 4, the scenarios with the large deployment of EVs are
weighted more, while in Case 5, the scenarios with no deployment of EVs are weighted more. In Case
6, the probabilities are higher for scenarios with a higher price increase and higher PV installation.
Finally, Case 7 weights the scenarios with a lower price increase and large deployment of EVs more.

Table 6. Values of scenario probabilities.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Scenario 1 0.125 0.05 0.20 0.05 0.20 0.05 0.15
Scenario 2 0.125 0.20 0.05 0.05 0.20 0.15 0.05
Scenario 3 0.125 0.05 0.20 0.05 0.20 0.05 0.15
Scenario 4 0.125 0.20 0.05 0.05 0.20 0.25 0.05
Scenario 5 0.125 0.05 0.20 0.20 0.05 0.05 0.25
Scenario 6 0.125 0.20 0.05 0.20 0.05 0.15 0.05
Scenario 7 0.125 0.05 0.20 0.20 0.05 0.05 0.25
Scenario 8 0.125 0.20 0.05 0.20 0.05 0.25 0.05

3.5.1. Application of the Criterion of the Minimum Expected Cost

Table 7 reports the expected costs for each alternative in all cases considered. From the values of
the expected costs, the selected planning alternative is Alternative 9 for cases 1–4 and 6–7. Alternative
9 is characterized by lower costs in scenarios 7 and 8 (generally associated with high values of costs);
as such, it is often the selected alternative. The criterion of the minimum expected cost provides
Alternative 20 as the preferred one in Case 5, when scenarios 1–4 are more weighted.

Table 7. Expected costs (×1012). Values in bold indicate the best solution for each case.

Alternative Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

1 7.61 8.36 6.87 11.2 4.07 9.24 7.86
2 7.24 7.94 6.53 10.8 3.67 8.76 7.53
3 7.24 7.94 6.53 10.8 3.66 8.76 7.53
4 7.20 7.91 6.50 10.6 3.76 8.81 7.46
5 7.12 7.82 6.42 10.6 3.62 8.66 7.40
6 7.45 8.18 6.73 11.0 3.87 9.09 7.73
7 6.47 7.10 5.84 9.71 3.23 7.77 6.75
8 6.63 7.28 5.99 10.0 3.28 7.96 6.92
9 6.35 6.97 5.73 9.51 3.19 7.55 6.61

10 6.78 7.45 6.11 10.2 3.39 8.13 7.06
11 6.62 7.27 5.97 9.92 3.32 7.92 6.89
12 6.86 7.50 6.21 10.3 3.45 8.21 7.15
13 7.41 8.14 6.69 10.9 3.90 9.08 7.67
14 7.02 7.78 6.27 10.5 3.58 8.54 7.20
15 7.08 7.83 6.34 10.6 3.61 8.60 7.29
16 7.36 8.07 6.64 10.8 3.87 9.01 7.61
17 7.11 7.80 6.41 10.5 3.75 8.67 7.35
18 7.48 8.21 6.75 11.0 3.93 9.14 7.75
19 7.11 7.80 6.41 10.6 3.61 8.69 7.39
20 6.45 7.08 5.82 9.71 3.18 7.79 6.73
21 7.40 8.12 6.68 11.0 3.80 8.96 7.68
22 6.73 7.39 6.07 10.1 3.35 8.09 7.01
23 7.15 7.86 6.45 10.7 3.65 8.63 7.43
24 7.64 8.39 6.89 11.3 3.99 9.28 7.91

3.5.2. Application of the Minimax Weighted Regret Criterion

Table 8 reports the maximum weighted regrets for each alternative in all cases considered.



Energies 2020, 13, 52 17 of 20

Table 8. Maximum weighted regrets (×1012). Values in bold indicate the best solution for each case.

Alternative Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

1 0.560 0.896 0.644 0.896 0.322 1.120 0.805
2 0.486 0.778 0.560 0.778 0.195 0.973 0.700
3 0.486 0.778 0.560 0.778 0.194 0.972 0.700
4 0.534 0.854 0.615 0.854 0.219 1.068 0.768
5 0.483 0.773 0.556 0.773 0.193 0.966 0.696
6 0.605 0.967 0.696 0.967 0.242 1.209 0.870
7 0.136 0.218 0.157 0.218 0.055 0.273 0.196
8 0.206 0.330 0.238 0.330 0.083 0.413 0.297
9 0.151 0.241 0.174 0.241 0.060 0.181 0.217

10 0.242 0.386 0.278 0.386 0.097 0.483 0.347
11 0.154 0.247 0.177 0.247 0.062 0.308 0.221
12 0.270 0.431 0.310 0.431 0.108 0.539 0.388
13 0.617 0.988 0.710 0.988 0.255 1.235 0.888
14 0.391 0.626 0.450 0.626 0.156 0.782 0.562
15 0.413 0.661 0.475 0.661 0.165 0.826 0.593
16 0.596 0.953 0.686 0.953 0.253 1.191 0.857
17 0.457 0.732 0.527 0.732 0.233 0.915 0.658
18 0.612 0.979 0.705 0.979 0.255 1.224 0.881
19 0.537 0.859 0.618 0.859 0.215 1.074 0.772
20 0.212 0.339 0.244 0.339 0.085 0.424 0.305
21 0.527 0.843 0.607 0.843 0.211 1.054 0.759
22 0.243 0.388 0.279 0.388 0.097 0.486 0.349
23 0.406 0.650 0.468 0.650 0.162 0.812 0.585
24 0.616 0.985 0.710 0.985 0.254 1.232 0.887

From the values of the maximum weighted regrets, the selected planning alternative is Alternative
7, for cases 1–5 and 7. The values of the objective function in scenarios with a large deployment of EVs
influence the results also for this criterion, as in 3.5.1.

3.5.3. Application of the “Optimist-Pessimist”Criterion

The “optimist-pessimist” criterion was applied, considering different values of the weighting
factor α ranging from 0 to 1. The case with α = 0 corresponds to the application of the “pessimist”
criterion, while the case with α = 1 is equal to the application of the “optimistic” criterion. The results
are reported in Table 9.

Table 9. Selected planning alternatives obtained by applying the “optimist-pessimist” criterion.

α Selected Planning Alternative

0.0 9
0.1 9
0.2 9
0.3 9
0.4 9
0.5 9
0.6 9
0.7 9
0.8 9
0.9 9
1.0 22

From these results, Alternative 9 is the selected alternative for all the values of the weighting
factor, with the exception of the case with α = 1. The “optimistic” criterion (α = 1) selects Alternative
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22, which is associated with the lowest value of the objective function; for the other values of the
weighting factor α, higher values of the objective function in scenarios 7–8 influence the results.

4. Conclusions

This paper has presented a novel procedure that combines planning and scheduling of the BESSs
installed in an LV grid. In this way, BESS siting and sizing is carried out with the support of a
specific assessment of the system operation. The proposed approach combines the properties of the
metaheuristics used to search for solutions in a wide space (for the creation of planning alternatives)
and the fast calculation of the greedy procedure that allows a viable solution to be found for BESS
scheduling. This approach makes it possible to overcome the limitation due to the intractable total
number of combinations of BESS sizes, simultaneously handling the non-trivial operational aspects
linked to variations in time of the power flows in the network and the BESS scheduling. Furthermore,
the uncertainty regarding future scenarios has been handled with a decision theory-based method.

Alternatives 7 and 9 have emerged as the most promising ones when using the decision theory
criteria. In particular, Alternative 9 has been preferred by the expected costs and the “optimist-pessimist”
criteria, in quite a robust way, over most of the cases with weighted scenarios. Alternative 7 has been
preferred by the minimax weighted regrets criterion, again over most of the cases with weighted
scenarios. In these two alternatives, three nodes are chosen for BESS installation (with node 17 in
common) and the BESS sizes in these nodes are intermediate with respect to the minimum and
maximum energy capacity limits used. For a problem of this kind, there can be no guarantee that
a globally optimal solution has been reached. For this reason, the creation of meaningful scenarios
taking into account the local conditions of loads and generation becomes a fundamental aspect that
can be successfully addressed in the case of relatively small electricity communities, where the energy
community manager may have an easier view on the decision variables involved in the system
operation and planning with respect to what occurs in larger systems. To further develop scenarios
of local loads and generation, future research will consider the deployment of other electrification
technologies, like heat pumps, that can significantly impact the demand; it will also consider the
inclusion of three-phase or single-phase PV systems with storage to take into account the trend of the
prosumers to install storage systems in their local plants with the aim of increasing self-sufficiency.
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