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Abstract: The problem of optimally increasing the size of existing wind farms has not been
investigated in the literature. In this paper, a proposed wind farm layout upgrade by adding
different (in type and/or hub height) commercial turbines to an existing farm is introduced and
optimized. Three proposed upgraded layouts are considered: internal grid, external grid, and external
unstructured. The manufacturer’s power curve and a general representation for thrust coefficient are
used in power and wake calculations, respectively. A simple field-based model is implemented and
both offshore and onshore conditions are considered. A genetic algorithm is used for the optimization.
The trade-off range between energy production and cost of energy is investigated by considering three
objective functions, individually: (1) annual energy production; (2) cost of added energy; and (3) cost
of total energy. The proposed upgraded layouts are determined for the Horns Rev 1 offshore wind
farm. The results showed a wide range of suitable upgrade scenarios depending on the upgraded
layout and the optimization objective. The farm energy production is increased by 190–336% with
a corresponding increase in the total cost by 147–720%. The external upgrade offers more energy
production but with much more cost. The unstructured layouts showed clear superiority over the
grid ones by providing much lower cost of energy.

Keywords: wind farm layout; upgrade; optimization; genetic algorithm; commercial turbine selection;
hub height variation

1. Introduction

Wind energy has become an increasingly competitive source of electricity, not only among
renewable energy sources but also compared with conventional fossil fuels [1]. The global cumulative
installed wind capacity exceeded 539 GW by the end of 2017 [2]. Wind power represents about
6% of the global electricity capacity and more than 3% of the global electricity generation of all
energy sources [3,4]. Among renewable energy sources, wind energy capacity is more than half the
global renewable installed capacity (not including hydropower) [1], it also shares more than half the
growth [5]. Wind energy is also the second highest growing renewable energy source (after solar
photovoltaics) [1,5]. The 2003–2017 global cumulative installed wind capacity [2] was normalized as
a percentage of the 2017 value and presented in Figure 1.

The energy demand for human activities has increased rapidly, which requires energy
rationalization for both conventional and renewable energy resources. For wind power, beside the
challenging initial cost, the feasible sites for new projects that have promising wind resources are
limited. Moreover, wind energy is facing many restrictions because of environmental impact in the
form of noise, visual effects, and bird and bat interactions, e.g., [6]. As a result, Wind Farm Layout
Optimization (WFLO) became an essential part of wind farm planning, in order to maximize the Annual
Energy Production (AEP) and/or minimize the Cost Of Energy (COE) or any undesired environmental
impact. The first WFLO study was published in 1994 by Mosetti et al. [7] for a relatively simple problem.
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The classical era of WFLO extended up to the beginning of the second decade in the 21st century.
The wind farms designed in this era are characterized by:

• Identical turbines.
• Relatively low area utilization (large distance among turbines).
• Average tower height, H, of about 80 m [8].
• Average rotor diameter, D, of about 85 m [8].
• Average rated power, PR, of about 1.8 MW [8].

Figure 1. The percentage global cumulative installed wind capacity, relative to 2017, adapted from
Reference [2].

It is important to mention here that designing, ordering, installing, and testing turbines for a large
wind farm takes more than two years, e.g., [9]. This simply means that the majority of the wind farms
that have been installed by the end of 2012 were not thoroughly optimized, based on the recent research
findings for WFLO. Increasing wind energy production to meet the global demand requires installing
new farms. This should be done side by side with enhancing the performance of the existing ones
in order to reduce the technical, financial, and environmental challenges facing the installation of
new farms.

When a wind farm reaches the end of its useful life (20–25 years) [10], it is commonly either
“repowered” or “decommissioned”. An old farm may be repowered or upgraded by replacing some
parts (or even some turbines) with more advanced and efficient technology. On the other hand, if the
repowering process is found to be infeasible, the whole project is decommissioned by ceasing the power
production and dismantling the site, e.g., [11–13]. According to Figure 1, less than 7% of the existing
farms could benefit from either repowering or decommissioning. However, there is a third scenario
when a farm is neither well-optimized according to the recent WFLO findings, nor sufficiently old to
be repowered or decommissioned. It is shown in Figure 1 that more than 45% of current farms were
installed between 2003 and 2012. Those farms are still in the first half of their lifespan. Accordingly,
neither repowering nor decommissioning is feasible, and a new strategy considering upgrading should
be taken into account.
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The present work aims to investigate the feasibility of upgrading an existing wind farm while
keeping the original turbines unchanged. Such a problem we call “wind farm layout upgrade
optimization, WFLUO”.

In this paper, the problem of WFLUO is addressed for the first time in the literature. The proposed
methodology is applied to Horns Rev 1 offshore wind farm as a case study. In Section 2, the case study
is highlighted and justified. The proposed upgrade methodology is given in Section 3. The results and
discussions are the topic of Section 4, while the most useful conclusions are listed in Section 5.

2. Horns Rev 1 and Literature Review

Horns Rev 1 is one of the most famous wind farms worldwide. It has received great interest since
commencing power production in 2002 for many reasons, which can be summarized as:

1. Three years of detailed wind resource assessment data taken prior to the installation are publicly
available [14].

2. Detailed operational measurements are also publicly available, e.g., [15].
3. The installed capacity is 160 MW, which made it the world’s largest offshore wind farm when

installed and for several years thereafter.
4. Since installed in 2002 it has produced more than 9 TW-hr [16].

Accordingly, the farm performance and wake measurements were used in many wake model
validations and wind farm layout optimization studies, e.g., [15,17–22]. As mentioned earlier, WFLUO
is not found in the literature; however, some relevant studies will be reviewed below.

Huo, et al. [12] applied a proposed repowering optimization strategy on Horns Rev 1 as a case
study. They investigated two repowering scenarios, each with two stages four years apart. The results
showed that the levelized cost of electricity could be reduced by up to 10.43%. They emphasized
that their findings are limited to a specific wind farm, while the method itself should be generally
applicable, although it does not address WFLUO.

Many investigators have computationally improved the Horns Rev 1 performance by relocating
the turbines within the farm area. Rivas et al. [23] applied the Simulated Annealing Algorithm to the
Turbine Positioning Problem in order to maximize the AEP. They concluded that the AEP could be
increased up to 1%. Vezyris [24] applied deterministic, semi-stochastic, and stochastic approaches in
order to minimize the Levelized Production Cost (cents/kWh). The results showed that a decrease
in the Levelized Production Cost by ~1% combined with an increase in the AEP with ~1% could be
achieved by re-optimizing the farm layout. Park and Law [25] derived a continuous and smooth wind
speed profile that allowed the wind farm power function to be expressed as a smooth (differentiable)
function of wind turbine location variables. The wind farm power function then optimized using
a gradient-based optimization algorithm. The minimum turbine proximity was fixed at 5 D and
the results suggested an increase in the farm output power by 7.3%, without providing with any
cost calculations.

Horns Rev 1 wind farm has 80 identical turbines (8 East-to-West rows by 10 North-to-South
columns). The northern end of the columns is aligned approximately 7.2◦ West of North, forming
a parallelogram. The turbines are all Vestas V80-2.0 with a rotor diameter of 80 m and rated power of
2 MW. The spacing between turbines in both the rows and columns is 7 D. The tower height is 70 m
and the power curve is specific for the turbines delivered to this wind farm and may not apply to other
V80 turbines [15].

Apart from the availability of performance and other data that was noted above, Horns Rev 1
was chosen as a case study as an example of middle-aged non-optimized wind farm, based on the
recent findings. It is about 15 years old, it contains identical turbines, the turbines’ rated power and
hub height are below the recent average values for offshore farms [8], and finally, the turbines spacing
is 7 D in both directions, which is significantly larger than in more recent farms.
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The references quoted above optimized the farm performance by computationally re-locating
the turbines, but this is clearly infeasible for most existing wind farms. This work presents WFLUO,
for the first time in the literature, by not changing the existing farm layout, but by adding additional
turbines. The proposed methodology is based on commercial turbine selection and hub height variation,
which was introduced in [26].

Understanding and analyzing the wind data is an essential task in any wind power project.
As mentioned earlier, three years of wind measurements were made prior to Horns Rev 1 installation.
The wind data at 62 m height from 1 June 1999 to 31 May 2002 was averaged and the Weibull
parameters—scale and shape factors—were evaluated for 12 directional sectors (30 degrees each) [14].
Moreover, these parameters were extrapolated to the hub height of 70 m [27]. Figure 2 shows the
frequency of occurrence, f, of each freestream speed (at hub height) at different wind directions in
contour format.

Figure 2. Contours of frequency of occurrence, f, of wind speed and direction at hub height for Horns
Rev 1, adapted from [27].

3. WFLUO Methodology

The proposed upgrade methodology is described in detail in this section. In Section 3.1,
the proposed upgraded layouts are illustrated. The wake model and wake interference calculations
are described briefly in Section 3.2. Section 3.3 describes the pool of commercial turbines from which
the turbines for the upgraded farm were chosen as well as the AEP calculations. The strategy of hub
height variation is discussed in Section 3.4. Finally, the cost analysis and the optimization methodology
are the topics of Sections 3.5 and 3.6, respectively.

3.1. Proposed Upgraded Layouts

The development of methodologies for multiple turbine wind farm layouts (variable turbine size
and/or hub height), e.g., [26,28–31], allowed the turbine spacing to be reduced to 3.5 D. This recent
finding provides compact farm designs with higher AEP, excellent area and height utilization,
without severe wake loss, and, hence, lower COE. These results suggest the possibility of installing
new turbines within the area of existing farms with relatively large turbine spacing. It is important to
state here that the effects of dynamic loading on the turbine blades are not considered in the present
work, as is the case of almost all WFLO literature. For comparison, we also considered additional
turbines outside the existing wind farm area. Three upgrade layouts were considered: internal grid,
external grid, and external unstructured. Figure 3a shows the internal grid upgrade, in which the
existing turbines and farm area were kept unchanged by installing new turbines between the existing
ones. This maximizes the utilization of the farm space while reducing the added cost due to extra
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infrastructure. In the external grid upgrade, Figure 3b, the added turbines form four rows and four
columns outside the existing area, in order to allow larger turbines to be installed with the least effect
on the existing turbines. In Figure 3a,b, the existing turbines are numbered from 1 to 80 (in solid red),
while the added turbines are numbered starting from 81 (in hollow black).

The external unstructured upgrade was investigated by considering the same area and the
same number of added turbines as the external grid but with an unstructured (non-grid) layout.
The minimum turbine proximity was set as 3.5 Do, where Do is the diameter of the original turbines
(80 m). In all cases, Vestas turbines were considered as this manufacturer’s turbines were used in
the original farm. The number of turbines in the original farm is denoted N (N = 80), while M is the
number of extra turbines (M = 63 for the internal grid layout and 68 for both external layouts). In all
cases, the existing turbines were numbered from 1 to N, while the added turbines from N + 1 to N + M.
The vertical coordinate in Figure 3 indicates the North direction and the values in both vertical and
horizontal scales are in multiples of Do.

Figure 3. Two proposed upgrade layouts for Horns Rev 1 wind farm. (a) Internal grid; (b) External
grid. The vertical coordinate indicates the north.
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As shown in Figure 3, the original farm is a parallelogram of base 63 Do and height 49 Do which is
unchanged in the internal case. However, the total outside area is a parallelogram of base 91 Do and
height 77 Do. Defining the Area Factor, AF, for the upgraded layout as the farm area divided by the
original farm area, gives AF for the three layouts of 1.0, 2.27, and 2.27, respectively.

3.2. Wake Model and Interference Calculations

Wake modelling is one of the first and most important steps in WFLO. The availability of the field
measurements for some wind farms, especially Horns Rev 1 and Nysted, provided an opportunity to
validate the existing wake models and even develop new models. Jensen’s analytical wake model is
one of the oldest, simplest, and most accurate in estimating both velocity and power deficits within
wind farms, e.g., [22,32–34]. Moreover, Reference [26] demonstrated that the model led to accurate
estimates of the energy production data for Horns Rev 1 between 2005 and 2015 [14]. Accordingly,
the Jensen wake model was implemented in the present wake calculation. Originally proposed by
Jensen [35], the model was developed by Katic et al. [36] and Frandsen [37].

In Figure 4, taken from [26], a schematic of the wake interference between an upwind turbine, j,
and a downwind one, i, is given. Rw,ij is the radius of the jth turbine’s wake when it reaches the ith
turbine, Aij is the overlap of the jth turbine wake with the downwind turbine rotor, Ai. The Y axis is
into the page. The wake calculations were done as follows:

Figure 4. A front view (parallel to wind direction) illustrates the overlap of an upwind turbine wake
(the dashed circle) with a downwind turbine rotor (the solid circle) [26].

For each wind direction, the coordinates were rotated so that the wind was always in the positive
Y-direction. The turbines were then re-numbered in ascending order according to their Y coordinates.
For example: the most upwind turbine, which has the least Y-coordinate, was designated 1, while the
most downwind one was N + M (the total number of turbines). Accordingly, each turbine, i, in the
farm apart from the most upwind one, 2 < i < N, is potentially affected by the wake of every turbine
upwind of it: j, 1 < j < i − 1. Defining ∆yij = (yi-−yj) > 0 and applying the Jensen’s wake model:

Rw,i j = Rexp, j + α j∆yi j (1)
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Rexp, j = R j

√√
1 +

√
1−CT, j

2
√

1−CT, j
(2)

α j = 0.5/ln
(H j

zo

)
(3)

δUi j =

 1−
√

1−CT, j[
1 + α j∆yi j/Rexp, j

]2


(Ai j

Ai

)
(4)

δUi =

√√√√ j=i−1∑
j=1

(
δUi j

)2
(5)

Ui = Uo,i(1− δUi) (6)

where CT is the thrust coefficient for the upwind turbine, δUij is the velocity deficit caused by the jth
turbine, δUi is the cumulative velocity deficit caused by all upwind turbines, Ui is the effective wind
speed, and Uo,i is the undisturbed wind speed at Hi.

The log law [38] was used to extrapolate wind speed from the reference height in order to estimate
the undisturbed wind speed at any height, Hi:

Uo,i = Ure f

 ln[Hi/zo]

ln
[
Hre f /zo

]  (7)

The roughness length, zo, is an essential parameter in wake calculations, on which the vertical
wind profile and the wake entrainment greatly depend. The ambient roughness length for offshore
farms was taken as 0.0002 m in [22] as is widely accepted for open sea, e.g., [39]. However, the upwind
turbines increase the turbulence level within the farm, which in turn increases the effective roughness.
As suggested by [40], zo was taken as 0.05 m “to provide inflow characteristics that are in good
agreement with the observed data at Horns Rev” [40], referring to [17,19].

3.3. Commercial Turbines and AEP Calculations

In order to obtain practical upgraded layouts, it was decided to restrict the selection to available
models from the same manufacturer as the existing turbines. Accordingly, the selection in the current
optimization was among Vestas turbine models. Due to space limitation and to minimize the effect
on the existing turbines, the maximum power for the candidate turbines was taken as 3.5 MW and
hub height as 140 m. To this end, 19 Vestas turbine models with rated power between 1.8–3.45 MW
and diameter between 80–136 m were considered in this study. The turbine rated speed UR ranged
between 10.5–16 m/s. The turbines were sorted and coded in an ascending order according to the rated
power and then according to the diameter. The code, rated power, rotor diameter, and rated speed for
the 19 turbines are given in Table 1.

Table 1. Code, rated power, rotor diameter, and rated speed for the turbines included in the selection.

Turbine Code Rated Power
PR (kW)

Rotor Diameter
D (m)

Rated Speed
UR (m/s)

1 1815 90 13
2 1815 100 11.5
3 2000 80 14
4 2000 90 13
5 2000 100 12
6 2000 110 11
7 2600 100 15
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Table 1. Cont.

Turbine Code Rated Power
PR (kW)

Rotor Diameter
D (m)

Rated Speed
UR (m/s)

8 3000 90 16
9 3000 112 12

10 3000 126 10.5
11 3075 112 13
12 3300 105 13.5
13 3300 112 12.5
14 3300 117 13
15 3450 105 13.5
16 3450 112 12.5
17 3450 117 11.5
18 3450 126 11.5
19 3450 136 11

The manufacturer’s power curves for the 19 turbines were subdivided into four zones separated
by cut-in speed, Uin, the rated speed, and the cut-out speed, Uout. The second zone (of a cubic nature)
was fitted by a fifth degree polynomial for more accuracy than a cubic fit. The coefficients were used to
evaluate the power output from any turbine, i, as function of the effective wind speed, Ui, ahead of its
rotor. Accordingly, the individual power, Pi, of the ith turbine based on its type and the effective wind
speed, Ui, was evaluated as:

Pi =


0 Ui < Uin,i

ci0 + ci1Ui + ci2Ui
2 + ci3Ui

3 + ci4Ui
4 + ci5Ui

5

PR,i

Uin,i ≤ Ui ≤ UR,i
UR,i < Ui < Uout,i

0 Ui ≤ Uout,i

 =
k=5∑
k=0

cikUi
k (8)

The total farm output power, PF, for each freestream hub height wind speed, v, at each wind
direction, θ, is simply the sum of the individual powers from all turbines:

PF(θ,v) =
N+M∑
i=1

Pi. (9)

The AEP was calculated as:

AEP = 8766
360∑
θ=0

25∑
v=4

f(θ,v)PF(θ,v) (10)

where f is the frequency of occurrence of a particular freestream speed at particular direction, Figure 2,
and 8766 is the number of hours per year.

3.4. Hub Height Variation

The hub height, H, is one of the most important design parameters for a wind turbine, upon which
power and cost greatly depend. In general, higher height means higher wind speed and low wind
shear and turbulence levels combined with significant technical and financial difficulties. The optimum
value of H for a specific turbine should consider the turbine diameter, rated speed, installation cost,
wind resources, site restrictions, etc. Moreover, many recent WFLO studies, e.g., [26,31,41,42], suggest
varying H for the turbines within the farm, in order to minimize the wake interference, the installation
cost, or a combination of them. In our previous work [26] it was decided to use common H limits
(80 m ≤ H ≤ 140 m) for all turbines. However, in the present work, the investigated range of H is
widened, and each turbine is given individual H limits according to the turbine diameter. The utilization
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of the maximum feasible hub height is meant not only to reduce the wake loss, but also to increase the
energy production by operating at higher wind speeds and lower turbulence levels. The maximum
tip height and the minimum ground clearance are used to determine the individual H range for each
turbine, based on its diameter. These two parameters are simply the blade tip height at its highest
and lowest positions, respectively. The maximum tip height is set as 230 m for Horns Rev wind
farms [43], which is slightly less than the world’s tallest installed wind turbine [44]. On the other hand,
the recommended value for the minimum ground clearance ranges from 5 m to 23 m [45]. The proper
value depends on the site features: the roughness length for onshore farms and the combination of
wave height and tidal range for the offshore ones. Regarding to Horns Rev site, the rare combination of
maximum wave height and tidal range is less than 7 m, the mean value is about 3 m [14]. To this end,
the maximum tip height and the minimum ground clearance are taken as 200 m and 15 m, respectively.
Accordingly, the individual turbine’s H limits can be simply calculated.

3.5. Modified Simple Cost Model

The cost model used in this study is a modified version of the simple model introduced and
described in detail in [26]. It was decided to represent all costs in terms of the two design parameters
(rated power and hub height). The costs were represented in index form instead of money value and
then normalized in order to get qualitative results. The following are the assumptions that led to the
cost model used in the present work, supported by references:

1. The Total Cost of a wind farm is a combination of the Capital Cost, CC, and the Operation and
Maintenance cost, O&M, CO&M. It was assumed that, fractionally, CC = 0.75, while CO&M = 0.25 [10].

2. CC in turn is subdivided into the total turbine cost, Cturbine = 0.329 CC, and the remainder, 0.671 CC,
is the Financial and Balance of System costs, CF&B [46].

3. The tower cost for offshore farms, Ctower, was assumed to be 0.1831 Cturbine [46] providing that the
turbine is at its minimum H, Hmin, i. Each 1.0 m increase of Hi over Hmin, i was assumed to add
Ctower/Hmin, i to the capital cost [26].

4. CF&B depends mainly on the farm area, as the number of turbines is fixed for each layout.
Accordingly, the foundation and the other infrastructure costs were assumed fixed for each layout
and. In other words, if the turbines were added within the original farm area, the added CC
would comprise only Cturbine while CF&B was considered unchanged.

5. The cost of a 1.0 MW turbine installed at the corresponding Hmin, according to its rotor diameter,
was taken as the Unit Cost Index, UCI. The corresponding capital and total costs were denoted
Capital Cost Index, CCI, and Total Cost Index, TCI, respectively.

Accordingly, the CCI and TCI for any turbine, i, is expressed as:

CCIi = PR,i

[
1 +

Ctower

Hmin,i
[Hi −Hmin,i]

]
(11)

and:

TCIi = AF
[

1
[1−CO&M][1−Cturbine]

]
CCIi. (12)

The added CCI and TCI as a result of the farm upgrade can be expressed as:

CCIa =
N+M∑

i=N+1

PR,i

[
1 +

Ctower

Hmin,i
[Hi −Hmin,i]

]
(13)

and:

TCIa = AF
[

1
[1−CO&M][1−Cturbine]

] N+M∑
i=N+1

PR,i

[
1 +

Ctower

Hmin,i
[Hi −Hmin,i]

]
(14)



Energies 2019, 12, 2465 10 of 25

where AF is the Area Factor, as introduced in Section 3.1.
Based on the above analysis, the TCI for the original farm, TCIO is

TCIO =
1.0

(1− 0.25)(1− 0.329)

80∑
i=1

2.0
[
1 +

0.06
55

[70− 55]
]
= 323 UCI (15)

Two useful quantities are defined; the Cost Of Added Energy Index (COAEI) and the Cost Of
Total Energy Index (COTEI):

COAEI =
TCI a

AEP− AEPO
(16)

and:
COTEI =

TCI a

AEP
(17)

where AEPO = 715 GW-hr/yr is the estimated AEP for the original farm [26].

3.6. Optimization

Layout optimization for large wind farms with commercial turbine selection is discrete, non-convex,
non-linear, and of high dimension. Genetic Algorithms (GAs) are of the most successful optimization
methods for such complex optimization problems. The capability of GAs has been proven over years,
especially with WFLO, e.g., [47]. On the other hand, GAs are computationally expensive compared with
other optimization methods, e.g., [29,47,48], as they require successive random searches. The solution
evolves from one generation of a fixed population size (PS) to the next generation. In general, the larger
the PS, the wider the search, and the greater the probability of finding the global optima. However,
a very large PS requires large execution time without significant improvement on the solution, e.g., [49].
Accordingly, it is very important to select the proper PS in order to increase the probability of finding
the global optima while keeping the execution time reasonable, e.g., [49]. Following the majority of
the WFLO studies and recommendations found in the literature, GA was used in the present work.
Figure 5 shows a flowchart for GA procedure.

Figure 5. Flowchart for genetic algorithm.

In order to investigate the feasibility range, the extreme designs of maximizing the AEP and
minimizing the COE were considered, individually. The latter was implemented by two different
approaches, as given in Equations (13) and (14). The three objective functions considered in the
optimization are shown in Table 2.
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Table 2. Definition of the three objective functions.

ObjFun# Objective Equation

ObjFun1 max AEP (10)
ObjFun2 min COAEI (16)
ObjFun3 min COTEI (17)

For both internal and external grid layouts, two cases were investigated: single turbine and
multiple turbines. In the single turbine cases the optimization was done for each turbine type,
individually, with only ObjFun1, and H was the only design variable. On the other hand, for multiple
turbines cases, both H and turbine type were the design variables and the three objective functions were
considered, individually. However, for the unstructured layout, where the turbine location is variable,
only single turbines with ObjFun1 were considered, in order to keep the number of design variables,
nvars, reasonable. Moreover, as mentioned in Section 3.1, the unstructured layout was constrained by
the minimum turbine proximity, set as 3.5 Do. The hub height was variable in all cases. As mentioned
in Section 3.4, the H variation was set for each turbine based on its diameter. Accordingly, the upper
and lower bands for H were not the same for all turbines and the individual height was not included
explicitly in the optimization design variables. Instead, a fractional parameter denoted “coefficient of
height”, CH, was an optimization design variable with the same lower and upper bounds (0 and 100,
respectively) for all turbines. CH is defined as:

CH = 100
[

Hi −Hmin,i

Hmax,i −Hmin,i

]
. (18)

Once CH is selected (during the optimization) for a particular turbine, i, the corresponding value
of Hi is calculated from Equation (18) as:

Hi = Hmin,i +
CH

100
[Hmax,i −Hmin,i]. (19)

Table 3 summarizes the design variables and the optimization objectives for all cases considered
in this paper.

Table 3. The different cases considered in this paper. The objective functions are listed in Table 2.

Layout Design Variable(s) ObjFun# Number of Variables (nvars)

Internal grid (I) single turbine CH 1 M (= 63)
multiple turbines code, CH 1, 2, 3 2M (= 126)

External grid (E) single turbine CH 1 M (= 88)
multiple turbines code, CH 1, 2, 3 2M (= 176)

External unstructured (S) single turbine x, y, CH 1 3M (= 264)

WFLUO is subject to the following constraints, when applicable:

• 1 ≤ codei ≤ 19, N + 1 ≤ i ≤ N + M
• 0 ≤ CH,i ≤ 1, N + 1 ≤ i ≤ N + M
• The turbines must lie between the extended farm area and the original farm area, as shown in

Figure 3.

•

√(
xi − x j

)2
+

(
yi − y j

)2
≥ 3.5 Do, N + 1 ≤ i , j ≤ N + M, & i , j.
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The first constraint is integer linear, the second and the third constraints are float linear,
while the fourth constraint is float nonlinear. In order to accelerate the constraint satisfaction in
the unstructured layouts, the external grid layout with CH = 50 and random turbine selection was set
as the initial population.

The trade-off between energy production and cost of energy for the three proposed upgraded
layouts was investigated. The selection was among 19 Vestas commercial turbines listed in Table 1.
These covered a rated power range of 1.8–3.45 MW and a rotor diameter between 80 and 136 m.
MATLAB’s genetic algorithm toolbox [50] was employed for the optimization and the three objective
functions in Table 2 were considered individually.

4. Results and Discussion

The results for the three cases are discussed in detail in this section. AEP and the TCI were
normalized by the corresponding values for the original farm, AEPO and TCIO, respectively. The two
normalized quantities were denoted NAEP = AEP / AEPO and NTCI = TCI / TCIO. Moreover, the NTCI
were divided by the NAEP, to give the Normalized Cost Of Energy Index, NCOEI. The NAEP and
NTCI are useful in comparing different layouts and arrangements qualitatively relative to the original
farm’s AEP and TCI, respectively. Finally, NCOEI helps in depicting and comparing their feasibility.

As mentioned at the end of Section 2, the wind data was given in 12 directional sectors of 30◦.
Finer resolutions were tested by the authors and validated against the available farm’s AEP data [16].
Very similar results to the 12-sector division were obtained but with much more computational cost.
Figure 6 shows the effect of sector angle, θ, on the estimated AEP and execution time, t, normalized
with respect to the corresponding values for 30◦ sectors. Accordingly, it was decided to use the original
wind data with 12 sectors in the present work.

Figure 6. Effect of sector angle on the estimated AEP and execution time, t, normalized with respect to
the corresponding values for 30◦ sector.

In general, it was found that using a population size double the number of variables (PS = 2 nvars) and
evolving for 100 generations achieved satisfactory results. Insignificant improvement was obtained
beyond these values with increased computational cost. Figure 7 shows mean and best values for one
of the investigated cases over 100 generations for PS = nvars and PS = 2 nvars.
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Figure 7. Convergence history for one of the investigated cases over 100 generations for PS = 1 nvars
and PS = 2 nvars.

Figure 8 shows the NAEP, NTCI, and NCOEI for the single turbine cases and ObjFun1. Moreover,
the probability of selection for CH values for all single turbine cases is given in Figure 9. In these cases,
the M added turbines were assumed identical in type, but different in height. It is important to note
here that the discrete points in Figure 8 were connected with dotted line for visual aid only. The major
findings are summarized as:

1. There is a wide range of feasible optimum upgrades providing a useful trade-off between AEP
and COE.

2. The single turbine internal layouts produced a range of NAEP from 1.90 to 2.60 with a NTCI from
1.47 to 2.87, depending on the turbine model.

3. The single turbine external layouts gave NAEP from 2.23 to 3.36 with a NTCI from 3.81 to 7.20,
depending on the turbine model.

4. The internal layouts produced cheap additional AEP if small turbines were used. The added AEP
increases as the turbine size increases, but at a higher rate in the added cost. The reason is the
limited wind resources which causes the increase in AEP to reduce as the turbine size (and hence
the cost) increases.

5. As expected, the external layouts added more AEP than the internal ones; however, this increase
in AEP is accompanied with very high cost as a consequence of adding area to the farm.

6. All layouts have the same trends in AEP and TCI (qualitatively); however, the external grid ones
have magnified scales, especially for the cost.

7. All layouts confirm the superiority of using turbines with relatively large diameter and relatively
low rated speed (turbines number 2, 1, 6, 5, 4, and 3) than the opposite (turbines number 15, 8,
17, 16, and 12). This finding matches that in our previous research [26] and with others in the
literature, e.g., [51].

8. The NCOEI for the internal layouts are usually close to unity, which means that the added AEP
increases comparably to the TCI.

9. The unstructured layouts provided almost the same AEP as the external ones with surprisingly
much less cost (the NCOEI was close to that of the internal grid layouts). The reason relates to
the greater flexibility in locating the turbines which reduces the need for using higher heights to
minimize the wake interference. As shown in Figures 9 and 10, a wider range of CH selections
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were obtained for unstructured layouts compared with the grid ones. The use of relatively low
heights resulted in dramatic decrease in cost.

Figure 8. Results for single turbine cases and ObjFun1 for all layouts. (a) Normalized annual energy
production and normalized total cost index; (b) Normalized cost of energy index.
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In Figure 9 and those following, symbols I, E, and S represent the internal grid, external grid,
and unstructured layouts, respectively, while the number indicates the ObjFun# as given in Table 2.
For example: I2 represents the internal grid layout with ObjFun2. It is clear from Figure 9 that
the unstructured layouts have significantly more uniform CH range compared with the grid ones,
which resulted in much less cost, as illustrated in Figure 8. The reason is the flexibility in turbine
location which reduces the need for extreme values of H. In the grid layout cases, two clear peaks
at CH = 0 and 100 can be observed. This means that most of the turbines should be installed at the
minimum and maximum allowed H in order to reduce the wake interference. It can be also observed
that Hmax should dominate in maximizing AEP, while this domination should be biased to Hmin if the
COE minimization is desired.

Figure 10 shows the turbine locations for eight unstructured layouts as a sample of the results,
for the sake of brevity. Figure 10a shows the results for turbines 3–6 with PR = 2 MW, while Figure 10b
is for turbines 15–18 with PR = 3.45 MW. In all cases, the color indicates the CH values. Two important
observations can be drawn:

1. The turbines were located more frequently close to the corners. This is understandable because
these locations have the least effect on the original turbines.

2. In maximizing AEP, more than half the turbines were installed at low and medium heights.
This means that properly locating the turbines was much more important than having higher
heights in order to maximize the AEP. Accordingly, the cost was reduced dramatically for the
unstructured layouts compared with the external grid layouts, Figures 8 and 9.

As the turbine type and turbines locations were fixed in the grid cases, the hub height variation
plays the main role in both AEP maximization and COE minimization. For the AEP maximization,
the majority of turbines should be installed as high as possible to have the highest possible wind speed.
However, the minimum height was required for the rest of turbines, especially in the middle of the
farm in the internal layouts, in order to allow wake recovery ahead of the exterior turbines.
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For the COE minimizations, heights close to Hmin were dominant, and scattered values close to
Hmax were selected to capture the most power at a few locations and to allow wake recovery for the
rest of the turbines at lower heights, which reduced the COE. In general, a wide range of H was used
in order to compensate the absence of the turbine selection.

Figure 10. Turbine locations and CH values for selected unstructured cases. (a) Turbines 3–6 with
PR = 2 MW; (b) Turbines 15–18 with PR = 3.45 MW.
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Figure 11 shows the NAEP, NTCI, and NCOEI for the multiple turbine layouts where the M
added turbines could be different in both type and height. Again, the dotted lines in Figure 11 were
used for visual aid only. The rated power distribution for turbine selection and the corresponding
CH distribution are given in Figures 12 and 13, respectively. The probability of turbine and CH values
selections for all multiple turbines cases are given in Figures 14 and 15, respectively. Again, the external
grid layouts give significantly more AEP but with a huge cost (Figure 11) because of the added area
(and hence CF&B) compared to the internal layouts. The maximization of AEP (ObjFun1) gave results
close to those for the single turbine case of larger size for all layouts. This can be explained by the
turbine selection distribution (Figure 12), which shows that maximizing AEP regardless the cost,
requires larger turbines as much as possible. The resulting layouts usually have high total cost and COE.
Similarly, but at the other extreme, the minimization of COTEI (ObjFun3) gave results close to those for
the single turbine case of smaller size for both inside and outside layouts. This can be also explained by
the turbine selection distribution (Figure 12) which shows for maximum COE, the selection should be
from the smaller turbines in general. Larger turbines should be selected carefully in some places where
the increase in power output dominates the corresponding increase in cost. Medium size turbines
were rarely used, which means that the proper turbine selection should be, in general, from a few large
turbines and a few small ones. The optimization for maximum AEP requires significantly wider range
in both turbine size and H. On the other hand, the optimization for minimum COE requires a much
smaller range of both turbine size and H.

Finally, a formula was developed to represent NCOEI shown in Figure 8b as function of the
turbine’s diameter and rated power. The best fit, was found as:

NCOEI =
PR

0.783

D0.527 (20)

Equation (20) has a maximum local deviation of 5.5% from the data presented in Figure 8b. This formula
could play an important role in comparing two or more turbines from the COE point of view (the smaller
the NCOEI the better the turbine to be used). Although the formula represents confirmed trends
for PR and D; however, the specific values are valid only for the case study and the assumptions
made throughout the present work. It is clear from Equation (20) that the turbine diameter has an
important inverse effect while the rated power is dominant. The effect of the rated speed was found to
be negligible, probably because of the relatively high wind speeds considered in the present work.
Figure 16 shows the dependence of NCOEI on PR and D according to Equation (20), within the
investigated ranges. Beside the opposite effects of PR and D on NCOEI, Equation (20), Figure 16
predicts that the use of large diameter is crucial for turbines with high rated power.
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Figure 11. Results for multiple turbines grid layouts. (a) Normalized annual energy production and
normalized total cost index; (b) Normalized cost of energy index.
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Figure 12. Rated power distribution in MW for the selected turbines for multiple turbines grid layouts.

Figure 13. Coefficient of height, CH, distribution for multiple turbines grid layouts.
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Figure 16. NCOE dependence on PR and D.

5. Conclusions

This paper considers the optimization of wind farm layout upgrade for the first time in the
literature as an alternative to repowering a wind farm by replacing the turbines. The proposed upgrade
methodology was based on adding new turbines to an existing farm either internal to the farm area or
externally. The famous Horns Rev 1 large offshore wind farm was used as a case study. The existing
turbines were retained while a similar number of turbines were added in three upgraded layouts:
internal grid, external grid, and external unstructured. The selection was from 19 commercial turbines
of rated power raged from 1.8 to 3.45 MW. The following are the implications of the findings of
this paper:

1. Existing middle-aged wind farms can be feasibly upgraded to increase the energy production by
adding new turbines, while keeping the cost of energy in reasonable range.

2. Wind farm layout upgrade for offshore farms is recommended if it is done within the original
farm area and infrastructure. In this case, a significant increase in the energy production can be
achieved while keeping the cost of energy in a reasonable range.

3. Having a range of commercial turbines for selection as well as allowing variation in height is
a powerful tool in the optimization of the wind farm layout upgrade.

4. If the added turbines are to be installed outside the original farm area, the unstructured layout
has a clear advantage in cost reduction compared to the grid one. It can produce the same output
with much less cost.

5. By considering more than one objective function, a wide band of feasible optimum layouts is
obtained which provide a trade-off between energy production and cost of energy.

6. Among commercial turbines having the same rated power, the priority in selection should be
biased towards the turbines with larger diameter and lower rated speed.

7. Using a population size equal to double the number of variables and allowing the evolution over
100 generations is enough to get reasonable results in the present optimization problem.

8. An approximate formula is given to compare the turbines available for the upgrade, from the cost
of energy point of view, based on rated power and diameter.



Energies 2019, 12, 2465 22 of 25

6. Limitations and Avenues for Future Research

1. The cost model was simplified in order to be expressed only in terms of turbines’ rated power
and hub height. Consequently, some other factors were not considered, such as: rotor diameter
and transportation cost.

2. The simple wake models not able to assess the fatigue and other loads associated with multiple
turbines, which may well need to be considered in layout optimization.

3. The expected effects of wake meandering on wake interference across large farms were
not implemented.

4. It was assumed that all turbines are available and can be installed at any height within the chosen
limits. However, there are associated financial and technical difficulties that were not considered
in the selection or in the cost model.
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