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Abstract: In this research work, bio-inspired computational heuristic algorithms (BCHAs) integrated
with active-set algorithms (ASA) were designed to study integrated economics load dispatch problems
with valve point effects involving stochastic wind power. These BCHAs are developed through
variants of genetic algorithms based on a different set of routines for reproduction operators in
order to make exploration and exploitation in the entire search space for finding the global optima,
while the ASA is used for rapid local refinements of the results. The designed schemes are estimated
on different load dispatch systems consisting of a combination of thermal generating units and wind
power plants with and without valve point loading effects. The accuracy, convergence, robustness
and complexity of the proposed schemes has been examined through comparative studies based on
a sufficiently large number of independent trails and their statistical observations in terms of different
performance indices.

Keywords: integrated power plants systems; economic load dispatch; active-set method; genetic
algorithm; wind energy

1. Introduction

Economic load dispatch (ELD) is a fundamental issue in power plant systems, design and analysis
with the aim of optimal scheduling of generated power in order to satisfy the load demand by
least probable cost, while however, fulfilling the constraints on power generators [1–3]. Generally,
the electricity generation cost with thermal power plants is excessively high and suitable planning
is indeed needed to minimize the cost within reasonable levels. The ELD optimization problem
is in one of the difficult constraints-based optimization systems in the power sector that usually
needs excessive computations because of the nature of the cost functions and inherent non-smooth
properties. A number of studies have introduced a variety of optimization procedures for ELD problems
with and without valve point loading effect (VPLE) based on conventional and recently introduced
meta-heuristics schemes, such as Newton methods [4,5], genetic algorithms [6], biogeography-based
optimization algorithms [7], teaching learning based optimization methods [8], grey-wolf optimization
algorithms [9], ant lion optimization procedures [10], modified krill herd algorithms [11,12], natural
updated harmony searches [13], improved differential evolution [14], mine blast algorithms [15],
and crow-search algorithms [16].

An additional aim in optimal load dispatch is to decrease or reduce the emissions that are dispersed
due to the procedure of electricity generation. Normally, these environmental goals are conflicting with
the economical nature of the systems, i.e., the decline in emission from generating units (GUs) results
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in the increased rate of electricity generation and vice versa. In such circumstances, multi-objective
optimization techniques are exploited for combined ELD with emission problems, such as the symbiotic
organisms search optimization method [17], simulated annealing algorithms [18], multi-objective
evolutionary computing [19], multi-objective biogeography-based optimization [20], flower pollination
algorithms [21], modulated particle swarm optimization [22] and chaotic bat algorithms [23].

The modern trend is to exploit the renewable energy assets for economical and unpolluted
generation of electric power by incorporating the electricity generation scheme by use of wind
power. The significant advantages of wind energy, besides the one-time initial cost of wind plants,
are that there are no costs for production of power through wind, it is more environmentally friendly
than thermal power plants and its ease in expendability i.e., installation of additional wind power
generating units. There are some renewed applications of ELD involving wind energy, such as the
binary artificial sheep method [24], integrated imperialist competitive with sequential quadratic
programming [25], fuzzy adaptive artificial physics optimization [26], unit commitment problem
involving wind power [27], multi-objective evolutionary algorithm [28] and group search optimizer
with multiple producers [29]. All these existing procedures have their own competency, importance,
applications and drawbacks in terms of precision, stability, and computing requirements. The research
community has growing interest to design, explore and exploit modern stochastic solvers by using
the strength of artificial intelligence procedures for applications in the diversified field of applied
science and engineering, e.g., solution of stiff optimization problems arising in nanotechnology,
nonlinear optics, astrophysics, atomic physics, plasma physics, electromagnetics, fluid mechanics,
electric machines, piezoelectric systems, fractional order systems, bioinformatics, signal processing,
controls, economic and finance [30–34] along with references therein. Additionally, there are many
applications in which evolutionary computing paradigms are exploited through variants of genetic
algorithms (GAs) based on different set of routines in the reproduction mechanism [35,36]. All of these
are inspiring factors for authors to investigate in evolutionary stochastic paradigms for the solution of
the emerging domain of energy and power sectors [37–40] including integrated power plant systems.
As per our literature survey, evolutionary computing strategies based on variants of GAs have yet not
been exploited in integrated power dispatch problems, therefore, the objective of the present study
is to investigate integrated bio-inspired computational heuristic algorithms (BCHAs) based on the
variants of GAs aid with the active-set algorithm (ASA) for optimization of load dispatch problems.

A brief summary of innovative contributions in terms of salient features of the proposed study
are listed as:

• Novel applications of bio-inspired computational heuristic paradigms integrated with ASA
is presented for accurate, stable, robust and efficient optimization of ELD, ELD with VPLE
(ELD-VPLE), ELD-VPLE involving stochastic wind (ELD-VPLE-SW) problems.

• Global search strength of GAs and its variants is exploited for the design of BCHAs by using
an appropriate set of routines for reproduction operators in order to make exploration of the entire
search space supported with speedy local refinements with ASA.

• The performance of the designed schemes is estimated on ELD, ELD-VPLE and ELD-VPLE-SW
problems based on a combination of thermal and wind power generating units by means of
accuracy, convergence and complexity operators based on the results of statistics for a sufficiently
large number of independent trails.

• The effective operation of BCHAs for integrated load dispatch scenarios, and other illustrative
hallmarks for simplicity of the concept, coherent procedures with smooth implementation,
robustness, expendability and stability.

The optimization procedure of BCHAs is described in Section 1; a brief overview of the system
model of the integrated load dispatch system is presented in Section 2; the results with necessary
interpretations are given in Section 3, while conclusions with future relevant studies are listed in
Section 4.
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2. Materials and Methods

2.1. System Model: Integrated Load Dispatch Problems

Three type of load dispatch problems are discussed in this study involving the no valve point
loading effect (VPLE), with VPLE and VPLE involving stochastic wind power.

The fuel cost function for ELD with no VPLE: The total fuel cost of the power plant J1 is modelled
in this case with the help of the quadratic cost function and, it is given mathematically as:

J1 =

Ng∑
i=1

[(
ai + biPi + ciP2

i

)]
, (1)

where Ng represents the total number of the power plants, ai, bi, as well as, ci denote the fuel charge
coefficients of ith power plant, and Pi gives the current output power of the ith plant.

The fuel cost function for ELD involving VPLE: The total fuel cost of the power plant J1 is normally
modelled with the help of the quadratic term based cost function, while the valve-point effect is
similarly measured through adding of the sinusoidal term. The total fuel cost function is written
as follows:

J1 =

Ng∑
i=1

[(
ai + biPi + ciP2

i

)
+

∣∣∣ei.. sin( fi(Pi.min − Pi))
∣∣∣], (2)

The coefficient ei and fi denote the fuel charge for the valve-point effect for the ith power plant.
The fuel cost function for ELD with VPLE and stochastic wind power: There are numerous ways

that describe the importance of the functioning and forecasting cost in the scheme comprising of both
thermal generators, as well as, wind turbines. Subsequently, the instant wind speed is arbitrary at
some specified time, therefore, the operator might overestimate or underestimate the wind power
availability. The cost function for the wind power generator is given mathematically as: [25]

J2 =
m∑

j=1

[
WPCostdir. j + WPCostoe. j + WPCostue. j

]
, (3)

where, WPCostdir,j represents the direct cost for the generation of wind power from the jth unit in MWh,
WPCostoe,j denotes the overestimation cost for the jth wind generator in MWh and WPCostue,j is defined
for the underestimation of the cost of jth wind turbine in MWh.

The WPCostdir,j is directly related to the output wind power and it is given as:

WPCostdir =
m∑

j=1

(q j ×w j) (4)

where, qj and wj are the constant of direct electrical energy generation and real power generated by the
jth wind generator in MWh, respectively.

Similarly, the WPCostoe,j can be presented as follows:

WPCostoe, j =
m∑

j=1

(Crwj × E(Yoe, j)) (5)

Crwj denotes the charge constant for overestimation and underestimation of the jth wind generator
in MW, while E(Yoe, j) is the expected value of wind power overestimation and underestimation for the
jth wind generator.
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The E(Yoe, j) is mathematically represented as follows: [25]

E(Yoe, j) = w j

1− exp

 vKj
in, j

CKj
j

+ exp(−
vKj

out, j

CKj
J

)

+ (
wr, jvin, j
vr, j−vin, j

+ w j

)exp

− vKj
in, j

CKj
j

− exp

− vKj
1, j

CKj
j


+

(
wr, jC j

vr, j−vin, j

)[
Γ
(
1 + 1

K j

(
v1, j
C j

)Kj
)
− Γ

(
1 + 1

K j

(
vin, j
C j

)Kj
)] , (6)

where, Kj and Cj are the shape and scale influence of Weibull distribution intended for the jth wind
generator, respectively. The parameters, vr, vin and vout stand for wind speed, cut in and cut out
speeds in m/s, respectively. An intermediate constant v1 is defined as v1 = vin + (vr − vin)w1/wr.
The wind turbine parameters wj and wr are representing the generated and rated power of the jth plant,
respectively. Moreover, in (6), the symbol Γ with two parameters represent the incomplete gamma
function as:

Γ(x, a) =
1

Γ(a)

x∫
0

ta−1e−tdt,

while, the symbol Γ with a single parameter represents the standard gamma function as:

Γ(x) =

x∫
0

tx−1e−tdt

Similarly, WPCostue,j can be presented as follows:

WPCostue, j =
m∑

j=1

(Cpwj × E(Yue, j)). (7)

where, m denotes for number of wind generators, Cpwj defines the cost constant of underestimation for
the jth wind generator in MWh and E(Yue, j) represents as the estimated charge of wind underestimation
intended for the jth wind generator, while E(Yue, j) is provided mathematically as follows [25]:

E(Yue, j) = (wr, j −w j)

exp−

 vKj
r, j

CKj
j

− exp−

 vKj
out, j

CKj
j

+ (
wr, jvin, j
vr, j−vin, j

+ w j

)exp

− vKj
r, j

CKj
j

− exp

− vKj
1, j

CKj
j


+

(
wr. jC j

vr, j−vin, j

)[
Γ
(
1 + 1

K j

(
v1, j
C j

)Kj
)
− Γ

(
1 + 1

K j

(
vr, j
C j

)Kj
)] (8)

Precisely, the cost function for integrated power plant systems is given as:

J = J1 + J2 (9)

J =
Ng∑
i=1

[(
ai + biPi + ciP2

i

)
+

∣∣∣ei.. sin( fi(Pi.min − Pi))
∣∣∣]

+
m∑

j=1

[
WPCostdir. j + WPCostoe. j + WPCostue. j

]
,

(10)

where J1 is given in Equation (2). Further necessary details of the system model for the interested
readers can be seen in [25].

Constraints: The entire power generation based on thermal and wind generators should be equal
to Pload line losses (Ploss) as follows:

Ng∑
i=1

Pi +
m∑

j=1

w j = Pload + Ploss, (11)
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where Ng represents the amount of power plants, m denotes the number of wind generators,
Pi describesthe power of the ith power plant. wj represents the generated power of the jth wind, Pload
defines the total load demand and Ploss defines the line losses.

The losses of the transmission may be ignored for smaller transmission distance as well as
for excessive load densities. However, in an enormous interrelated network wherever power is
transferred above the extended distance through low load density regions, losses due to transmission
are a foremost issue and distress the optimal dispatch. The mathematical relations of the losses are
considered as follows:

Ploss =

Ng∑
I=1

Ng∑
j=1

PiBi jP j +

Ng∑
i=1

Bi0Pi + B00 (12)

where, Bij, Bi0, B00 is defined as the line loss coefficient and Ng represented the number of power plants.
The active power of for each power plant, as well as, wind generators must fulfil the following bounds:

Pi,min ≤ P1 ≤ Pi,max

0 ≤ w j ≤ wr, j
(13)

Pi,min and Pi,max are representing the maximum and minimum parameters of the ith power
plant, respectively, while wj and wr,j denote the produced and rated power of the jth wind generator,
respectively. Basically, the operational collection of the entire generators are restricted through their
ramp rate confines. These limits are reflected as follows:

P0
i − Pi ≤ Di

Pi − P0
i ≤ Ui

(14)

Pi and Pi
0 represent the current and prior output of the ith power plant, respectively, while Di and

Ui define the down and up ramp rate limits, respectively.

2.2. Optimization Techniques

The optimization procedure in this study consists of two parts. In the first part, the design of the
bio-inspired heuristic algorithms based on the variant of GAs through its reproduction operators is
presented, along with an overview of ASA used for rapid local convergence of the results. While in the
second part, the learning procedure of these optimization algorithms to three constrained ELD systems
involving VPLE and wind power generators is presented.

GAs is a meta-heuristic algorithm for viable global search and introduced by Holland in the
1970s [41]. GAs work through their fundamental operators of selection, crossover and mutation.
These have been effectively utilized in diversified applications of constrained and unconstrained
optimization problems with better control, stability, robustness and convergence. The workflow in
terms of block structure for GAs is provided in Figure 1, while few potential applications of GAs in
power sector can be seen in [42–44]. The steady state optimization performance of GAs is speeded-up
by the process of combination with the efficient local search method based on ASA. ASA is one of the
best local search procedures for linear and nonlinear, constrained and unconstrained optimization
problems. The standard working of ASA is to divide the original stiff problems to relatively non-stiff
sub-problems and these sub-problems are solved with the ease of algorithms. The block structure form
of the workflow of ASA is shown in Figure 1. ASA addresses effectively many optimization problems
which include nonnegative matrix factorization problems [45], variation deblurring problems [46] and
warehouse location problems [47].
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Figure 1. Graphical overview of the proposed design schemes for solving integrated economic load
dispatch problems involving stochastic wind.

The paramount importance of GAs and ASA has encouraged the use of memetic variants of GAs
with ASA (GA-ASA) for integrated load dispatch problems. Nine different sequential computing
paradigms, GA-ASA-1 to GA-ASA-9 are designed for optimization based on a different set of
reproduction operators as provided in Table 1. The selection operator stochastic uniform, means
that GAs move along the line in steps of equal size. The section operator reminder, means that the
probability for the selection of the parent is proportional to the fractional part of its scaled value.
The selection operator roulette, means that an individual is chosen randomly with a probability equal
to their respective area. The crossover operator heuristic, means an offspring that lies on the line
containing their parents. The crossover operator arithmetic, means the create/generate offspring that
are the weighted arithmetic mean of their parents. The crossover operator scatter, means a random
one point, two point or intermediate crossover between the genes of two parents to have new child.
The mutation operator adaptive feasible, means randomly generated feasible directions according
to the last known successful or unsuccessful generation. The workflow diagram of the proposed
approach is presented in Figure 1. In this study, implementation of variants of GAs and ASA is made
through the optimization toolbox of the software package, Matlab with the help of ga, gaoptimset,
fmincon and optimset routines. All three load dispatch problems are solved by these functions with
appropriate settings of the parameters. The pseudocode of ASA is given in Algorithm 1.
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Algorithm 1: Active-set Algorithm (ASA)

Inputs:
The best individual of nine variants of GAs for each ELD, ELD-VPLE and ELD-VPLE-SW in the case

involving 40 generation units. Mathematically represented as:

PGA =


[P1, P2, . . . , P40] ELD
[P1, P2, . . . , P40] ELD−VPLE
[P1, P2, . . . , P37, W1, W2, W3] ELD−VPLE− SW

,

Output: The refined weights by ASA represented as:

PGA−ASM =


[P1, P2, . . . , P40] ELD
[P1, P2, . . . , P40] ELD−VPLE
[P1, P2, . . . , P37, W1, W2, W3] ELD−VPLE− SW

Initialization:
Initialize the values of random assignments, constraints and parameters of the ASA.

Termination:
Set stopping requirement of ASA as follows:

Maximum iterations/cycles i.e., 1000,
Tolerances

TolFun, i.e., 10−12,
TolCon, i.e., 10−12,
TolX) values, i.e., 10−10,

While {Stopping criteria achieved} do
Cost calculation:

Calculate the cost using Equations (1)–(3) for ELD, ELD-VPLE and ELD-VPLE-SW for
40 generating units

Stoppage
If any of termination is achieved, then exit from the loop, or else it continues.

Refinements
Refine the values of the decision variables at each iteration with ASA using the fmincong routine

with algorithm active-set in the MATLAB optimization toolbox.
End
Storage

Store the values of decision variables for ELD, ELD-VPLE and ELD-VPLE-SW along with their costs, time,
function count for current execution of ASA.
Statistics: Repeat the steps from initialization to storage for 100 trials for all nine variants of GA, i.e., GA-1 to
GA-9 to generate a dataset of GA-ASA-1 to GA-ASA-9 results for comparative analysis of performance.

Table 1. The functions invoke to design the variants of the proposed optimization solvers based on
genetic algorithms (GAs) supported with the active-set algorithm (ASA).

Methods
Invoke Routines of Reproduction Operators Aided with

Selection Crossover Mutations ‘ASA’

GA-1 “Stochastic Uniform” “Heuristic” “Adaptive Feasible” GA-ASA-1
GA-2 “Stochastic Uniform” “Arithmetic” “Adaptive Feasible” GA-ASA-2
GA-3 “Stochastic Uniform” “Scattered” “Adaptive Feasible” GA-ASA-3
GA-4 “Reminder” “Heuristic” “Adaptive Feasible” GA-ASA-4
GA-5 “Reminder” “Arithmetic” “Adaptive Feasible” GA-ASA-5
GA-6 “Reminder” “Scattered” “Adaptive Feasible” GA-ASA-6
GA-7 “Roulette” “Heuristic” “Adaptive Feasible” GA-ASA-7
GA-8 “Roulette” “Arithmetic” “Adaptive Feasible” GA-ASA-8
GA-9 “Roulette” “Scattered” “Adaptive Feasible” GA-ASA-9
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3. Results and Discussion

The numerical experimentation of the all nine design schemes for three load dispatch problems
based on 40 generation units (40-GUs) involving no VPLE, with VPLE and combined thermal, as well as,
wind GUs with VPLE are presented in this section. The nine variants of GA were applied initially and
later on, all the results of these variants were given to ASA for further refinements. The load demand
(PD) remained fixed at 10,500 MW for all three load dispatch problems. The maximum generators
output powers Pmax, the minimum generators output powers Pmin and the cost coefficients in the case
of 40 GUs are given in Appendix A [48]. The parameter of wind GUs is given in Appendix B [25,49].

Cost function formulation: The cost function for ELD problems with 40 GUs, i.e., Ng = 40,
having quadratic cost function using Equation (1), is written as:

J1 =
40∑

i=1

[(
ai + biPi + ciP2

i

)]
(15)

where the values of Pmin, Pmax and cost coefficients vectors a, b and c are given in Table A1 of
Appendix A. The constraints associated with the problem are written as:

PD =
40∑

i=1

Pi = 10500, Pi,min ≤ Pi ≤ Pi,max (16)

Similarly, the cost function for ELD problems with VPLE (ELD-VPLE) for 40 GUs, i.e., Ng = 40,
is written as:

J =
40∑

i=1

[(
ai + biPi + ciP2

i

)
+

∣∣∣ei.. sin( fi(Pi.min − Pi))
∣∣∣], (17)

where the values of Pmin, Pmax along with cost coefficients vectors a, b, c, e and f are given in Table A1
of Appendix A. The constraints associated with the problem are given in Equation (16).

The cost function for ELD problems involving VPLE by considering stochastic wind availability
(ELD-VPLE-SW), in the case of 3 wind GUs, i.e., m = 3, and 37 thermal GUs, Ng = 37, are given as:

J =
37∑

i=1

[(
ai + biPi + ciP2

i

)
+

∣∣∣ei.. sin( fi(Pi.min − Pi))
∣∣∣]

+
3∑

j=1

[
WPCostdir. j + WPCostoe. j + WPCostue. j

] (18)

where the values of Pmin, Pmax and cost coefficients vectors a, b, c, e and f are given in Table A1
of Appendix A, while the parameter of wind generating units is given in Table A2 of Appendix B.
The constraints associated with the problem are given in Equation (16).

The design nine variants of GA were applied to solve ELD, ELD-VPLE and ELD-VPLE-SW
problems using the cost function given in Equations (15), (17) and (18), respectively, while satisfying the
constraints given in Equation (16). The learning curves of GA-1 along its fitness value and output power
are shown graphically in Figure 2a,c,e for ELD, ELD-VPLE and ELD-VPLE-SW problems, respectively.
The global best weights of GA-1 for all three load dispatch problems are given to ASA for further
refinements and respective results of GA-ASA-1 in Figure 2b,d,f. It can be seen that by the process of
combination, a significant improvement in the values of the cost function was observed for all three load
dispatch problems. Accordingly, the results of all nine variants of GA and GA-ASA were determined.
The results of in terms of costs, time consumed, generation (Gen) executed, and fitness function
evaluated (FE) are given in Table 2 for ELD, ELD-VPLE and ELD-VPLE-SW problems, while the results
of output power Pi of GA and GA-ASA for all three load dispatch problems ELD, ELD-VPLE and
ELD-VPLE-SW are listed in Tables A3–A5, respectively, of Appendix C. For ELD problems without
considering VPLE, the minimum cost was achieved by GA-4 and the worst cost was achieved by GA-8,
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while no noticeable difference in time, generation (Gen) and function evaluated (FE) were observed
(see data presented in Table 2). However, in the process of sequential computing the nine variants of
GA-ASA, all nine algorithms converged to the same minimum cost. This is understandable given the
ELD problems based on smooth/convex cost functions with unique local minima (see the results listed
in Table 2).Energies 2019, 12, 2568 9 of 23 
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VPLE, with considering VPLE and VPLE-SW.

Apart from the comparison of nine variants of GA and GA-ASA with each other, a detailed
analysis of the proposed results in both cases of ELD-VPLE for 40GUs system and integrated power
plant systems, i.e., ELD-VPLE-SW for 40GUs system with 3 wind units, is made with reported
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results. In the case of ELD-VPLE-SW, the results of reported solutions with Hybrid imperialist
competitive-sequential quadratic programming (HIC-SQP) [25], PWTED1 [50], DWTED1 [50] and best
compromise [50] are listed in Table 3. The best results were reported in HIC-SQP [25] for ELD-VPLE-SW
based on the integrated load dispatch problem. Similarly, was the case for ELD-VPLE reported
solutions for evolutionary programming aided with sequential quadratic programming (EP-SQP) [51],
HIC-SQP [25], ant colony optimization (ACO) [52], biogeography-based optimization (BBO) [53],
differential evolution aided with BBO (DE-BBO) [53], bacterial foraging optimization combined with
Nelder–Mead (BF-NM) [54], new particle swarm optimization supported with local random searches
(NPSO-LRS) [55] and real coded genetic algorithms (RCGA) [56]. The minimum cost achieved by
HIC-SQP, PWTED1 and DWTED1 methods are listed in Table 3 for ELD-VPLE-SW, while the minimum
costs of ES-SQP, HIC-SQP, ACO, BBO, DE-BBO, BF-NM, NPSO-LRS and RCGA for ELD-VPLE problems
are also presented in Table 3. In the case of ELD-VPLE, the reported and our sequential computing
algorithms have close resemblance with standard solutions, however none of the variants of GAs,
GA-1 to GA-9 and their memetic computing techniques, i.e., GA-ASA-1 to GA-ASA-9, give the best
solution reported so far for ELD-VPLE problems. Whereas, the significance of the proposed algorithms
was evidently seen in the case of ELD-VPLE-SW problems based on the stiff cost function as defined in
Equation (18), involving the calculation of incomplete gamma functions for each evaluation of the
objective function. For example, the result achieved by the integrated computing approach GA-ASA-2
was 127,345.345$/h, which was better than the best reported optimization solutions for ELD-VPLE-SW
problems in [25]. Additionally, it was observed that the proposed results of all nine variants of GA
were poorer than in the reported results. However, after performance with ASA, the results of all
nine variants of GA-ASA improved considerably, and even better than the reported results of recently
applied algorithms based on HIC-SQP, PWTEDI, DWTEDI and best compromise.

Table 2. The results of GA and GA-ASA for ELD problems based on 40 GUs without considering VPLE,
considering VPLE and integration of wind units.

Method
Without VPLE With VPLE VPLE and Stochastic Wind

Cost Time Gen FCs Cost Time Gen FCs Cost Time Gen FCs

GA-1 132,514 90 200 30,150 137,359 97 200 30,150 147,325 115 200 30,150
GA-2 140,489 81 200 30,150 146,919 92 200 30,150 158,245 132 200 30,150
GA-3 138,246 98 200 30,150 146,458 90 200 30,150 157,408 95 200 30,150
GA-4 131,173 103 200 30,150 137,920 91 200 30,150 152,326 103 200 30,150
GA-5 140,158 85 200 30,150 146,664 96 200 30,150 158,229 117 200 30,150
GA-6 138,721 97 200 30,150 145,661 105 200 30,150 157,542 111 200 30,150
GA-7 133,351 88 200 30,150 139,825 101 200 30,150 148,987 101 200 30,150
GA-8 140,843 81 200 30,150 146,693 94 200 30,150 158,070 113 200 30,150
GA-9 139,700 100 200 30,150 145,944 88 200 30,150 157,778 99 200 30,150

GA-ASA-1 118,660 91 221 31,851 122,749 105 342 28,861 127,611 132 350 29,939
GA-ASA-2 118,660 82 224 32,094 122,719 100 324 27,325 127,744 143 237 20,288
GA-ASA-3 118,660 99 221 31,851 122,683 99 359 31,507 127,108 117 500 41,282
GA-ASA-4 118,660 104 223 32,013 122,369 98 276 22,760 127,510 112 202 16,912
GA-ASA-5 118,660 86 219 31,689 122,353 117 500 42,617 126,773 136 412 35,638
GA-ASA-6 118,660 98 222 31,932 122,175 101 229 19,182 127,141 121 198 16,411
GA-ASA-7 118,660 89 221 31,851 123,062 106 210 17,498 127,257 132 500 41,167
GA-ASA-8 118,660 82 221 31,852 122,796 104 343 29,568 127,038 122 204 16,916
GA-ASA-9 118,660 101 221 31,851 122,646 93 205 17,054 127,392 109 220 18,474

Table 3. The comparison of reported solutions in case of 40 thermal generating without VPLE and
with VPLE.

Algorithm ELD-VPLE Algorithm ELD-VPLE Algorithm ELD-VPLE-SW

EP–SQP 122,324.00$/h BBO 121,688.6634$/hr HIC-SQP 136,381.3831$/h
HIC-SQP 121,418.23$/hr BF–NM 121,423.63$/hr PWTEDI 137,985.38$/h

NPSO-RLS 123,094.98$/hr DE–BBO 121,420.89$/hr DWTEDI 137,190.31$/h
ACO 121,679.64$/hr RCGA 121,628.59$/hr Best compromise 143,587.90$/h
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The analysis on multiple run of algorithms: The performance analysis on the basis of multiple
runs for all nine variants of GA and GA-ASA were carried out to solve the optimization problems
based on ELD, ELD-VPLE and ELD-VPLE-SW systems which consisted of 40 Gus, including both
thermal and wind power plants.

The analysis on the precision and reliability were performed through a hundred independent trails
of each variant of GA and GA-ASAs in order to optimize all three load dispatch problems. The results
for GA-1 and GA-ASA-1 in terms of best cost against the number of runs of the algorithms for ELD,
ELD-VPLE and ELD-VPLE-SW systems are shown in Figure 3a,b, respectively, while the histogram
plots of GA-1 to solve the ELD, ELD-VPLE, and ELD-VPLE-SW are shown in Figure 3c–e, respectively,
and respective histogram plots for GA-ASA-1 algorithms are plotted in Figure 3f–h. Accordingly, the
best cost against number of runs along with their histogram studies were conducted for all three load
dispatch problems for GA-2 and GA-3 as well as GA-ASA-2 and GA-ASA-3. Similarly, the results of
the cost against the number of runs are shown in Figure 4 for GA-4 and GA-ASA-4, while in Figure 5
for GA-8 and GA-ASA-8. From Figure 3, a small variation in the values of GA-1 was observed for all
the load dispatch models while such small oscillations were also evident in solving ELD-VPLE and
ELD-VPLE-SW systems by GA-ASA-1. However, no variations were seen in ELD problems optimized
with GA-ASA-1. The results in Figure 3 also showed that the same trend of GA-1 and GA-ASA-1 were
followed by GA-2 to GA-3 and GA-ASA-2 to GA-ASA-3, respectively, for all three ELD, ELD-VPLE,
ELD-VPLE-SW power generation systems. Accordingly, the similar behavior of the results is evidently
seen from the rest of the illustrations presented in Figures 4 and 5.

The results presented in the histogram illustrations of Figure 3 showed that approximately 19%,
18% and 17% of the runs of GA-1 achieved costs ≤ 1.467 × 105, 1.515 1005 and 1.637 × 105 for ELD,
ELD-VPLE, ELD-VPLE-SW power generation systems, respectively. However, 100%, 17% and 19% of
the runs GA-ASA-1 obtained the cost ≤ 1.187 × 105, 1.254 × 105 and 1.301 × 105 for three respective
load dispatch models. The results revealed that approximately 15%, 14% and 12% of the runs of GA-2
achieved the costs ≤ 1.526 × 105, 1.576 × 105 and 1.679 × 105 for ELD, ELD-VPLE, ELD-VPLE-SW
power generation systems, respectively, while 100%, 15% and 14% of the runs GA-ASA-2 obtained the
costs ≤ 1.187 × 105, 1.252 × 105 and 1.297 × 105 for three respective load dispatch models. The results
with similar observations were achieved by GA-3 to GA-9 as well as GA-ASA-3 to GA-ASA-9. Thus,
it can be concluded that generally for non-smooth, as well as smooth cost functions of power dispatch
problems, the memetic computing approaches, i.e., GA-ASA-1 to GA-ASA-9, provided relatively better
results than the standalone approaches, i.e., GA-1 to GA-9.

Complexity Analysis: The complexity analysis for all nine variants of GA and GA-ASAs are
presented in terms of time consume, generation (Gen)/iteration executed and cost function evaluated
/counted (FCs) for all three load dispatch systems. The result of complexity operators based on
the mean along with its standard deviations (STD) magnitudes are presented in Table 4 for ELD,
ELD-VPLE, ELD-VPLE-SW power generating systems in each case of GA and GA-ASAs. Regarding
the ELD problem without VPLE, cost, time, Gen and FCs were 147,196 ± 4373, 92 ± 9, 174 ± 14 and
27,126 ± 6754 for GA, while for GA-ASA values of cost, time, Gen, FCs were 118,660 ± 0, 94 ± 12,
196 ± 7, and 28,036 ± 144. The cost, time, Gen and FCs were 152,000 ± 4000, 94 ± 10, 199 ± 20 and
29,000 ± 4000 for GA for ELD by considering VPLE, while for GA-ASA values of cost, time, Gen,
FCs were 125,000 ± 1000, 95 ± 9, 428 ± 91 and 47,534 ± 7378. For ELD problems based on VPLE-SW,
cost, time, Gen and FCs were 163,788.43 ± 4772.70, 98.37 ± 10.65, 173.60 ± 41.13 and 26,190.00 ± 222.00
for GA, while for GA-ASA the values of cost, time, Gen, FCs were 129,676.74 ± 897.77, 110.05 ± 11.23,
424.41 ± 83.55, and 47,214.99 ± 7472.99. The time based complexity analysis of the proposed variants
GA-1 to GA-9, as well as, GA-ASA-1 to GA-ASA-9 is dependent on the specification of the machine on
which optimization algorithms are executed. Thus, for better processing platforms, the computing
time of optimization of the decision variable is reduced and vice versa. Similarly, varied computational
requirement are associated with single generation/cycle of meta-heuristic paradigm based on GAs.
Therefore, generations/iterations are also not effective for measurement of the complexity. To overcome
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these issues, the number of fitness function evaluated during the process of optimization of decision
variables has been used as a measure for the analysis of the complexity which is a machine independent
gauge. The complexity of the variants is given on the basis of time, iterations and FCs in the current
study. These values are used for comparison whenever the same problems are addressed with
counterpart meta-heuristic methodologies. The reported values of complexity in terms of time in
seconds for the execution of a single generation/iteration were given 0.0597 for HIC-SQP [25] for
ELD-VPLE-SW problems based on 37 thermal and three wind turbines based generated units. The CPU
time per iteration of HIC-SQP [25] was better than reported PWTED1 [50], DWTED1 [50] and best
compromise [50]. The similarly calculated values of complexity measure of proposed variants also
provided the consumed time in close vicinity of the reported results.

Table 4. The comparison of results for ELD problems without considering VPLE, with considering
VPLE and VPLE-SW through statistical performance indices.

Index Method
Mean STD

Cost Time Gen FCs Cost Time Gen FCs

No VPLE GA-1 147,125 92 200 30,150 4414 17 0 0
GA-2 152,431 87 180 27,126 4739 8 43 6481
GA-3 151,484 93 200 30,150 4897 13 0 0
GA-4 145,951 96 200 30,150 4970 12 0 0
GA-5 152,831 88 169 25,478 4482 12 52 7865
GA-6 151,240 94 199 29,936 5034 11 14 2145
GA-7 147,196 96 200 30,150 4261 9 0 0
GA-8 152,119 91 174 26,309 4373 16 45 6754
GA-9 150,732 91 199 30,050 4994 7 7 1005

GA-ASA-1 118,660 92 221 31,880 0 17 2 126
GA-ASA-2 118,660 88 202 28,905 0 8 43 6471
GA-ASA-3 118,660 94 221 31,877 0 13 2 148
GA-ASA-4 118,660 96 222 31,897 0 12 2 144
GA-ASA-5 118,660 89 191 27,252 0 12 52 7861
GA-ASA-6 118,660 95 220 31,676 0 11 14 2137
GA-ASA-7 118,660 97 221 31,882 0 9 2 137
GA-ASA-8 118,660 92 196 28,036 0 16 45 6758
GA-ASA-9 118,660 92 221 31,799 0 7 7 1012

VPLE GA-1 151,927 97 200 30,150 4662 11 0 0
GA-2 157,187 90 183 27,611 4764 13 44 6567
GA-3 156,530 90 199 29,960 5076 11 13 1905
GA-4 153,248 97 200 30,150 4392 13 0 0
GA-5 158,020 88 183 27,662 4735 8 41 6083
GA-6 157,193 97 199 29,955 4814 12 13 1950
GA-7 152,499 98 200 30,150 4590 10 0 0
GA-8 158,255 93 185 27,929 4482 16 40 5975
GA-9 157,775 94 200 30,150 4611 7 0 0

GA-ASA-1 125,528 103 445 51,028 1206 11 76 6701
GA-ASA-2 125,137 95 428 48,342 1194 13 90 9677
GA-ASA-3 125,381 97 454 51,574 1196 12 97 8408
GA-ASA-4 125,238 104 459 52,228 1223 13 95 8366
GA-ASA-5 125,072 94 433 48,842 1218 9 83 8732
GA-ASA-6 125,287 102 453 51,564 1236 12 91 8065
GA-ASA-7 125,657 104 444 50,849 1060 10 74 6405
GA-ASA-8 125,411 99 416 47,534 1146 16 85 8818
GA-ASA-9 125,375 100 445 50,903 1171 7 88 7378

VPLE-SW GA-1 163,557 108 200 30,150 5362 11 0 0.00
GA-2 167,796 98 171 25,747 4834 12 51 7741
GA-3 167,815 102 200 30,150 4580 9 0.00 0
GA-4 163,848 108 200 30,150 4817 150 0 0
GA-5 167,456 99 173 26,190 4772 11 46 6932
GA-6 167,024 105 200 30,150 5090 16 0 0
GA-7 163,788 108 200 30,150 4841 12 0 0
GA-8 167,120 98 180 27,130 5146 10 41 6169
GA-9 167,539 103 199 29,928 4738 9 14 2220

GA-ASA-1 130,102 110 436 50,183 901 11 77 6565
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Table 4. Cont.

Index Method
Mean STD

Cost Time Gen FCs Cost Time Gen FCs

VPLE-SW GA-ASA-2 129,706 109 424 47,214 975 13 101 10,589
GA-ASA-3 129,828 114 448 51,198 955 10 89 7450
GA-ASA-4 130,075 120 445 51,112 914 15 84 7472
GA-ASA-5 129,824 110 414 46,775 1010 12 96 10,323
GA-ASA-6 129,813 117 449 51,319 898 16 88 7699
GA-ASA-7 130,248 119 440 50,683 849 13 83 7516
GA-ASA-8 129,661 110 428 48,115 1030. 11 95 9821
GA-ASA-9 129,677 115 456 51,859 895 11 92 8308
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4. Conclusions

The conclusions are summarized as follows:

• Bio-inspired computational heuristics is exploited for solving effectively the integrated power
plants systems based on thermal and wind generating units. The proposed BCHAs were based on
nine variants of GAs and were designed by using different sets of reproduction operators and
each global search method was aided with ASA for rapid local convergence.
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• The performance of proposed schemes was examined for solving ELD, ELD-VPLE, ELD-VPLE-SW
problems based on 40 generating units with a fix load demand of 10,500 MW. It was found that all
nine integrated approaches were viable solvers with reasonable accuracy. Additionally, sequential
computing schemes gave relatively better results than standalone approaches.

• Regarding the smooth cost function based ELD problem, there was no difference in the performance
for each integrated methodology, while in the variants of Gas, the best cost was achieved using
GA-4, i.e., 131,173.36$/hr, while in case of GA-ASA, the best minimum cost was achieved through
GA-9, i.e., 118,600$/hr.

• Regarding the non-convex cost function based ELD-VPLE problem, the minimum cost was achieved
using GA-ASA-1, i.e., 137,359$/hr., while the results of combined optimization approaches were
relatively better than GA variants. However the best minimum cost was achieved by standalone
GA-6 is 122,175$/hr.

• The scenario of the integrated power plant system was represented with ELD-VPLE-SW. The most
effective optimization solver was GA-1 in terms of accuracy and convergence for the standalone
scheme, while for sequential computing schemes, the results of GA-ASA-8 were found to
be superior.

• The validation and verification for the performance of each optimization solver was established
from 100 independent trails to solve all three load dispatch problems by using the detailed analysis
through statistical operators, convergence curves, as well as, histogram illustrations.

Some potential research directions are briefly narrated as:

• The presented nine variant of GAs aided ASA, can be a good alternative to be explored or exploited
in future for the unit commitment problem in the energy sector.

• The application of proposed optimization algorithms can be explored for a variety of integrated
load dispatch problems based on wind, solar, hydel, and biomass, generating units for dynamic
and static requirements.

• The newly introduced optimization solvers, including fractional order partial swarm optimization
algorithms, fireworks algorithms, moth-flame algorithms, backtracking search optimization
algorithms and differential search optimization algorithms can give quality solutions for problems
arising in integrated power plant systems.
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Appendix A

The parameters of thermal 40GUs based load dispatch systems are provided in Table A1.

Table A1. The parameters of 40GUs system based ELD problems.

Generator Pmin (MW) Pmax (MW) a b c e f

1 36 114 0.00690 6.73 94.705 100 0.084
2 36 114 0.00690 6.73 94.705 100 0.084
3 60 120 0.02028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 47 97 0.0114 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
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Table A1. Cont.

Generator Pmin (MW) Pmax (MW) a b c e f

7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.60 455.76 200 0.042

10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.20 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.40 300 0.035
14 125 500 0.00752 8.84 1760.4 300 0.035
15 125 500 0.00708 9.15 1728.3 300 0.035
16 125 500 0.00708 9.15 1728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00248 6.66 794.53 300 0.035
24 254 550 0.00248 6.66 794.53 300 0.035
25 254 550 0.00277 7.10 801.32 300 0.035
26 254 550 0.00277 7.10 801.32 300 0.035
27 10 150 0.52124 3.33 1055.1 120 0.077
28 10 150 0.52124 3.33 1055.1 120 0.077
29 10 150 0.52124 3.33 1055.1 120 0.077
30 47 97 0.01140 5.35 148.89 120 0.077
31 60 190 0.00160 6.43 222.92 150 0.063
32 60 190 0.00160 6.43 222.92 150 0.063
33 60 190 0.00160 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

Appendix B

The parameters of wind based generating units are provided in Table A2.

Table A2. The parameters of wind based generating units.

C1 C2 C3 K1 K2 K3 D1 D2 D3

8 7 6 2 2.4 1.7 120 120 120
V1(m/s) Vin(m/s) Vout(m/s) Crw1(MWh) Crw2(MWh) Crw3(MWh) Crp1(MWh) Crp2(MWh) Crp3(MWh)

14 4 25 30 30 30 30 30 30

Appendix C

The results in terms of power output of GA and GA-ASA for ELD, ELD-VPLE and ELD-VPLE-SW
problems are provided in Tables A3–A5, respectively.
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Table A3. The results in terms of power output of GA and GA-ASA for ELD problems based on 40 GUs without considering VPLE.

GU
Variants of GA Variants of GA-ASA

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

P1 104.26 110.42 109.93 108.01 110.53 109.02 113.23 110.54 110.81 114.00 114.00 114.00 114.00 114.00 114.00 114.00 114.00 114.00
P2 113.01 110.42 110.03 102.85 110.23 110.64 106.01 110.66 110.87 114.00 114.00 114.00 114.00 114.00 114.00 114.00 114.00 114.00
P3 114.99 116.41 115.98 104.70 116.29 114.98 114.29 116.15 115.69 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00
P4 182.22 186.42 186.97 172.97 186.67 185.92 179.14 186.66 186.25 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P5 89.13 94.42 93.97 87.16 93.39 94.72 93.05 93.66 93.41 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00
P6 135.77 136.42 135.95 133.55 136.23 134.90 134.15 137.15 136.72 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00
P7 294.78 296.42 295.95 299.36 296.24 296.90 294.66 296.17 294.29 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00
P8 291.76 296.42 296.02 283.74 296.45 296.86 297.37 296.66 294.97 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00
P9 288.03 296.42 295.96 289.37 296.33 297.55 295.84 297.65 295.87 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00
P10 296.96 296.42 295.89 290.86 296.96 295.76 292.06 296.63 296.84 130.00 130.00 130.00 130.00 130.00 130.00 130.00 130.00 130.00
P11 373.38 371.42 371.85 356.12 371.22 370.86 374.90 371.64 370.71 94.00 94.00 94.00 94.00 94.00 94.00 94.00 94.00 94.00
P12 370.31 371.34 370.99 349.42 371.08 370.25 370.45 371.66 370.55 94.00 94.00 94.00 94.00 94.00 94.00 94.00 94.00 94.00
P13 378.98 379.80 380.47 370.85 414.06 379.75 491.18 378.19 379.83 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00
P14 394.11 377.49 379.90 376.44 382.13 385.65 376.03 380.76 380.08 271.67 271.67 271.67 271.67 271.67 271.67 271.67 271.67 271.67
P15 379.10 378.53 378.85 452.45 414.08 392.10 380.98 377.65 381.58 266.66 266.66 266.66 266.66 266.66 266.66 266.66 266.66 266.66
P16 499.11 378.31 378.30 372.42 380.44 381.36 367.90 381.11 377.84 266.66 266.66 266.66 266.66 266.66 266.66 266.66 266.66 266.66
P17 294.15 379.64 379.34 395.28 418.37 380.64 376.86 377.86 379.01 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00
P18 374.92 378.35 378.34 378.94 416.93 377.17 491.13 437.12 377.14 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00
P19 381.67 445.45 380.76 429.41 427.37 444.50 316.51 380.84 449.02 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00
P20 374.44 378.68 445.85 366.75 381.05 378.64 503.95 437.49 381.23 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00
P21 367.83 515.23 379.20 349.20 380.51 380.31 380.01 379.08 446.48 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00
P22 376.98 376.63 378.23 535.04 379.94 432.77 406.31 379.67 449.04 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00
P23 519.05 377.96 379.48 449.96 430.43 444.34 383.32 450.25 381.14 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00
P24 388.12 379.74 377.68 502.64 381.12 376.41 380.99 375.94 379.48 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00
P25 529.89 380.76 475.00 368.14 381.47 448.18 505.01 377.16 378.60 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00
P26 382.01 378.46 417.66 453.88 378.51 378.40 377.79 450.54 379.88 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00
P27 10.01 79.50 143.97 114.37 97.17 128.76 14.61 144.62 143.15 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
P28 21.09 146.39 48.51 11.21 110.67 74.47 127.51 87.89 73.80 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
P29 120.05 76.74 75.45 28.08 102.95 89.60 15.81 75.96 78.32 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
P30 86.79 94.98 94.04 90.70 93.26 92.92 96.80 94.49 94.46 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00
P31 186.80 186.42 188.00 188.65 186.51 187.59 184.68 186.73 187.78 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P32 175.01 186.42 185.99 179.04 186.23 186.91 183.07 186.66 189.20 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P33 187.29 186.42 185.87 175.25 186.25 188.94 186.93 186.14 185.98 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P34 197.19 196.42 196.80 196.60 195.81 195.89 199.86 196.66 194.86 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
P35 197.10 196.42 196.76 194.61 196.33 196.92 199.78 196.67 195.87 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
P36 193.26 196.42 195.49 179.11 197.33 196.94 195.15 196.66 195.86 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
P37 105.68 106.42 105.80 101.07 106.31 106.57 97.64 106.66 106.79 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00
P38 103.10 106.42 107.02 90.17 106.26 105.98 106.18 105.83 105.74 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00
P39 104.43 106.42 106.98 105.93 105.94 108.10 108.87 107.21 104.33 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00
P40 517.24 446.64 480.78 465.74 380.93 381.84 379.97 378.92 446.55 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00
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Table A4. The results in terms of power output of GA and GA-ASA for ELD problem based on 40 Gus by considering VPLE.

GU
Variants of GA Variants of GA-ASA

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

P1 113.68 110.41 109.95 110.18 111.49 110.60 111.47 109.49 111.34 110.80 111.64 110.80 110.80 110.80 110.80 110.80 114.00 114.00
P2 105.05 110.07 110.21 106.60 110.49 111.02 109.68 111.47 110.69 74.74 111.45 110.80 110.80 110.86 110.80 110.80 114.00 114.00
P3 112.96 115.87 115.90 115.51 115.49 117.03 119.81 115.34 117.14 97.40 97.40 120.00 97.40 120.00 120.00 97.40 97.40 120.00
P4 182.90 186.20 185.98 184.74 186.46 185.98 188.15 186.40 185.10 80.00 179.73 179.73 179.73 179.73 129.87 129.87 129.87 129.87
P5 87.36 93.85 93.01 88.74 93.49 92.04 93.99 93.25 93.03 87.80 97.00 93.97 87.80 88.02 97.00 97.00 89.61 97.00
P6 135.91 138.09 137.27 139.70 138.91 136.06 137.76 137.38 137.34 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00
P7 297.86 296.63 297.22 291.51 296.49 295.97 295.16 297.48 297.27 300.00 259.60 300.00 300.00 300.00 259.60 259.60 259.60 300.00
P8 286.46 296.11 296.23 293.08 296.95 296.95 299.72 296.44 296.18 284.60 284.60 284.60 284.60 284.60 284.60 284.60 284.60 284.60
P9 292.44 295.94 296.09 292.58 296.49 295.00 295.54 296.43 297.21 284.60 284.60 284.60 284.60 284.60 284.60 284.60 284.60 284.60
P10 294.94 296.13 297.10 292.90 296.49 295.97 299.84 297.32 295.14 130.00 130.00 130.00 130.00 204.80 130.00 130.00 130.00 130.00
P11 371.15 371.40 370.20 360.53 371.45 371.01 370.85 371.49 371.81 318.40 243.60 243.60 318.40 318.40 243.60 168.80 318.40 243.60
P12 371.40 371.11 372.54 367.15 371.49 371.03 371.52 372.65 370.58 318.40 168.80 318.40 318.40 318.40 168.80 243.60 243.60 168.80
P13 399.82 376.82 384.39 374.27 380.05 380.11 396.77 433.54 378.18 214.76 394.28 304.52 214.76 125.00 394.28 394.28 304.52 394.28
P14 481.35 432.68 381.55 391.22 378.74 381.36 383.99 423.66 378.53 304.52 484.04 214.76 214.76 214.76 304.52 394.28 304.52 304.52
P15 386.83 385.23 378.29 388.42 380.58 376.28 363.82 377.95 379.36 304.52 304.52 214.76 125.00 214.76 304.52 394.28 394.28 304.52
P16 372.68 381.30 379.76 382.01 377.51 378.40 385.30 400.05 377.84 304.52 304.52 394.28 304.52 214.76 304.52 394.28 394.28 304.52
P17 463.13 379.69 445.59 385.09 447.68 380.45 364.38 378.89 380.59 489.28 489.28 399.52 489.28 489.28 399.52 399.52 399.52 489.28
P18 475.03 399.82 379.05 374.55 379.97 380.52 379.84 380.68 446.02 399.52 489.28 399.52 489.28 489.28 489.28 399.52 399.52 489.28
P19 425.57 381.54 378.96 375.22 448.88 377.49 352.18 380.83 380.52 511.28 511.28 511.28 511.28 511.28 511.28 511.28 511.28 511.28
P20 378.68 381.34 381.07 373.04 380.29 377.53 396.67 380.00 400.84 511.28 331.76 511.28 511.28 511.28 511.28 421.52 511.28 421.52
P21 377.41 380.08 439.15 370.32 437.23 452.26 480.10 456.86 380.07 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28
P22 342.65 434.14 379.78 465.87 376.55 380.39 468.39 380.57 379.76 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28
P23 391.60 381.49 378.17 377.86 440.41 379.27 464.56 378.00 377.77 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28 433.52
P24 393.98 376.72 381.54 507.85 378.21 380.59 330.46 425.23 438.45 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28
P25 368.35 425.73 379.82 548.74 378.85 515.41 397.21 382.00 433.57 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28
P26 461.86 449.35 438.72 465.38 379.02 443.31 376.78 377.87 433.30 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28
P27 49.89 73.79 144.05 30.29 87.85 145.04 133.03 97.64 144.74 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
P28 65.97 145.56 83.78 10.17 145.49 71.17 41.40 91.42 83.62 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
P29 89.52 92.16 78.36 125.37 74.08 80.78 28.40 122.94 76.59 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
P30 94.65 94.16 92.68 90.81 93.44 93.00 90.98 93.23 92.24 87.80 97.00 87.80 96.34 88.41 90.56 97.00 89.51 97.00
P31 184.57 186.59 186.48 186.51 187.07 186.04 182.93 186.49 187.55 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P32 185.05 185.91 186.17 179.94 186.46 187.06 188.10 188.76 187.68 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P33 183.89 185.79 187.22 189.30 186.42 188.99 184.83 186.49 187.65 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P34 193.83 195.58 196.13 192.41 196.49 197.92 197.64 197.29 196.16 164.80 164.80 164.80 200.00 200.00 200.00 164.80 164.80 166.11
P35 197.01 195.11 197.21 189.09 196.49 195.96 194.90 197.35 197.38 200.00 164.80 200.00 200.00 200.00 164.80 180.96 164.80 200.00
P36 193.84 198.03 195.29 194.34 196.46 195.90 194.88 196.04 196.24 200.00 164.80 200.00 200.00 200.00 164.80 200.00 164.80 200.00
P37 105.95 107.12 105.70 96.74 106.49 105.93 103.50 106.36 106.24 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00
P38 102.44 105.85 106.17 109.72 108.49 107.05 104.41 109.46 109.56 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00
P39 101.25 106.69 106.23 108.49 106.49 106.02 108.97 106.32 105.99 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00
P40 381.10 379.94 446.98 373.77 378.62 377.08 512.12 378.97 380.74 511.28 421.52 511.28 511.28 511.28 511.28 421.52 421.52 511.28
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Table A5. Results in terms of power output of GA and GA-ASA for ELD problem based on 40 GUs by considering VPLE-SW.

GU
Variants of GA Variants of GA-ASA

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

P1 110.26 110.45 110.13 112.61 110.43 111.72 112.49 109.63 110.34 110.80 114.00 111.45 110.80 110.80 110.80 110.80 110.80 114.00
P2 111.49 110.48 110.74 110.31 110.47 110.35 110.30 110.00 110.56 110.80 114.00 113.19 110.80 110.80 110.80 110.80 110.80 114.00
P3 109.77 116.48 116.09 119.48 116.43 116.42 113.09 116.19 116.56 97.40 120.00 60.00 97.40 120.00 97.40 60.00 97.40 120.00
P4 182.09 186.48 185.16 188.68 186.41 186.35 184.80 185.85 185.01 179.73 179.73 183.85 179.73 179.73 179.73 179.73 179.73 179.73
P5 91.58 93.48 92.90 91.34 91.43 92.81 87.76 92.92 92.06 91.85 97.00 87.81 96.34 87.80 87.80 87.80 87.80 97.00
P6 136.59 136.48 136.13 137.04 136.43 135.42 131.93 135.94 136.12 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00
P7 298.14 297.48 295.99 295.65 296.38 296.29 292.16 295.66 295.97 259.60 300.00 300.00 300.00 300.00 300.00 259.60 300.00 300.00
P8 288.10 296.48 296.76 298.96 296.43 296.29 296.05 296.90 295.93 284.60 300.00 210.03 284.60 284.60 284.60 284.60 284.60 300.00
P9 289.65 296.42 296.56 299.71 296.43 296.92 297.07 295.93 295.02 284.60 290.17 284.63 284.60 284.60 284.60 284.60 284.60 300.00
P10 291.58 296.48 294.19 297.20 296.43 296.26 292.12 296.07 293.97 204.80 130.00 130.00 279.60 130.00 130.00 204.58 130.00 204.80
P11 372.69 371.48 371.83 373.94 372.43 372.51 374.94 370.92 370.94 168.80 318.40 318.36 168.80 318.40 243.60 242.76 318.40 318.40
P12 368.51 371.48 370.93 372.39 371.37 371.17 370.26 370.81 371.01 168.80 168.80 168.94 318.40 318.40 168.80 242.17 318.40 168.80
P13 375.69 378.37 378.04 381.17 376.59 377.61 383.10 378.37 379.48 304.52 304.52 304.50 304.52 304.52 304.52 394.28 214.76 214.76
P14 372.98 380.93 379.57 380.50 381.71 382.50 373.85 377.10 380.83 394.28 394.28 394.30 214.76 214.76 394.28 304.52 304.52 304.52
P15 373.65 379.99 380.66 420.85 377.97 383.71 371.95 379.83 379.56 394.28 394.28 394.28 394.28 214.76 394.28 394.28 304.52 304.52
P16 497.71 377.12 378.40 382.99 378.03 376.40 382.64 379.61 380.65 484.04 304.52 214.76 304.52 214.76 394.28 394.28 304.52 394.28
P17 377.78 378.04 380.58 375.72 379.20 380.95 388.07 378.30 381.69 489.28 399.52 399.50 399.52 489.28 399.52 399.52 399.52 399.52
P18 385.98 379.72 380.35 396.43 378.49 378.56 370.27 378.25 383.99 489.28 399.52 489.28 399.52 489.28 399.52 399.52 489.28 399.52
P19 369.66 380.14 376.71 383.11 376.05 380.13 514.11 381.48 380.53 421.52 511.28 421.55 511.28 421.52 511.28 511.28 511.28 511.28
P20 510.86 514.48 381.93 418.77 377.37 379.99 378.16 421.36 380.39 421.52 421.52 511.29 421.52 511.28 511.28 421.52 511.28 421.52
P21 507.27 377.87 379.89 374.86 514.91 378.18 386.26 384.22 378.25 523.28 433.52 523.31 523.28 523.28 433.52 523.28 523.28 438.64
P22 359.22 512.72 385.18 494.32 386.84 379.08 442.63 421.33 381.37 433.52 523.28 523.30 433.52 523.28 433.52 523.28 523.28 523.28
P23 377.36 380.61 382.38 392.60 516.35 375.06 439.89 378.91 513.87 433.52 433.52 523.27 523.28 523.28 523.28 523.28 523.28 523.28
P24 382.14 376.36 378.39 381.61 378.81 516.50 523.65 474.95 379.06 523.28 523.28 523.28 523.28 523.28 523.28 523.28 433.52 523.28
P25 369.11 377.69 379.76 378.90 378.52 383.25 387.77 476.45 378.13 433.52 523.28 523.29 523.28 523.28 523.28 523.28 523.28 523.28
P26 491.53 382.72 517.24 336.93 378.61 378.28 369.65 378.45 380.07 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28 523.28
P27 93.45 93.48 92.83 92.98 93.43 94.42 93.58 92.49 93.10 87.80 97.00 87.89 87.80 87.80 87.80 87.80 47.00 97.00
P28 182.05 186.33 185.87 183.07 186.43 185.37 182.88 185.91 184.05 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P29 186.87 186.43 186.05 186.34 186.44 187.64 187.78 186.05 185.87 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P30 189.23 186.47 185.33 186.56 186.43 185.37 181.57 185.14 187.15 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00
P31 199.59 196.47 195.85 199.89 196.43 197.29 196.01 196.80 196.10 200.00 200.00 193.39 200.00 185.94 164.80 164.80 164.80 200.00
P32 194.80 194.73 194.75 198.31 197.43 195.97 195.80 196.88 196.32 200.00 200.00 200.00 200.00 200.00 198.88 164.80 194.80 200.00
P33 191.83 197.48 196.88 199.74 195.43 195.41 196.11 196.63 196.16 200.00 200.00 200.00 200.00 200.00 200.00 164.80 200.00 200.00
P34 104.06 106.45 107.13 104.28 106.43 106.42 106.60 105.88 106.07 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00
P35 104.09 107.43 106.76 105.89 106.43 106.29 98.74 105.98 105.74 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00
P36 107.07 106.41 105.67 109.77 106.43 107.29 102.26 106.43 108.01 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00
P37 377.79 378.89 515.38 505.45 377.28 512.67 381.81 377.41 514.16 511.28 511.28 511.26 511.28 511.28 511.28 421.52 511.28 511.28
P38 25.70 144.48 142.06 89.64 146.43 143.89 10.08 145.00 143.06 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
P39 10.00 144.48 138.94 125.33 144.43 139.23 123.60 105.01 142.86 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
P40 132.07 10.04 10.02 16.68 10.00 10.04 68.18 48.95 10.01 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
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