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Abstract: This paper presents a comparative study on the application of different neural network
structures to early detection of electrical faults in induction motor drives. The diagnosis inference of
the stator inter-turn short-circuits and broken rotor bars is based on the analysis of an axial flux of
the induction motor. In order to automate the fault detection process, three different structures of
neural networks were used: multi-layer perceptron, self-organizing Kohonen network and recursive
Hopfield network. Tests were carried out for various levels of stator and rotor failures. In order
to assess the sensitivity of the applied neural detectors, the tests were carried out for variable load
conditions and for different values of the supply voltage frequency. Experimental results of the
elaborated neural detectors are presented and discussed.

Keywords: induction motor drive; stator fault; rotor fault; axial flux; neural networks; fault detection;
MLP network; Kohonen network; Hopfield recursive network

1. Introduction

During the operation of induction motor (IM) drive systems, various types of mechanical and
electrical damages can occur, which should be detected at the earliest possible stage in order to avoid
emergency shutdowns of the drive, resulting in downtime of industrial equipment and associated
financial losses.

The most frequently occurring IM defects are bearing damages, which belong to the group of
mechanical failures, constituting approximately 40% of all motor faults. However, electrical damages,
mainly related to the motor windings, are also a serious quality and quantity problem. These failures
are usually associated with short-circuits in the stator windings (about 38% of all IM faults) and
damages to the rotor bars and rings in the squirrel-cage rotors (about 10%) [1]. The detection of damage
to the windings of electric motors has been analyzed in many articles, and a review of the methods
used can be found among others in [2].

The damage detection methods currently used in the technique can be divided into:

- methods using diagnostic signal analysis, e.g., [3–5],
- statistical methods based on signal properties, e.g., [6–9].

The statistical analysis methods use both the properties of the signal over a given time interval
(average value, effective value, minimum, maximum) as well as the relationships between individual
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signal samples (skewness, kurtosis, crest factor, shape factor) [6,7]. It should be noted that the statistical
analysis of signals methods have hitherto been used mainly for the detection of mechanical damages.

Analytical methods are characterized by a relatively long process of machine condition evaluation,
however, the diagnosis time and the result of the analysis depend mainly on the knowledge of the
human expert. Currently, different diagnostic methods are based on various diagnostic signals. In the
case of detecting failures of the stator and rotor windings of IM, these signals are: voltages [10,11],
currents [3,4], vibrations [12,13], axial flux [14,15], speed and temperature [11,16], torque [17] and also
the internal signals of the control structure in the vector-controlled drive systems [18]. The selection
of the diagnostic signal and the method of searching for symptoms of damage related to the signal
processing algorithm used, have a direct impact on the speed of the detection process.

Stator current is the signal most often used in the diagnostics of winding failures, mainly due to
the measurement simplicity. The most common methods of processing this signal to identify fault
symptoms of the IM windings are: Monitoring Current Signature Analysis (MCSA) based on Fast
Fourier Transform (FFT) analysis of phase currents [3], Envelope Park Vector Analysis (EPVA) based
on spectral analysis of the module of the spatial current vector [4], Principal Component Analysis
(PCA) method [19], Symmetric Component Analysis (SCA) method [20], Complex Wavelet Transform
(CWT) [21], Discrete Wavelet Transform DWT [5], Wavelet Packet Signature Analysis (WPSA) [9],
Empirical Mode Decomposition (EMD) method [22], methods based on Hilbert Transform (HT) [23]
or Hilbert-Huang Transform (HHT) [24]. These methods make it possible to identify characteristic
features of the signal that may indicate damage to the motor’s windings.

The faults to the IM electrical circuits can also be diagnosed using the stray (radial or axial) flux
signal. The advantage of this signal is the non-invasive and simple measurement and low cost of
sensors. The external stray flux signal results from changes in the electromagnetic field of the machine
due to asymmetries related to motor defects [25–27]. The use of an axial flux in the diagnosis of
electrical machines is discussed, among others, in [14,15,25–28]. Also in this work, the FFT analysis of
the axial flux is used to detect early damages to stator and rotor windings of the IM.

The diagnostic process may take place with the direct participation of a human expert or with the
use of artificial intelligence (AI) methods, especially neural networks (NNs) [29,30].

Systems based on AI enable the indirect use of expert knowledge in order to automate the detection
process. The application of AI methods in diagnostic processes was first presented in [31]. Currently,
diagnostic systems use a variety of neural structures in detection systems.

The most frequently used NN in the diagnostic systems is the feedforward Multilayer Perceptron
(MLP) type neural network. Despite the many advantages of MLP networks such as ease of
description and hardware implementation, they require proper selection of structure [29,32,33],
learning methods [6,7], activation function [7] and network input vector [8]. When teaching MLP
networks, the most common algorithms are Levenberg-Marquardt (LM) algorithm [7,8,29] and
the Back-Propagation (BP) algorithm [7,32,34]. The MLP network, despite the simple structure,
is characterized by a relatively long learning time. In [7] the authors presented the influence of the
applied MLP network learning method on the effectiveness of the detection of electrical and mechanical
damages of an IM. The possibility of using PCA analysis to reduce the number of internal connections
of the MLP network has been there demonstrated. The use of Genetic Algorithms (GAs) in the process
of selecting the optimal structure and the number of neurons in the hidden layers of MLP network is
presented in [33]. In [32] the authors used an analytical approach to determine the number of neurons
of the hidden layers of the fault detector, based on the size of the input and output vectors of the
layer. The effectiveness of the MLP network is also significantly affected by the activation function
used [7]. Adequate selection of input vector elements providing clear diagnostic information enables
a significant reduction of the learning process while maintaining high network efficiency. In [8] the
authors showed that the insertion of elements from various diagnostic signal analysis methods in the
input vector allows for a significant improvement in the diagnosis effectiveness of the MLP network.
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In the diagnostic processes, fault classification systems play a very important role. The main
representative of NN-based data classifiers is the self-organizing Kohonen network (self-organizing
map—SOM). The possibilities of using this structure in the diagnostic processes of electric machines are
presented among others in [7,20,30,35–38]. The SOM advantage is a small amount of data required for
the correct classification of machine states. Kohonen network can be found in many varieties. In [38]
the application of kernel self-organizing map (KSOM) in the process of IM short-circuit detection
is presented. The comparison of the classic SOM network with a descent gradient-based KSOM
(GD-KSOM) and energy function-based KSOM (EF-KSOM) was made in this article. Like in MLP,
the efficiency of the SOM network depends mainly on the structure used. In [7,36] the authors
presented the influence of the number of neurons of the network’s output layer on its effectiveness.
The influence of topology and applied neighborhood functions as well as neighborhood range on the
effectiveness of the SOM-based detection system is presented in [7].

This article focuses on presenting the influence of the applied NN structure on the efficiency of
electrical faults detection of an induction motor supplied form frequency converter under different load
torque conditions. In addition to the MLP network belonging to the feedforward structure category
and SOM belonging to self-organizing networks, the use of recursive Hopfield network (RHN) has
been presented. This network, usually associated with its special feature, namely associative memory,
is mainly used in pattern recognition [39]. However, the authors of the paper [40] presented the
possibility of using RHN in the errors’ detection of servo-positioning systems. Associative memory
RHN also made it possible to accurately detect damage to the fan drive system components as shown
in [41]. For the most part of diagnostic applications of RHN, it can be found in the detection of electrical
and electronic circuit faults. For example, in [39] the authors showed the possibility of detecting
electronic system failures by using Wavelet Packet Transform (WPD) and the RHN. Therefore, in the
present article, the possibility of using RHN to detect IM electrical failures has been tested (according
to the authors’ knowledge—for the first time in the literature).

This article compares the effectiveness of three selected NN structures: the MLP network,
the self-organizing Kohonen map (SOM) and the recursive Hopfield network (RHN) in the electrical
fault detection process of the IM supplied from a frequency converter under different reference
frequency and load torque values. Damage detection was carried out on the basis of non-invasive
measurement of the axial flux. The tests were carried out on the real laboratory drive system, which
enabled the physical modelling of the electrical faults of the motor, namely: stator inter-tur short
circuits or broken rotor bars.

The novelty introduced in this article is focused on the comparison of effectiveness of different
neural structures, belonging to different network types (feedforward, self-organizing, recurrent), in the
same diagnostic application, which is incipient detection of electrical faults of the IM. A comparison of
neural networks (NN) with different structures in such task was not shown in the literature. The most
of papers present a single type of the NN applied for diagnostic purposes of some machine faults.
For example, in [7,29] only different MLP structures have been analyzed. In the majority of research
works also only specific faults are analyzed (stator or rotor faults, bearing faults, eccentricity, etc.),
while in this paper the stator and rotor damages are analyzed separately as well as mixed faults are
taken into account and the ability of selected NN structures in recognition, detection and evaluation of
the failure levels is compared.

In this paper three different structures based on the same diagnostic signal and the same analysis
are compared. In this case, the networks have a common “source” of damage symptoms. The aim of the
article was to show how the choice of NN structure, network parameters and learning strategy (method,
parameters of learning rule, number of training patterns, training time) influences the effectiveness of
the diagnostic procedure as well as to present what the requirements for the diagnostic signal must
be met.

The work was divided into five sections. After this introduction the next section contains an
overview of the diagnostic signal and the development of the input vector of NNs. The third section
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presents the basic properties of the tested neural structures MLP, SOM, RHN. The main part of this
article is the next section, which contains the discussion of the results of experimental research on
the developed neural detectors. The article ends with a summary of the obtained results and short
discussion of the future research.

2. Symptoms of Induction Motor Circuit Faults Visible in Axial Leakage Flux

All electrical machines have certain magnetic and geometric asymmetries due to the heterogeneity
of the materials used and the inaccuracy of the workmanship. These asymmetries cause differences in
the currents flowing at different places of the end connections of the windings, which consequently
causes the generation of the external stray flux [23] (Figure 1).
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Figure 1. External stray (axial) flux in a squirrel-cage induction motor and a method of placement of an
axial flux measuring coil.

Damages to the stator or rotor winding cause an increase in the asymmetry of the windings, which
results in significant changes in the stray (radial or axial) flux distribution. A voltage is induced in the
stator’s shorted coil, which causes the flow of current limited only by the own impedance of the coil.
This current is the source of magnetomotive force pulsations, which affect the distribution of spatial
harmonics in the machine’s airgap. Spatial harmonics cannot be detected directly by measuring the
stray flux. On contrary, time harmonics can be detected in this flux, which are mixed up with the
spatial harmonics of the field. Since the stray and thus axial flux can be generated by the stator and
rotor currents; the characteristic frequencies in it are related to the frequency fs of the supply source and
the rotor frequency sfs (s—motor slip) [23,26] Thus, the harmonic content in the axial flux is directly
related to the harmonic content in the stator and rotor currents.

To measure the axial flux, measuring coil is installed, in which voltage proportional to this flux
is induced (Figure 1). In the event of a short-circuit, even a small number of the IM windings, there
is a remarkable increase in the asymmetry of the machine, and consequently in the voltage induced
in the measuring coil. As a result of damage to electrical circuits of IM, there is a noticeable increase
in the value of the amplitudes of the harmonics visible in this voltage spectrum with frequencies
characteristic for individual failures. The variable frequency of the characteristic harmonics allows to
distinguish the rotor asymmetries from the stator failures.

In the case of short-circuits in the stator windings, these are the frequencies:

fSH = fs

(
k
(1− s)

pp
±m

)
, (1)

where: pp—number of pole pairs, m = 1, 3, 5, . . . , k = 1, 2, 3, . . .
Damage to the rotor cage causes the generation of additional components in the spectrum

of the axial flux dependent on the motor slip. The reflection of damage to the rotor cage is the
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increase in the amplitudes of the harmonics visible in the induced voltage spectrum, described by the
following equations:

fBB1 = fs(1± 2ks), (2)

fBB2 = 2ks fs, (3)

fBB3 = m fr ± ks fs, (4)

where fr—rotational frequency.
As can be seen from the above equations, the detection of IM electrical circuit damages is dependent

on the actual operating conditions of the motor. The frequencies characteristic of the rotor cage defects
depend on the actual motor slip, which may impede the learning process of the neural fault detector.
Additionally, the use of FFT to analyze the axial flux signal forces the need to maintain constant
motor operating conditions for the duration of the diagnostic signal measurement. The details on the
diagnostic symptoms (amplitudes of characteristic harmonics), described above and used next in NN
training procedures will be shown in Section 4.

3. Application of Neural Networks in the Detection of Induction Motor Damages

3.1. General Remarks

The research presented in this article focuses on the effectiveness analysis of the neural fault
detectors of IM electrical circuit damages implemented with the use of three NN types, with different
structures and learning methods: multilayer perceptron—MLP, Hopfield recursive network—HRN
and Kohonen self-organizing map—SOM. The process of detecting IM failures using these NNs can be
represented in the form as in Figure 2.
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NN structures.

In the fault detection process four stages can be distinguished. The first one consists in indirect
measurement of the axial flux signal. Next, from the spectrum of the voltage induced in the
measuring coil, fault symptoms in the form of harmonic amplitudes with frequencies characteristic for
the discussed damages, are selected.

These symptoms are introduced to the input of the selected NN structure in the form of a
normalized vector. The final step is the assessment of the technical condition of the IM based on the
output vector of the analyzed network.

3.2. Multilayer Feedforward Network

Multilayer feedforward NN (or multilayer perceptron network—MLP) are currently the most
commonly used neural structures in technique. This fact results from the simplicity of their
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implementation in programmable systems, as well as the mapping capabilities of any function.
The MLP network acts as an approximator of the learning data, and the learning process consists in
minimizing the suitable cost function [42]. The effectiveness of the network is closely related to the
structure used, the teaching method and the number of neurons in particular layers. The output signal
of the exemplary two-layer network, presented in Figure 3, can be described by the following equation:

yk = f (2)
 M∑

m=1

W(2)
km f (1)

 N∑
n=1

W(1)
mnxn + W(1)

m0

+ W(2)
k0

, (5)

where: xj—jth input of the network, yk—output of the kth neuron, f (1,2)—activation functions of the 1st
and 2nd layers, Wki—weights factors of the given layer.
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Most often in the hidden layers of MLP sigmoidal activation functions are used and the
Levenberg-Marquardt (LM) gradient algorithm is applied for training, thus they were also used
in the research presented in this paper.

3.3. Self-Organizing Kohonen Map

The self-organizing Kohonen map (SOM) is the basic data classifier used in technique. The SOM
allows to delimitate different subsets of the entire data set and to determine clusters of units with
similar characteristics. This feature of self-organizing networks forms the basis for the construction of
different diagnostic systems.

The SOM consists of two layers connected via weight vectors. The first is the input data vector.
The second—output layer consists of neurons located in the nodes (Figure 4). Thanks to this network
structure, individual output layer neurons can be represented as points on the Kohonen map.
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The basic problem when designing the SOM is the selection of the optimal topology, as well as the
number of neurons that allows the correct division of the map into individual areas. In the case of
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a large number of patterns, the number of network neurons (map size) should be correspondingly
larger [42]. The network topology determines the type of connections between neighboring neurons.
The most frequently defined Kohonen network topologies are rectangular and hexagonal. Appropriate
selection of the network structure, the number of neurons, neighborhood coverage directly affects the
ability to distinguish clusters.

During the learning process of the Kohonen network, the Euclidean measure of the distance
between the presented unit and all network neurons is calculated):

dE(xi, wm) = ‖xi −wm‖. (6)

The next step is to find a neuron whose distance to the presented unit is the smallest. The adaptation
process of Kohonen’s weights can follow two strategies: the most known learning method WTA
(Winner Takes All) or the WTM method (Winner Takes Most). Under the WTA learning process only
the weight factors of the winner’s neuron are changed, while in the WTM method both the weight
coefficients of the winner’s neuron and neighboring neurons are adapted. In this approach, applied
also in this research, the neighborhood function G is used to determine the rate of change of the weight
coefficients of neighboring neurons. The adaptation process of neuron weight wm is realized in the
following way:

wm(k + 1) = wm(k) + η(k)G(R, d(c, m))[x(k) −wm(k)], (7)

where: R—assumed neighborhood level of SOM, d(c,m)—the distance between the victorious neuron c
and the m-th neuron of the network, η—learning factor.

The SOM learning process is stopped after all data from the training set has been presented. Every
neuron in the map becomes a model for its close relatives. After entering the learning data network into
the input, the division of the map into individual patterns can be assessed. If the map is characterized
by a group structure, it is possible to reduce the size of the map while maintaining the obtained level
of effectiveness.

3.4. Recurrent Hopfield Network

Recurrent networks are characterized by existence of feedback between the input and the output
of the network. The basic representative of such NNs is the recurrent Hopfield network (RHN), called
also a self-associative memory. The RHN is distinguished by the fact that the change in the state of one
neuron affects the entire network. In order to simplify the RHN structure, each neuron has a binary
activation function f. In addition, there is no feedback for a given neuron with its own output, and the
weights matrix are symmetrical (Figure 5).
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The purpose of self-associative memory is to memorize a set of training data that will allow to
generate a response equal to one of the patterns. The NN response should match the test sample with
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the greatest accuracy, according to the adopted distance measure. For RHN, the Hamming distance
measure dH is mostly used. For binary threshold nodes the Hamming measure is defined as:

dH =
N∑

i=1

[xi(1− y1) + (1− xi)yi]. (8)

Training the Hopfield network involves the adaptation of the weighting factors of the network,
which will ensure the minimization of the measure dH for a given test vector. The Hopfield network
output signal for a certain sample is given by the equation:

yi(k) = f

 N∑
j=1,i,1

Wi jy j(k− 1)

. (9)

The network operates in two stages: learning and reconstruction. When learning the network,
weight factors are selected based on information on the form of the base of patterns. The weight factors
are to ensure the steady state of the network in a reconstruction mode. The most common method of
learning the RHN is the algorithm resulting from pseudo-inversion. With the right choice of weights,
each pattern given to the input should generate itself at the output. The advantage of this approach is
immediate achievement of the steady state. If the training vectors are linearly independent from each
other, then the adaptation of the weights follows the equation:

W = X(XTX)
−1

XT. (10)

The use of pseudo-inversion allows to increase the capacity of HRN. The algorithm presented in
the form of Equation (10) is called the projection method. Its variation based on a gradient algorithm
for minimizing the objective function is the ∆–projection method:

W(i) = W(i−1) +
1
N
α
(
x(i) −W(i−1)x(i)

)[
x(i)

]T
. (11)

In contrast to the classic projection method, in this case a multiple pattern base presentation
is required. The process of selection of weight coefficients is interrupted when changes in weights
are less than the assumed accuracy. After completing the network training process, the replacement
mode is activated. The test data vector is given to the network input, and then the network response
is calculated according to the relationship (9). The iterative process is repeated until a response
is established.

4. Experimental Verification of the Tested Fault Detectors

4.1. Description of the Experimental Set-Up and Conducted Tests

The experimental verification of the developed neural detectors of IM electrical circuit faults was
carried out on a laboratory test-bench consisting of a 1.5 kW squirrel-cage IM (with the parameters
given in Table 1, powered from a frequency converter (Figure 6).

The load torque was generated by means of a DC machine connected by a rigid shaft with the
tested IM. The measuring system (coil placed in the axis of the shaft) enabled the analysis of the
diagnostic signal for various machine operating conditions. The general view of the test bench is
shown in Figure 6. The tested IM allowed to physically model the discussed rotor and stator defects.

The tests were carried out for various fault types as well as mixed failures:

• 0–10 shorted turns of one stator phase,
• 0–3 damaged rotor cage bars.
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Table 1. Rated parameters of the tested induction motor.

Name of the Parameter Symbol Units

Power PN 1500 [W]
Torque TN 10.16 [Nm]
Speed nN 1410 [r/min]

Stator phase voltage UsN 230 [V]
Stator current IsN 3.5 [A]

Frequency fsN 50 [Hz]
Pole pairs number pp 2 [-]

Number of rotor bars Nrb 26 [-]
Number of stator turns

in each phase Nst 312 [-]
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Figure 6. Real view of the experimental set-up.

The change of the supply voltage frequency took place in the range fs = (20–50) Hz, while
the adjustment of the load torque in the range TL = (0–1)TN. On the basis of the conducted tests,
the symptoms of the IM rotor and stator damages were selected for the training process of all tested NNs,
realized in Matlab [43]. The NN detectors have been next developed in the LabVIEW software of
National Instruments (Austin, Texas, USA) using weight factor matrices obtained after training and
testing procedures performed in Matlab.

Figure 7 shows the FFT of the voltage induced in the measuring coil by the axial flux. In the case of
shorted turns (Figure 7a) as well as broken rotor bars (Figure 7b), a distinct increase of the components
in the spectrum described by Equations (1)–(4) compared to the spectrum for the undamaged motor
is observed. After the analysis of the impact of motor working conditions on the diagnostic signal,
the FFT components constituting the input vector of the studied neural structures were selected.
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4.2. Result of the Fault Detection Using MLP Networks

The MLP network teaching vector contained information on the amplitudes of the characteristic
harmonics of the axial flux spectrum with the frequencies: fs, sfs, and 3sfs only. The vector contained
data from 300 measurements of the diagnostic signal carried out on the real object. The set contained
measurements for variable load conditions and the frequency of the motor supply voltage. The testing
vector contained 280 measurements not used in the training procedure of MLP detectors. During the
development of MLP fault detectors, particular attention was paid to the effectiveness of detecting
both single and mixed electrical failures. This parameter was adopted as a quality indicator of the
developed fault detectors. MLP learning process was carried out in the Matlab environment. During
the tests, the effectiveness of MLPs with different structures was analyzed in simulations.

Figure 8 shows the dependence of the detection efficiency of stator and rotor damage on the
applied MLP structure. As can be seen in Figure 8b, the greatest effectiveness of single faults detecting
was characterized by a network with three neurons in the input layer, two hidden layers with 12 and
eight neurons, respectively, and two neurons in the output layer.

The analysis also shows the influence of the number of training epochs on the fault detection
efficiency. The highest level of effectiveness for network structure {3-12-8-2} was obtained for 350 epochs.
The use of two hidden layers allowed for a high level of detector effectiveness even in the case of
simultaneous damages to the stator and rotor windings.
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Figure 8. The influence of the MLP structure and number of teaching epochs on the fault detection
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The results of experimental tests of the best developed MLP-based detector {3-12-8-2}, carried out
on the real object, are given in (Figure 9).
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Figure 9. The results of experimental tests: (a) detection of rotor damage; (b) detection of stator damage;
(c) detection of mixed faults.

The failure detection efficiency of the rotor cage bars (Figure 9a) for the analyzed network structure
{3-12-8-2} was approximately 99%. It should be noted that errors made by the MLP network between
undamaged and damaged condition of the motor is less than 1% of all cases. Thus, if the efficiency of
the network is demonstrated by the fact that it is not possible to distinguish the degree of damage,
but only the type information (damaged/undamaged), then this network has the efficiency higher
than 99%. Furthermore, the combination shown in Figure 9c includes the detection of both individual
failures and mixed failures.

Analyzing Figure 9b it was found that the assessment of the degree of damage to stator windings
by MLP network is correct in over 88% of tests. The erroneous response of the NN occurred in the
majority of cases for the damage of 5–7 shorted turns. This fact may result from similar quantitative
changes in the harmonic amplitudes of the axial flux spectrum for stator winding damage in this range.
It is worth noting, however, that the network has only twice provided incorrect information about
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the damage at its initial fault stage. Possible errors of the MLP neural detector are connected with
disturbances caused by the impossibility of separating the axial field measuring coil from other field
disturbances, as well as changing the amplitude of the spectrum due to changes in the load torque of
the motor. A clear increase in the characteristic harmonic amplitudes is noticeable for the load torque
greater than a half of its nominal value. For a motor operating under low load conditions (TL < 0.2TN),
false information about the condition of the tested machine may be created. It should be noted that
the fault detection of IM electrical winding faults is aimed at detecting the early possible stage of the
failure. Due to the above, the distinction of the degree of damage other than the initial one is the
secondary goal of the diagnostic system.

4.3. Result of the Fault Detection Using Kohonen Netoworks

It is well known, that Kohonen network is an excellent tool for the classification of damage
categories. During the conducted tests on the real IM drive, the effectiveness of fault classification
was checked for networks with 100 and 400 neurons. As input data vector, information on the
amplitudes of the axial flux spectrum components at frequencies fs and 3sfs was used. The training data
vector contained the results from 125 measurements of the diagnostic signal (25 measurements—for
undamaged motor, 25 measurements—for stator inter-turn short circuits (from 1 to 10 turns),
25 measurements for each damaged rotor (with 1–3 broken bars). The tests were carried out for
changeable frequency of the supply voltage and the load torque of the motor, using 110 measurements
different from those used in the training process. Applying the same number of measurements for
each state of the IM made it possible to obtain a uniform division of the SOMs. Thanks to the use of a
similar number of patterns for individual failures in the learning process, it is possible to determine the
level of damage to the rotor cage and provide an approximate value of the number of shorted turns.

In the first stage of the research, particular attention was paid to selecting the appropriate number
of training epochs as well as the appropriate learning rate η. The results are presented in Figure 10 for
a SOM with 400 neurons (20 × 20).
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distances: (a) 800 training epochs, η = 0.1; (b) 300 training epochs, η = 0.7; (c) 800 training epochs,
η = 0.7.

As can be seen in Figure 10, for the wrong number of training epochs (Figure 10b), only areas
for extreme fault values are separated. The use of such a trained network would make it impossible
to detect damage at an early stage. The use of an increased number of training epochs (Figure 10b)
allowed the separation of areas characteristic for particular faults. In Figure 10c, the SOM’s area for
undamaged motor is clearly separated showing no damage. Therefore, the risk of mistakes in assessing
the technical condition of the tested machine was eliminated.

The selection of the network learning rate η, like the number of learning epochs, significantly
affects the relationship between SOM neurons. As shown in Figure 10a,c, for the same number of
training epochs, the selection of the initial value of the learning rate plays a key role. Too low a learning
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rate value (Figure 10a) requires an increased number of training epochs. Only then it is possible to
adjust the distances between the SOM neurons in a way that ensures the separation of individual zones.

As a result of decreasing the size of the map (10 × 10; 100 neurons), the distances between the areas
characteristic for individual damages are reduced, resulting in greater difficulties in distinguishing the
severity of damage. Decreasing the size of the map does not affect radically the effectiveness of the
detection process (see Table 2), however, a smaller number of overlapping neurons in the case of stator
short-circuit analysis is noticeable for the bigger map. In connection with the above, the possibility of
distinguishing “subareas” in the zone for shorted turns of the stator winding increases for bigger SOM,
which results in increased effectiveness of the fault level detection. Thus, the further results are shown
for the bigger map (20 × 20).

Table 2. Effectiveness of Kohonen network in fault detection and classification.

Shorted Turns Broken Bars No Fault

Kohonen map (20 × 20)
Approximate effectiveness of faults

detection 93% 95% 95%

Approximate effectiveness of fault level
classification 70% 93% 95%

Kohonen map (10 × 10)
Approximate effectiveness of faults

detection 90% 92% 95%

Approximate effectiveness of fault level
classification 65% 88% 95%

On the basis of the obtained maps with marked distances between network neurons, approximate
areas characteristic for individual motor failures were determined (Figures 11 and 12).
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Figure 11. Classification of the rotor cage damage of the induction motor: (a) Kohonen map (20 × 20):
solid lines—IM damage categories involved in the classification, hatched areas—IM damage categories
not involved in the classification; (b) specification of test data parameters; TL—load torque, TLN—rated
motor torque, fs—frequency of the supply voltage.

In these areas, points corresponding to active neurons for different values of the network input
vector have been marked. The values of the input vector elements are related to the actual technical
condition of the tested machine. Results of faults’ classification realized by the analyzed SOM with
400 neurons are presented in Figure 11 for the rotor cage failures and for the stator winding faults in
Figure 12, respectively. As noted in Figure 11, when decreasing the frequency of the motor supply
voltage, an increase in the activity of neurons, located on the SOM closer to the area characteristic for no
damage is noticeable. This fact is related to the decrease in the amplitudes of the harmonic components
of the axial flux spectrum due to the reduction of the frequency of the fundamental component of the
supply voltage under speed frequency control of the IM. The increase in neuronal activity does not
adversely affect the classification of the motor damage. By analyzing the SOM responses shown in
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Figures 11 and 12, it was found that a decrease in the load value results in stimulation of the neurons
located lower on the Kohonen map.
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Figure 12. Classification of the stator windings faults: (a) Kohonen map (20 × 20): solid lines—IM
damage categories involved in the classification, hatched areas—IM damage categories not involved in
the classification; (b) specification of test data parameters; TL—load torque, TLN—rated motor torque,
fs—frequency of the supply voltage, Nsh—number of shorted turns in the stator winding.

The training vector of the NN did not include measurements for simultaneous damages to the
rotor and stator windings. However, the developed SOM-based fault detector makes it possible to
correctly classify the damages together with the assessment of the degree of individual rotor damage.

The evaluation of the effectiveness of the neural detector of damage to the electrical circuits of
the IM has been divided into two categories. The first of these was the assessment of the type of
damage. In this case, attention was focused on the proper assessment of damage in terms of the place
of occurrence (rotor/stator/no damage). The second indicator for evaluation the SOM effectiveness
was the ability to assess the degree of individual damage. An approximate assessment of the failure
detection performance based on the results obtained with the Kohonen networks is shown in the
Table 2.

When analyzing the results presented in this table, a reduced value of network efficiency was
noted when assessing the degree of damage to the stator windings for both analyzed SOMs. This fact
results from small changes in the axial flux signal due to the increasing number of shorted turns.
As with the MLP network (Figure 9b), it is difficult to distinguish between short circuits of 5, 6 and 7
turns. The Kohonen network only allows to determine the approximate value of the number of shorted
turns. The correctness of the fault level assessment (number of shorted turns) in the stator windings is
also strongly dependent on the frequency of the supply voltage and the load torque values. In the
case of stator winding failures, measuring the axial flux while the unloaded motor is operating would
eliminate the difficulties associated with the evaluation of the number of shorted turns. However,
as mentioned in Section 2, idle-running of the motor precludes proper detection of damage to the rotor
cage bars, as the spectral components characteristic of rotor failures depend on the current slip of the
tested machine.

It is clearly seen from the analysis of Table 2, that the lower fault detection effectiveness as well as
the effectiveness of the fault level classification for stator and rotor winding is worse in the case of
smaller SOM (10 × 10). It results in particular from following reasons:

- the reduced stator fault detection efficiency is caused by the fact, that zones for Nsh = 1 and
Nbb = 1 are close each other at high load,

- the decrease in the effectiveness of stator damage grading results from too many overlapping
neurons in smaller SOM; in the case of a (20 × 20) map active neurons are more “spread out” on
the map,
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- reduced efficiency for the detection and classification of rotor damages by SOM (10 × 10) results
from small distances between the zones for Nbb = 3 and Nbb = 2.

On the basis of the above discussion, it can be stated that the Kohonen map enables correct
assessment of the type of damage to the electric circuits of the IM and perfectly separates the damage
of the stator and rotor windings as well as undamaged states of the motor. It should be noted that at
the expense of reduced effectiveness in the case of the evaluation of the number of shorted turns in the
stator winding, increased robustness of the detector to changes in the load torque and the frequency of
the supply voltage was obtained.

4.4. Result of the Fault Detection Using RHN

The recurrent Hopfield network uses the similarity of the current network response to known
base values. Neural network learning process was carried out for the training vector obtained on the
basis of 200 measurements. Elements of the training vector were amplitudes of the axial flux spectrum
at the following frequencies: fs, fs + 2fr, 3fs − 2fr, 5fs + 3fr, fs − 4sfs, sfs, 3fr + sfs, 5fr − sfs. Learning the
Hopfield network consisted in determining the value of the weight and bias matrices. Verification
of the correctness of the weights selection was carried out in accordance with the pseudo-inversion
principle by providing the training vector to the input of the network.

After completing the process of selecting RHN’s weight coefficients, the network response to
the base data vector was analyzed. As observed in Figure 13, the principle of pseudo-inversion has
been met. Hopfield’s network with the given input vector belonging to the base of patterns, generated
the same vector at the output. The pseudo-inversion principle has been preserved for both stator and
rotor failures. The network responses shown in Figure 13 for the entire base of patterns confirm the
correctness of the RHN learning process.
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Figure 13. RHN response to a given learning data vector.

During the analysis of the damage detection effectiveness, a testing vector containing data from
100 measurements (different from the used in the RHN learning process) performed on the real object
was used. In order to analyze the properties of the RHN-based fault detector, research has been
conducted on the impact of the number of basic data and the network structure on its effectiveness.
The results are shown in Figure 14. Analyzing the effect of the number of patterns (Figure 14a) and the
number of neurons (Figure 14b) on the RHN effectiveness, it was noted that with their increase there is
a significant increase in the efficiency of the Hopfield network. The use of a larger size of the training
vector greatly contributes to the improvement of the detection efficiency of the IM winding failures.

The number of RHN neurons is equal to the square of the number of input signals. Therefore,
increasing the number of network inputs through a larger number of fault symptoms, wider spectrum
analysis or samples of diagnostic signals from previous measurements, allows to improve the operation
of the Hopfield network in the diagnostic system. As observed in the research conducted on the real
object, the RHN based fault detector shows a strong dependence of response on the noise level of the
input values (measurement signal). This detector also does not work properly in the case of a difference
in internal parameters between the machine being tested and the one used during training process.
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4.5. Comparison of the Used Neural Network Structures

Table 3 shows a comparison of the applied neural structures in the process of detecting electric
faults of the converter–fed IM. The properties of particular networks were evaluated both in terms
of the course of the learning process, effectiveness of fault detection and implementation complexity.
As can be seen in Table 3, the MLP network was characterized by the highest detection efficiency
during experimental verification.

Table 3. Comparison of the used neural network structures.

Evaluation Categories Multilayer Perceptron
Network

Self-organizing
Kohonen Map

Recurrent
Hopfield Network

EXPERIMENTAL
VERIFICATION

The effectiveness of early detection of
electrical damages HIGH MEDIUM LOW

The effectiveness of the stator damages
level assessment HIGH MEDIUM MEDIUM

The effectiveness of the rotor damages
level assessment HIGH HIGH MEDIUM

The effectiveness of the mixed damages
level assessment HIGH LOW LOW

Resistance to interference of the
diagnostic signal MEDIUM HIGH LOW

Hardware implementations EASY EASY DIFFICULT
Interpretation of the neural network response EASY DIFFICULT EASY

LEARNING
PROCESS

Required size of the learning vector LARGE SMALL LARGE
Selection of the components of input vector DIFFICULT EASY DIFFICULT

Selection of the neural network structure HARD EASY EASY
Selection of the neural network learning

parameters HARD EASY EASY

Learning process time LONG MEDIUM SHORT

The high efficiency of MLP network in fault detection is offset by difficulties during the selection of
learning parameters as well as long time of the learning process. In contrast to MLP, the RHN network
was characterized by the immediate learning process and the ease of selection of the parameters.
Undoubted disadvantages of the RHN network are the lack of robustness to measurement disturbances
and a strong dependence of effectiveness on the base vector. Self-organizing maps can be the golden
mean between ensured a high level of efficiency, easy hardware implementations and the correct
selection of the learning process parameters. The disadvantage of the SOM network is the difficulty in
automating the detection process as well as dependence of learning process time on the structure and
size of the SOM.

Summarizing the above, it was proved by experimental tests, that:

- the MLP network requires well-chosen signals in terms of changes due to damage (preferably
linear changes);

- the SOM was characterized by the ability to recognize patterns with a small amount of data.
For the SOM, you do not have to choose the ‘ideal’ symptoms, because the individual categories
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will be classified anyway, while the input signals should not be associated with each other
(correlations << −1);

- in the case of RHN, a large size of the input vector with information resistant to interference
is required.

The differences between structures result in the amount of training data necessary to ensure an
adequate level of effectiveness:

- in the case of MLP, the largest database of training patterns was required due to mixed
damage tested;

- in the case of SOM it was important that each category had a similar number of learning data;
- RHN reached about 100% effectiveness for 200 training samples, therefore there was no need to

enlarge the database.

It should be noted that the SOM had the task of classifying five damage categories (5 × 25 samples)
while the MLP was dealing with 11 for the stator, four for the rotor and mixed faults.

5. Conclusions

The conducted tests have demonstrated the effectiveness of the use of different neural network
structures in the detection process of induction motor faults. Analyzing the spectrum of the axial
flux allows obtaining sufficient information to develop neural detectors based on different NN kinds.
Among the NN structures presented in the paper, the most effective is the feedforward MLP, including
not only the distinguishing between damaged/undamaged state of the motor, but also the determination
of the most fault levels of the stator or rotor winding. During the experimental tests, correct assessment
of the degree of failure occurred in over 90% of cases. However, the MLP is not effective for the
detection of rotor bar faults when load torque value is very low. Moreover, in order to detect both types
of damages (stator and rotor) using one network, it is necessary to use a MLP with two hidden layers,
which significantly increases the MLP learning time, which is the basic disadvantage of these networks.

The application of the Kohonen classifier in the diagnostic process allows for the preliminary
assessment of the damage category of the tested machine. However, with the use of the SOM it is
difficult to assess the fault degree in the case of a single failures, especially for stator winding faults
(the boundaries of the SOM’s zones are not always unambiguous) and to assess mixed damages.
The advantage of the developed Kohonen networks is the speed of the detection process, as well as a
small number of learning data necessary to achieve the assumed effectiveness.

Among the solutions of neural detectors presented in this article, the recurrent Hopfield network
was characterized by the worst properties. Despite the high level of effectiveness, the Hopfield network
shows no robustness to measurement disturbances and variable parameters of the tested object. Small
deviations of the measurements from the base values may cause false information of the diagnostic
process. However, this network type can be applied in some hybrid solutions, in combination e.g.,
with SOM, which will be the further research subject of the authors.
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