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Abstract: In this paper, a fuzzy neural network controller for regulating demand-side thermostatically
controlled loads (TCLs) is designed with the aim of stabilizing the frequency of the smart grid. Specifically,
the balance between power supply and demand is achieved by tracking the automatic generation control
(AGC) signal in an electric power system. The particle swarm optimization (PSO) and error back
propagation (BP) algorithms are used to optimize the control parameters and consequently reduce the
tracking errors. The fuzzy neural network can be applied to solve load control problems in power systems,
since its self-learning and associative storage functions can deal with the highly nonlinear relationship
between input and output. Simulation results show the advantage of the fuzzy neural network control
scheme in terms of frequency regulation error and consumer comfort.

Keywords: automatic generation control; fuzzy neural network control; thermostatically controlled loads;
back propagation algorithm; particle swarm optimization

1. Introduction

Smart grid is a modern grid infrastructure with high efficiency, reliability, and safety, which is based
on renewable energy, automatic control, and modern communication technology [1,2]. An ancillary
service is indispensable in an electric service, and plays a vital role in providing strong support for power
transmission and power system operation. Ancillary service includes services related to frequency stability.
The stability of grid frequency is closely related to the operation of power market and the equipment safety
of the power generation side and power consumption side. Ancillary service mainly includes: Frequency
adjustment, automatic generation control, spinning reserve, and peaking services.

The mismatch between the power supply side and the area power consumption can affect the
frequency of the power system. Hence, the load frequency regulation is necessary in power systems,
in order to maintain power balance under normal conditions [3]. Grid frequency can be used to evaluate
power quality. The main way to adjust the frequency of the power system is to change the generated output
power and manage the loads in demand side. Reasonable control of temperature control loads can provide
adjustable buffer energy for power systems [4]. A great deal of potential electrically-thermal energy
is stored in all sorts of heat buffers equipment, such as heating, air conditioning units, and fridges [5].
The advantages of aggregated thermostatically controlled loads (TCLs) to take part in power grid frequency
regulation are as follows: Firstly, the TCLs which can store massive energy are of wide distributions;
secondly, the control method of them is simple, fast, and real-time; thirdly, the aggregated TCLs can
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generate a continuous reaction without considering the discrete characteristics of the individual load
control [6]. The management of TCLs is one of frequency adjustment strategies with extremely high
feasibility to ensure frequency stability and improve power quality.

Recently, the bilinear partial differential equation (PDE) model was developed to provide effective
control of aggregated TCLs [7]. Two control methods, based on the combination of estimator and controller,
were utilized to control TCLs and effectively track demand curve [8]. A centralized and distributed
algorithm based on the state space model of heating ventilation and air-conditioning (HVAC) was proposed
to reduce power fluctuations and improve satisfaction of demand side [9]. A model predictive control was
described and applied to demand-side response services in [10]. A distributed model predictive control
(DMPC) method based on an optimized aggregation model was applied to provide frequency regulation
services [11]. A Fokker–Planck diffusion model and a direct load control algorithm were developed
in [12]. A model of aggregate homogeneous TCLs with uniform variation of temperature set-point was
developed, and a linear quadratic regulator (LQR) has been designed in [13]. In [14], the authors proposed
a novel causal method based on a parametric second-order model to forecast the energy conservation.
In [15], a linear optimization model was built to provide frequency regulation services for power systems
while also providing short-term demand response management. In [16], the authors proposed several
switched control strategies for aggregate HVACs to provide demand-side frequency regulation. Although
various aggregation characteristics of TCLs have been extensively studied, modeling precision still needs
to be farther improved. As a matter of fact, it is hard to establish accurate mathematical models or
physical models for aggregated TCLs because of various assumptions and computational complexity in
the modeling process.

In recent years, artificial intelligence has developed rapidly with the characteristics of bionics and
intelligence. This paper proposes a fuzzy neural network control method which adjusts TCLs based on the
input and output data of TCLs instead of the aggregated TCL model. This method can reduce tracking
errors and computational complexity, because it draws the advantages–logic reasoning capability of fuzzy
control and self-learning capability of the neural network [17]. This study has the following contributions:

• The fuzzy neural network can model the characteristics of aggregated TCLs in the network weight
after training, which can meet the response of the system input and output without modeling the
load characteristics.

• The combination of particle swarm optimization (PSO) and back propagation (BP) algorithms,
which optimize the initial value of weight and membership degree parameters, can avoid the local
minimum and accelerate effectively to convergence speed.

The rest of this paper is organized as follows. Section 1 introduces the thermal dynamics of individual
TCLs and the frequency regulation problem. Section 2 describes the system structure, algorithm, and
optimization of the fuzzy neural network control in detail. The simulation results are shown in Section 3.
Finally, the conclusions are summarized in Section 4.

2. Problem Formulation

2.1. Individual TCL Characteristic

The TCLs can consume electric energy and release thermal energy, which can usually be stored and
transferred [18]. For example, the simple TCLs usually have two work states, i.e., “on” or “off”, and
each corresponds to one power value, i.e., Prate or 0. When there is excess power in generation side, the
TCL is changed to the “on” state, then the electricity consumption increases and the transformed heat
energy will also increase. When the power generation fails to meet users’ needs, the TCLs are changed
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to the “off” state and the power demand will be reduced in order to stabilize the power grid frequency.
The characteristics are described as follows [19]:

Ṫ(t) =
1

CR
(Ta − T(t)− s(t)RP), (1)

where T and Ta represent the indoor and outdoor temperature, respectively. P, R, and C denote energy
transfer rate, thermal resistance, and thermal capacitance, respectively. s(t) represents the switching state
of loads.

The operation characteristics of an individual TCL are shown in Figures 1 and 2. The set-point
regulation method is adopted for regulating TCLs to achieve the purpose of peak shaving and load
shifting. In the figure, u is the temperature set-point change. T+, Ts, and T− on the left of the figure denote
the upper boundary of temperature, the temperature set-point, and the lower boundary of temperature,
respectively. 4 is the width of the temperature deadband, which denotes the difference between the upper
and lower limits of temperature. According to the physical characteristics of TCLs, T+, Ts, T−, and4 have
the following relationship: 

T+ = Ts +4/2,

T− = Ts −4/2,

4 = T+ − T−.

(2)

The rising edge represents that the room temperature has a rise caused by a natural heat conduction
process when the TCL is off. The falling edge denotes the temperature drops caused by the cooling process
of the TCL when the TCL is turned on. In order to keep the room temperature near the temperature
set-point, the TCL will be changed from an off to an on state when the temperature reaches the upper limit
and changed from on to off state when the temperature reaches the lower limit in Figure 1. We can observe
that the upper and lower bounds of temperature vary with the temperature set-point, but the deadband4
keeps constant in Figure 2. Hence, when the temperature set-point changes, the TCL’s switch state can be
indirectly changed, and the TCL’s running time will be extended or shortened. Therefore, prolonging or
shortening the running time of TCL will change the demand-side power consumption, thus it is effective
to maintain the stability of the power grid frequency.

Time

Temperature

off

T-

TS

T+

Rising 

edge
Falling 

edge

On/off 
on

Time

Figure 1. Operation characteristic of an individual thermostatically controlled load (TCL) (u = 0).
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Suppose that N TCLs are used to provide the frequency regulation. When u is changed, the power
consumption in demand side will be shifted, which contributes to the peak shaving and valley filling for
the grid. The aggregated power consumption Ptotal could be expressed by

Ptotal(t) =
N

∑
i=1

1
ηi

siPi, (3)

where ηi (>1) is the efficiency coefficient of the ith TCL. si is a binary variable. The TCL is on when si = 1;
and off when si = 0. Pi denotes the rated power of the ith load.

Time

Temperature

T+

TS

T-

Time

off

on
On/off

Figure 2. Operation characteristic of an individual TCL (u 6= 0).

2.2. Frequency Regulation Problem

In the power system, since the power is difficult to store in large quantities, the real-time power
balance between the generation side and the demand side must be maintained which can achieve the goal
of suppressing the grid frequency fluctuations, keeping the reliable power supply, avoiding accidents
and hurting the user power equipment [20,21]. The aggregated TCLs can reliably provide the frequency
regulation service by energy storage and flexible scheduling, which are mentioned by demand-side
management. In that case, the power consumption of the TCLs tracks the frequency modulation power
signal of the power grid by an effective controller and a control algorithm.

The frequency regulation signal PAGC, which is a continuous change of positive and negative power
signals and reflects the supply and demand deviation, thus, PAGC needs to stacked on a baseline load
signal PBL—that will generate the actual tracking signal Ptarget, which can be tracked by the aggregated
TCLs. Here, PBL is selected as the rated power at one temperature set-point. It can be described as:

PBL =
N

∑
i=1

Ta − Tset
i

ηiRi
, (4)

Ptarget = PAGC + PBL, (5)

where N represents that the quantity of TCLs.
From Figure 3, we can observe that the inputs of the controller are the difference between the

actual tracking signal Ptarget and the power consumption Ptotal, which are the tracking error signal
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e = Ptarget − Ptotal and its differential de. The controller output is the temperature set-point change u.
In the control scheme, since the fuzzy neural network controller looks like a black box with brilliant
self-learning and self-adaptive ability, we do not need to model the aggregated TCLs. The fuzzy neural
network can be trained to encode the internal characteristics of the controlled object into the initial value
of the connection weight. The connection of BP and PSO algorithm is also used to optimize the parameters
of the controller and achieve the goal of reducing load tracking errors, improving tracking performance of
the power grid frequency signal, and providing better frequency regulation service.

Fuzzy neural 

network 

Controller

e

de

totalP
AGCP

BLP

targetP u

TCLsIndependent 

operator

PSO+BP 

algorithm

kw ij ij,mo

 

Figure 3. System structure diagram.

3. Fuzzy Neural Network Control Scheme

3.1. Fuzzy Neural Network Structure

The fuzzy neural network structure established in this paper has four layers, each layer is connected
by weighted values. The multi-layer forward fuzzy neural network has the following advantages and
characteristics for automatic control:

• The network can realize any complex nonlinear mapping. In this paper, there is a nonlinear
relationship between the real-time tracking error and the temperature set-point, which is not easy to
be formulated. Therefore, the network essentially implements a mapping function from input to
output, which is especially suitable for solving complicated internal mechanism problems;

• The network has strong self-learning ability. First, it can learn the nonlinear relationship between
the real-time tracking error and the temperature set-point—that is, the training process—then
it can reflect the extracted “reasonable” solving rules to the connection coefficients between
the layers. The appropriate connection coefficient has great influence on the control effect for
frequency regulation;

• The network has certain promotion and generalization ability.

BP algorithm is adopted in the fuzzy neural network, its main feature is the forward transmission of
the signal and the backward propagation of the error [22]. Since the transfer functions must satisfy the
conditions of being differentiable everywhere, the hidden layer transfer function and the output layer
activation function are Gaussian function and linear function, respectively. Fuzzy neural network mainly
refers to the use of neural network structure to achieve fuzzy logic reasoning. Compared with a traditional
neural network, the second layer can give specific physical meaning to tracking error, and the third layer
is the fuzzy logic reasoning layer in the design of fuzzy neural network. The structure of the fuzzy neural
network is shown in Figure 4 [23].

We define the error e and the error variation de as fuzzy linguistic variables, and these two fuzzy
language variables contain five linguistic values, i.e., NB, NS, ZO, PS, and PB. Thus, there are 25 rules in
the third layer of the fuzzy neural network structure. In the following, xk

i represents the ith input of layer
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k, and ok
j represents the net input of the jth node of layer k, and yk

j represents the output of the jth node of
layer k. The input and output relationships of each layer node are as follows [24,25]:

Layer 1 Layer 2 Layer 3 Layer 4
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.

.
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15
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.

.

.

.

.

.

.

.

.

.
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25

21

20

 e

de

wk

u

Figure 4. Fuzzy neural network structure diagram.

The fuzzy neural network has input layer, membership function layer, rule layer, and output layer
from left to right in Figure 4. The input–output relationship in the input layer is

o1
i = s(i), i = 1, 2 (6)

s = [e de]′, (7)

y1
i = o1

i . i = 1, 2 (8)

The membership function layer is used to evaluate membership degree of each input component
which belongs to the fuzzy set of each linguistic variable. The input–output relationship of this layer is

o2
ij = h(y1

i ), i = 1, 2 j = 1, 2, ..., 5, (9)

y2
k = f (o2

ij), k = 1, 2, ..., 10, (10)

where o2
ij represents the input of the jth fuzzy set of the ith fuzzy variable. For the same fuzzy concept,

the membership functions can be different. Although the form is not exactly the same, the functions follow
normal distribution which can reflect the fuzzy information that is processed by fuzzy concept when
solving problems. For example, if the membership function of normal distribution is adopted, the result is
shown as follows:

h(x) = −
(x−mj)

2

σ2
j

, (11)
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f (x) = exp(x), (12)

where mj and σj are parameters of Gauss membership function of x. Hence, the input and output
relationships of the second layer nodes are shown as

o2
ij = h(y1

i ) = −
(y1

i −mij)
2

σ2
ij

, (13)

y2
j = f (o2

ij) = exp(o2
ij). (14)

The third layer denotes fuzzy rule sets, every node denotes a fuzzy rule. This layer has 25 nodes.
The input–output relationships of the third layer nodes are shown in Equations (15) and (16):

o3
n = y2

i ∗ y2
j , i = 1, 2, ..., 5 j = 1, 2, ..., 5 (15)

y3
n = o3

n. n = 1, 2, ..., 25. (16)

The fourth layer denotes controller output, i.e., the optimal result obtained by fuzzy neural network:

o4
1 =

25
∑

k=1
wk∗y3

k

25
∑

k=1
y3

k

, k = 1, 2, ..., 25, (17)

y4
1 = o4

1, (18)

where y4
1 denotes the temperature set-point change u.

3.2. Fuzzy Neural Network Learning Algorithm

Compared with other traditional methods, the BP algorithm has better persistence and predictability.
In BP neural network, the error signal is transmitted backward from the output layer to the first layer.
Therefore, hierarchical calculation can be reserved and the index function can be defined as:

E =
(d− y4

1)
2

2
, (19)

where d is desired signal Ptarget, and y4
1 denotes Ptotal in this paper.

If the output layer is concerned, we can draw the following Equations (20) from (15) and (16):

δ4
1 = − ∂E

∂o4
1

= − ∂E
∂Ptotal

∗ ∂Ptotal
∂u

∗ ∂u
∂o4

1

≈ e ∗ sgn(
4Ptotal
4u

) ∗ ∂u
∂o4

1
,

(20)

where δ represents the local gradient of the BP neural network. Since ∂Ptotal
∂u is unknown, we approximately

replace it with the symbolic operator sgn(4Ptotal
4u ), and the learning rate η in the following can compensate
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the inaccurate calculation form.The fundamentals of the BP neural network is to use the gradient descent
method to correct the weights, and Equation (21) is obtained from Equation (20):

4 wk = −
∂E
∂o4

1
∗

∂o4
1

∂wk
= δ4

1 ∗ y3
k , (21)

where k = 1, 2, ..., 25.
For the fuzzy rule layer and the membership function layer, the local gradients are denoted as

δ3
k = − ∂E

∂o3
k
= δ4

1 ∗ wk, (22)

δ2
j = − ∂E

∂o2
j
= (∑

k
δ3

k ∗ y2
i ) ∗ y2

j , j = 1, 2, ..., 10, (23)

where j 6= i, k (k = 1, 2, ..., 25) stands for the node in the third layer, which are connected with the jth node
in the second layer. i denotes another node in the second layer that is connected to the kth node in the
third layer.

Therefore, the parameter correction value of the input membership function is as follows:

4mij = −
∂E

∂mij
= δ2

j
2(y1

i −mij)

σ2
ij

, (24)

4σij = −
∂E
∂σij

= δ2
j

2(y1
i −mij)

2

σ3
ij

. (25)

Finally, the correction algorithm of adjustable parameters in fuzzy neural networks is expressed by

wk(n + 1) = wk(n) + η14wk(n)+

α1(wk(n)− wk(n− 1)),
(26)

mij(n + 1) = mij(n) + η24mij(n)+

α2(mij(n)−mij(n− 1)),
(27)

σij(n + 1) = σij(n) + η34σij(n)+

α3(σij(n)− σij(n− 1)),
(28)

where η1, η2, η3 are learning rates for each adjustable parameter, and α1, α2, α3 are momentum factors
for each adjustable parameter. The well-chosen learning factors and momentum factors can accelerate
algorithm convergence, reduce shock, and effectively suppress the local minimum—and their values are
limited to (0, 1) interval.

3.3. Optimization of Initial Value of Adjustable Parameters

The learning effect of the fuzzy neural network has a strong dependence on the initial values of the
connection weight and membership function. The BP algorithm is suitable for solving the complicated
nonlinear problem, but the algorithm usually falls into local minimum, resulting in training failure. In [26],
the authors proposed a method for estimating the parameters of dynamic models for induction motor
dominating loads. Based on PSO, the method finds the adequate set of parameters that best fit the sampling
data from the measurement for a period of time, minimizing the error of the outputs and active and reactive
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power demands. Hence, a hybrid algorithm uniting the PSO and BP algorithms was proposed to find the
optimal initial parameter. The PSO algorithm includes a group of particles, these particles are stochastically
distributed in the high-dimensional search space. These particles are group members that are used to find
the optimal solution in a high-dimensional search space, and the optimal solution is equal to the possible
position for the object. Each particle is a candidate optimal solution in a higher dimensional search space,
the optimal direction and speed of individual particles are dependent on the optimal location and optimal
speed of the whole particle and its own, and the optimization results are measured by the fitness function.
The fitness function is determined by the specific problem. The mathematical description is as follows:

Vi = Vi + c1 ∗ r1 ∗ (lbesti − Li) + c2 ∗ r2 ∗ (gbest− Li), (29)

Li = Li + Vi, (30)

where Vi, Li and lbesti denote the velocity, location, and historical optimal location of the ith particle,
respectively. gbest is the best position of all particles at present. c1 and c2 are learning rates, and r1 and r2

are two random numbers between 0 and 1.
Next, the root-mean-square error (RMSE) is defined as an indicator used to assess tracking

performance, which can be defined as follows:

RMSE =

√√√√√√
Ns
∑

k=1
e2

k

Ns(Pmax
target − Pmin

target)
2

, (31)

where Ns denotes quantity of control cycles, Pmax
target and Pmin

target denote the upper and lower limits of the
target signal range, respectively. The flow chart of the optimization algorithm is shown in Figure 5.
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Figure 5. Flow chart of the optimization algorithm.
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4. Simulation Results

In the simulations, the HVAC units track the daily automatic generation control (AGC) signal from the
PJM (Pennsylvania–New Jersey Maryland Interconnection) electricity markets. Following the parameters
of TCLs in the simulation process [7], it is assumed that the average values of R, C, and P in Equation (1)
follow a Gaussian distribution with standard deviation 0.1, and the values of R, C, and P are 2 ◦C/kW,
2 kWh/◦C, and 14 kWh, respectively. Assume the loads’ initial temperatures are distributed uniformly in
the deadband of temperature, Tset is 20 ◦C and Ta is 32 ◦C. The deadband of temperature4 is 0.5 ◦C, η in
Equation (4) is 2.5, and the sampling time interval is 4 s. The tracking errors are used to characterize the
performance of the frequency regulation based on the fuzzy neural network control.

Through the iterative solution of the particle swarm optimization algorithm and BP algorithm,
the appropriate connection weight coefficient is obtained after the training of 2500 sample dates.
The membership functions of error e and error variation de are shown in Figures 6 and 7, respectively. At the
beginning of the simulation, we assume that the membership functions of the fuzzy sets of error e and
error variation de are Gaussian functions, as shown in Figures 6a and 7a—after training, the membership
functions of each fuzzy set of the fuzzy neural network are shown in Figures 6b and 7b.
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(a) The initialized membership function of error e.
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(b) The optimized membership function of error e.

Figure 6. The membership function of error e.
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(a) The initialized membership function of error variation de.
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(b) The optimized membership function of error variation de.

Figure 7. The membership function of error variation de.

The influence of the PSO algorithm on the performance of the neural fuzzy network is shown in
Figure 8. From the results shown in Figure 8, it can be observed that the RMSE with optimized parameter
under PSO algorithm is 2.7003, which is obviously smaller than the RMSE with random parameters. Hence,
it is necessary to optimize these parameters by the PSO algorithm.
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Figure 8. Error comparisons with non-optimized and optimized parameters.

The control performance of the fuzzy neural network is shown in Figure 9, and the changes in
temperature set-point are shown in Figure 10. We observe that the aggregated TCLs can track the AGC
signal in a power system to provide ancillary service, and the maximum change in temperature set-point is
1.18 ◦C, which indicates that the control scheme has a minor impact on the thermal comfort of consumers.

Furthermore, several control strategies are compared for the problems of frequency control. Figure 11
shows the comparison results of tracking errors, it is shown that the fuzzy neural network control
strategy can better reduce the tracking errors. Table 1 shows the detailed comparison results, which
demonstrate that the fuzzy neural network control strategy can better reduce tracking errors with
acceptable temperature set-point change. In addition, it can be observed from Table 1 that there are
a small number of switching on/off times using the fuzzy neural network control strategy, which indicates
that its regulation has a smaller impact on the life of TCLs compared with other control strategies.
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Figure 9. Automatic generation control (AGC) signal tracking.
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Figure 10. The temperature set-point change.

Figure 11. Error comparisons under five control strategies.

Table 1. Comparison results.

Control Strategies RMSE/% Set-Point Range/◦C Average On/Off Time
On/off control [27] 19.75 20 62

On/off control with the step rule [28] 14.22 20 45
Set-point regulation [16] 4.01 19.83 ∼ 21.11 26

Set-point regulation with (ρ,φ) [28] 2.80 19.82 ∼ 21.02 15
Fuzzy neural network control 2.33 19.83 ∼ 21.18 8
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5. Conclusions

In this paper, the frequency regulation method—based on fuzzy neural network control—is proposed
to regulate the temperature set-point of TCLs in the ancillary service market. Due to the strong dependence
of tracking accuracy on membership functions and connection weight coefficients, the combination of
offline hybrid algorithms and online BP algorithms can better optimize the control parameters. Finally, the
conclusion obtained from the simulation results is that the fuzzy neural network control has prominent
advantages of tracking accuracy without modeling the aggregated TCLs.
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