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Abstract: Solving the Unit Commitment problem is an important step in optimally dispatching
the available generation and involves two stages—deciding which generators to commit, and then
deciding their power output (economic dispatch). The Unit Commitment problem is a mixed-integer
combinational optimization problem that traditional optimization techniques struggle to solve,
and metaheuristic techniques are better suited. Dragonfly algorithm (DA) and particle swarm
optimization (PSO) are two such metaheuristic techniques, and recently a hybrid (DA-PSO), to make
use of the best features of both, has been proposed. The original DA-PSO optimization is unable to
solve the Unit Commitment problem because this is a mixed-integer optimization problem. However,
this paper proposes a new and improved DA-PSO optimization (referred to as iDA-PSO) for solving
the unit commitment and economic dispatch problems. The iDA-PSO employs a sigmoid function
to find the optimal on/off status of units, which is the mixed-integer part of obtaining the Unit
Commitment problem. To verify the effectiveness of the iDA-PSO approach, it was tested on four
different-sized systems (5-unit, 6-unit, 10-unit, and 26-unit systems). The unit commitment, generation
schedule, total generation cost, and time were compared with those obtained by other algorithms
in the literature. The simulation results show iDA-PSO is a promising technique and is superior to
many other algorithms in the literature.

Keywords: dragonfly algorithm; metaheuristic; particle swarm optimization; unit commitment

1. Introduction

The development of electricity markets has made it even more crucial to determine the optimal
generator schedule to minimize costs while meeting load demand. Traditional economic dispatch
(ED) does not perform decisions on which generators to commit and assumes all generators must
be dispatched within their minimum and maximum generator limits. Unit Commitment (UC) is the
optimization problem of determining the optimal set of in-service and out-of-service generating units
and their output during the scheduling period to minimize the total production costs while satisfying
all the constraints [1]. In the UC problem, two decision processes involved are unit scheduling and ED.
The unit scheduling process is to determine the on/off status of generating units in each hour of the
planning horizon while considering minimum up- and down-time of the units. ED aims to find the
optimal power generation of the in-service generating units to meet the load demand and spinning
reserve during each hour while maintaining generating unit limits.
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The UC problem has been considered to be a large-scale, non-convex, and mixed-integer non-linear
combinatorial optimization problem, which makes the UC problem difficult to be solved. In the
past, many methods have been proposed to solve the UC problem [2]. Some of the proposed
techniques for solving the UC problem are; integer programming [3,4], branch-and-bound methods [5],
dynamic programming (DP) [6–11], mixed-integer programming [12], Lagrangian relaxation methods
(LR) [13,14], priority list method [15]. However, each of these methods has some drawbacks when
solving the UC problem. For instance, the integer and mixed-integer programming methods, which use
linear programming to find an integer part of the solution require too large memory for large systems,
and this results in a large computation burden. The computation time of the Branch-and-bound
increases exponentially with system size. Although DP is flexible, it sometimes requires a large amount
of computation time if various constraints are considered. The disadvantage of LR is the difficulty
confronted in providing optimal solutions when solving complex problems. The priority list method is
fast and easy to implement, but it cannot confirm the quality of the solution for the same reason as LR.

Apart from these traditional techniques, many metaheuristic algorithms have been applied,
such as; genetic algorithms (GA) [16], particle swarm optimization (PSO) combined with the Lagrangian
relaxation (PSO-LR) [17], evolutionary programming (EP) [18], new genetic approach (NGA) [19],
local convergence averse binary particle swarm optimization (LCA-PSO) [20], improved binary particle
swarm optimization (IPSO) [20], mutation-based particle swarm optimization (MPSO) [20], a two-stage
genetic-based technique (TSGA) [21], inter-coded genetic algorithm (ICGA) [22], binary-coded genetic
algorithm (BCGA) [22], simulated annealing (SA) [23], Seeded Memetic algorithm (SM) [23], a hybrid
algorithm comprising of particle swarm optimization and grey wolf optimizer (PSO-GWO) [24] and
hybrid particle swarm optimization (HPSO) [25]. These have been successfully applied to solving the
UC problem due to their ability to find a near global solution and deal with large-scale non-linear
problems. Moreover, several works have previously studied the scheduling of generation units in
small to large power systems. For example, fuzzy-based particle swarm optimization (FPSO) has been
proposed to minimize the operation cost and emission for ships [26], conditional value-at-risk (CVaR)
method has been introduced to maximize the expected profit of a microgrid operator [27], a hybrid PSO
and selective PSO method (PSO&SPSO) has been used to solve a proposed a day-ahead operational
scheduling framework for reconfigurable microgrids (RMGs) [28], a metaheuristic approach based
on PSO has been applied to solve an optimal simultaneous hourly reconfiguration and day-ahead
scheduling framework in smart distribution systems [29], a stochastic model for optimal scheduling of
security-constrained UC associated with demand response (AC-SUCDR) has been presented in [30],
a two-stage stochastic programming model has been developed to minimize the expected cost of
microgrid under different time-based rate programs [31], and a Fuzzy Self-Adaptive Particle Swarm
Optimization (FSAPSO) has been applied to solve multi-operation management of a typical microgrids
and of a renewable microgrid [32,33].

Many metaheuristic optimization algorithms have been proposed to solve other types of complex
optimization problems such as in an optimal power-flow (OPF). Examples are; grey wolf optimizer
(GWO) [34], dragonfly algorithm (DA) [35], ant colony optimization (ACO) [36] and artificial bee colony
(ABC) [37]. However, these algorithms cannot solve a mixed-integer combinational optimization
problem in their native form. A hybrid dragonfly algorithm and particle swarm optimization (DA-PSO)
is a recent optimization method which has been applied to efficiently solve a complex optimization
problem which is a multi-objective optimization problem [38]. Nevertheless, it is unable to solve
the mixed-integer combinational optimization problem. Therefore, this paper proposes an improved
DA-PSO algorithm (iDA-PSO) that can solve the UC problem. This is achieved by applying a sigmoid
function to the DA-PSO to find the optimal on/off status of generating units, which is the mixed-integer
part of the UC problem. The algorithm is tested of four test systems of differing sizes. Five-unit, six-unit,
ten-unit, and 26-unit generating systems are used to investigate the effectiveness of the proposed
approach. The simulation results were compared with other algorithms in the literature.
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2. Formulation of the UC Problem

The UC problem aims to find the optimal generation schedule, which is gauged by the value of
the objective function while satisfying a set of constraints.

2.1. Objective Function

The objective function is the total production costs over the scheduling horizon, and this must be
minimized to obtain the optimal generator schedule. The total production costs consist of fuel cost and
start-up cost of the operating units. Therefore, the objective function is:

TPC =
T∑

t=1

Ng∑
i=1

[ fCost(Pt
gi) + STt

i (1− ut−1
i )]u t

i (1)

where TPC is the total production cost ($), T is the total scheduling period, Ng is the number of
generating units, Pgi

t is the active power generation of the ith unit at time t, STi
t is the start-up cost of

the ith unit at time t, ui
t is the on or off status of the ith unit at time t, and fCost(Pgi

t) is the fuel cost
function of the ith unit for the generator power output Pgi

t which is calculated as:

fCost(Pt
gi) = aiP2

gi + biPgi + ci (2)

where ai, bi, and ci are the fuel cost coefficients of the ith generator.
The start-up cost is the cost of bringing the off-line unit on-line. It depends on the time that the

unit has been off-line before starting up which is presented as follows:

STt
i =

{
HSCi
CSCi

i f
i f

MDTi ≤ Tt
i,o f f ≤ (MDTi + CSHi)

Tt
i,o f f > (MDTi + CSHi)

(3)

where HSCi is the hot start-up cost of the ith unit, CSCi is the cold start-up cost of the ith unit, MDTi is
the minimum down-time of the ith unit, Tt

i,off is the number of off hours of the ith unit until time t and
CSHi is the cold start hour of the ith unit.

2.2. Constraints

The optimization of the objective function must satisfy constraints imposed by the operational
requirements. The set of constraints are as follows:

2.2.1. Power Balance Constraint

Ng∑
i=1

Pt
giu

t
i = Pt

D (4)

where Pt
D is the active power demand at time t.

2.2.2. Spinning Reserve Constraint

Ng∑
i=1

Pgi(max)u
t
i ≥ Pt

D + Pt
R (5)

where Pgi(max) is the maximum active power of the ith unit, and Pt
R is the active power reserve at

time t.
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2.2.3. Generation Limit Constraints

Pgi(min) ≤ Pt
gi ≤ Pgi(max) (6)

where Pgi(min) is the minimum active power of the ith unit.

2.2.4. Minimum Up-Time Constraint

Tt
i,on ≥MUTi (7)

where Tt
i,on is the number of on hours of the ith unit until time t, and MUTi is the minimum up-time of

the ith unit.

2.2.5. Minimum Down-time Constraint

Tt
i,o f f ≥MDTi (8)

3. Overview of DA-PSO Optimization Algorithm and Related Algorithms

DA-PSO optimization algorithm is a hybrid algorithm which original combined the frameworks
of the DA and PSO algorithms. This section aims to describe the formulations and concepts of the
related algorithms including DA, PSO, and DA-PSO.

3.1. DA

DA is a metaheuristic method motivated by the flocking behavior of dragonflies in nature [35],
and it has been successfully applied to solve complicated optimization problems, such as the OPF
problem [39]. There are two main swarming goals of dragonflies, which are hunting (or static swarm),
and migrating (or dynamic swarm). These can be related to two main phases of optimization, which
are exploitation and exploration phases. The behavior of swarms follows three traditional rules [40].
The first rule is separation, which is to ensure collision avoidance. That is individuals avoid colliding
with others in the neighborhood. Secondly, alignment, referring to velocity matching of an individual
to that of other individuals in the neighborhood. The other is cohesion meaning the distance away of
individuals to the center of mass of the neighborhood. Moreover, since survival is the main propose
of any swarm, all the population should be attracted to food sources and repelled by the presence of
enemies. Accordingly, the position updating of individuals are imitated from the aforementioned
behavior, and can be mathematically formulated as follows:

Separation is formulated as follows:

Si = −
N∑

j=1

X−Xj (9)

where Si is the separation of the ith individual, N is the number of neighboring individuals, X is the
current individual position, Xj is the position of the jth neighboring individual.

Alignment is formulation is:

Ai =

∑N
j=1 Vj

N
(10)

where Ai is the alignment of the ith individual, Vj is the velocity of the jth neighboring individual.
Cohesion is formulation is:

Ci =

∑N
j=1 Xj

N
−X (11)
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where Ci is the cohesion of the ith individual.
Attraction towards a food source is formulated as:

Fi = X+ −X (12)

where Fi is the food source of the ith individual, X+ is the food source position.
Repulsion from an enemy is formulated as:

Ei = X− + X (13)

where Ei is the enemy of the ith individual, X− is the enemy position.
The velocity of artificial dragonflies can be simulated by considering step vector (∆X) representing

the direction of their movement, which is calculated by the following equation:

∆Xt+1 = (sSi + aAi + cCi + f Fi + eEi) +ωt∆Xt (14)

where ∆X is the step vector of an artificial dragonfly, t is the present iteration, s is the separation weight,
a is the alignment weight, c is the cohesion weight, f is the food factor, e is the enemy factor. The inertia
weight factor, ωt, is given by:

ωt = ωmax −
ωmax −ωmin

Itermax
× Iter (15)

The position of the artificial dragonflies is another factor to be considered to simulate their
movement, which is computed using:

Xt+1 = Xt + ∆Xt+1 (16)

where X is the position of an artificial dragonfly.
In the case of no neighboring solutions, the artificial dragonflies need to employ a Levy flight,

which is a random walk to improve the exploration phase. The position of dragonflies in this situation
is given by:

Xt+1 = Xt + Levy(d) ×Xt (17)

where the following equation is used to calculate the Levy flight:

Levy(d) = 0.01×
r1 × σ

|r2|
1
β

(18)

where r1, r2 are two uniformly generated random number in [0,1], β is a constant which is equal to 1.5
in this work. The parameter σ is calculated using the following equation:

σ =

 Γ(1 + β) × sin
(πβ

2

)
Γ
( 1+β

2

)
× β× 2(

β−1
2 )


1/β

(19)

where Γ(x) = (x− 1)!

3.2. PSO

PSO is one of the well-known population-based evolutionary and swarm intelligence algorithms,
and has been successfully applied to solve many problems in different fields [41–43]. Moreover,
PSO has been effectively employed to be hybrid with many other optimization algorithms because of
its simplicity and fast convergence speed [24,38,44]. PSO was originally proposed by Eberhart and
Kennedy in 1995 by mimicking the concepts of bird flocking and fish schooling behaviors [45]. In PSO,
each particle flies around a multi-dimensional search space and represents a possible solution in an
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optimization problem. Each particle comprises of a position Xi and a velocity Vi. The particles are
initialized in the search space with random velocity and position values. In each iteration, the velocity
of each particle is updated based on its personal best experience, Xt

pbesti, and the best experience
among the whole swarm, Xt

gbest, found so far. Therefore, the velocity and position of each particle can
be mathematically formulated as follows:

Vt+1
i = ωt

×Vt
i + C1 × rand1 × (Xt

pbesti
−Xt

i)+C2 × rand2 × (Xt
gbest −Xt

i) (20)

Xt+1
i = Xt

i + Vt+1
i (21)

where Vi is the velocity of the ith particle, t is the number of iteration, ωt is defined as in (15), C1 and
C2 are acceleration coefficients, rand1 and rand2 are uniformly generated random numbers, Xi is the
position of the ith particle, Xpbesti is the personal best position of the ith particle, Xgbest is the global
best position among the whole swarm.

3.3. DA-PSO

DA-PSO is a recently developed hybrid metaheuristic algorithm motivated by combining the
advantages of the DA and PSO algorithms [38]. PSO applies both personal and global best experiences of
the particles to find the optimal solution, is consequently good at exploitation, and often converges on the
optimal solution quickly. However, PSO is sometimes trapped in the local optima rather than the global
because it converges too quickly on an optimal solution. Conversely, DA is good at exploration since it
employs the Levy flight to increase the stochastic behavior in the searching process. However, DA takes too
long time to converge on the optimal solution. The hybrid DA-PSO algorithm was proposed to overcome
these problems by merging the good exploration of DA together with the good exploitation of PSO, and it
has been proven to successfully solve a complicated optimization problem such as multi-objective optimal
power-flow (MO-OPF) problems, which is evident in [38]. The idea of the DA-PSO algorithm is that in the
exploration phase, DA is employed to initially explore the solution space to provide the global solution
area, and the best position of DA is provided. In the exploitation phase, the PSO equations are calculated
but the velocity equation of PSO, Equation (20), is modified by replacing the global best position by the
provided best position found so far by DA. The PSO then finds a better optimal solution from this starting
point. Thus, the modified version of PSO equations can be written as:

Vt+1
i = ωt

×Vt
i + C1 × rand1 × (Xt

pbesti
−Xt

i) + C2 × rand2 × (Xt+1
DA −Xt

i) (22)

Xt+1
i = Xt

i + Vt+1
i (23)

4. An Improved DA-PSO Optimization Approach (iDA-PSO) for UC Problem

The iDA-PSO algorithm is proposed to solve the UC problem by improving the traditional
DA-PSO algorithm. An approach for the improvement, the related computational formulations,
and the application of the approach are explained below.

4.1. An Approach of Improving DA-PSO to Solve a Binary Problem

Although many efficient metaheuristic algorithms have been proposed in recent years, most of
them cannot be applied to solve problems involving binary values such as the UC problem, which is
the objective of this work. The contribution of this work is including binary values in the optimization
thereby developing an efficient metaheuristic algorithm able to solve the UC problem. The hybrid
metaheuristic algorithm DA-PSO operates only on real value; however, it was taken as the starting
point to develop the improved DA-PSO (iDA-PSO) approach, which is proposed in this paper.

The Binary PSO (BPSO) was proposed by Kennedy and Eberhart by a modification of the traditional
PSO to enable solving binary problems [46]. They also showed that the BPSO could successfully
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solve the test functions from [47]. In the BPSO, a particle is seen to move by flipping the number of
bits. Consequently, the velocity of the particle can be represented by the change of probabilities of bit
changed per iteration. In other words, a particle moves in a search space by only taking on values
of 0 or 1, where each velocity (Vt

i,gi) represents the probability of a bit of position (Xt
i,gi) which takes

the value 1. Since the position (Xt
i,gi) and the personal best (Xt

pbest,i,gi) are integers (0 or 1), and the
velocity (Vt

i,gi), which is a probability, needs to be limited to be in the range [0,1]. A function used to
accomplish this is called the sigmoid function and is mathematically formulated as follows:

S(Vt
i,gi) =

1
1 + exp(−Vt

i,gi)
(24)

The sigmoid function limits the velocity within the appropriate range to be used as a probability.
The change in position is defined by comparing with the random uniformly generated numbers
between 0 and 1 which is formulated as follows:

If rand() < S(Vt
i,gi), then Xt

i,gi = 1, else Xt
i,gi = 0 (25)

In the UC problem, Vgimax is set to limit the range of Vi,gi, so S(Vt
i,gi) is not too close to 0 or 1.

A higher value of Vgimax represents a lower frequency of changing the state of a generator.
To improve the DA-PSO algorithm to be able to solve the UC problem, the sigmoid function

described above is applied in the process of the DA-PSO algorithm. The equation of updating the
position of dragonflies, Equations (16) and (17), are both replaced by the sigmoid function, Equation (25).
Similarly, the position equation of PSO, Equation (23), is also replaced by the sigmoid function equation
to find the on/off status of each generator.

4.2. Priority List

A unit operating at its maximum power output normally has a lower cost per produced unit than
that operating at other power output levels; hence, a unit should be operated at its maximum power
output. Priority list, in this case, is based on the average full-load cost (α) of a unit that is defined as
the cost per maximum power of a unit as the following:

αi =
fCost(Pgimax)

Pgimax
= aiPgimax + bi +

ci
Pgimax

(26)

where a unit with the least αi is prioritized to be dispatched first.

4.3. Spinning Reserve Constraint Satisfaction

The unit scheduling from the heuristic search may not satisfy the spinning reserve constraint.
There are two main ways to deal with the unsatisfying-constraint results. The first one is a penalty
function, which transforms the constrained problem into an unconstrained one. However, when the
problem is highly constrained, it may be hard to find the near global solution because of the reduction
of the search space. The other is to repair the violations that have occurred, which approach used in
this paper. The implementation of repairing the spinning reserve violation is expressed below:

Step 1. At each hour t, calculate αi by using (26) for all uncommitted unit at hour t, and sort them in an
ascending order.

Step 2. Calculate the spinning reserve requirement at t as in (5)
Step 3. If the result from step 2 satisfies the spinning reserve constraint, go to step 5; otherwise, go to

step 4.
Step 4. Commit one uncommitted unit with the least αi from step 1.
Step 5. If t < T, t = t + 1 and go to step 1; otherwise, stop this process.
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4.4. Minimum Up-Time and Down-Time Constraints Satisfaction

The results obtained for unit scheduling from the previous process may violate the minimum up-
and down-time constraints required in the UC problem. To repair the violations of these constraints,
the following implementation is employed.

Step 1. At each hour t, calculate the accumulated current on/off hours of the ith unit at hour t, Tt
i,cur by

referring to the accumulated hours of the previous state, Tt
i,prev. If t = 1, Tt

i, prev = initial state;
else Tt

i,prev = accumulated on/off hours of the previous state, Tt−1
i,cur.

Step 2. At each unit i

Step 2.1. If ui
t = 1 and Tt

i,prev ≥ 1, Tt
i,cur = Tt

i,prev + 1
Step 2.2. If ui

t = 1 and Tt
i,prev ≤ −MDTi, Tt

i,cur = 1
Step 2.3. If ui

t = 0 and Tt
i,prev ≤ −1, Tt

i,cur = Tt
i,prev − 1

Step 2.4. If ui
t = 0 and Tt

i,prev ≥MUTi, Tt
i,cur = −1

Step 2.5. If ui
t = 0 and Tt

i,prev < MUTi, set ui
t = 1 and Tt

i,cur = Tt
i,prev + 1

Step 2.6. If ui
t = 1 and Tt

i,prev > −MDTi, set ui
t = 0 and Tt

i,cur = Tt
i,prev − 1

Step 3. If i < Ng, i =i + 1 and go to step 2; otherwise, go to step 4.
Step 4. If t < T, t = t + 1 and go to step 1; otherwise, stop this process.

4.5. Economic Dispatch

Repairing the minimum up- and/or down-time constraints may result in either excessive generation
or spinning reserves, which leads to a high generation cost, or insufficient generation, which cannot meet
the load demand and spinning reserve. In case of the excessive spinning reserve, the committed units
with the minimum priority will be decommitted by simultaneously considering the minimum up- and
down-time constraints and spinning reserve constraint until no unit can be decommitted. In other words,
the minimum up- and down-time constraints and the spinning reserve constraints must be checked before
decommitting a unit. Moreover, after decommitting a unit, the accumulated current on/off time, Tt

i,cur,
must be updated according to the change of a unit. In the case of the insufficient generation, which
cannot meet the load demand and spinning reserve, conversely, the uncommitted units with the highest
priority will be committed without violating the minimum up- and down-time constraints until the
generations from the committed units satisfy the spinning reserve constraints (i.e., Equation (5)). Similarly,
after committing a unit, the accumulated current on/off hours, Tt

i,cur, must be updated according to
the change of a unit. After updating the status of the units without any violations of the constraints,
to solve the ED problem, the lambda-iteration method [1] is employed to find the optimal values of Pt

gi of
all committed units to meet the load demand while satisfying the power balance and generation limit
constraints. The implementation of these processes can be explained as follows:

Step 1. At each hour t, check if
Ng∑
i=1

Pgi(max)u t
i ≥ Pt

D + Pt
R, go to step 2; otherwise, go to step 8.

Step 2. Calculate αi by using (26) for all committed unit at hour t, sort them in a descending order,
and name it descending order list (DOLt). Name the first unit in the DOLt to be the lowest
priority (LPt).

Step 3. Compute the excessive spinning reserve by ExcessReserve =
Ng∑
i=1

Pgi(max)u t
i − Pt

D − Pt
R.

Step 4. Check if ExcessReserve is higher than the maximum power output of the LPt go to step 5;
otherwise, go to step 6.

Step 5. Check if decommitting the LPt does not violate its minimum up- or down-time constraint,
decommit the LPt, and update the Tt

i,cur.
Step 6. Delete the LPt from the DOLt.
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Step 7. Check if the DOLt is not empty, set the new LPt to be the first unit of the DOLt and go to step 3;
otherwise, go to step 13.

Step 8. Calculate αi by using (26) for all uncommitted units at hour t, sort them in an ascending order,
and name it ascending order list (AOLt). Name the first unit in the AOLt to be the highest
priority (HPt).

Step 9. Compute the lacking spinning reserve by LackReserve =
Ng∑
i=1

Pgi(max)u t
i − Pt

D − Pt
R.

Step 10. Check if the LackReserve < 0, go to step 11; otherwise, go to step 13.
Step 11. Check if committing the HPt does not violate its minimum up- or down-time constraint,

commit the HPt, and update the Tt
i,cur.

Step 12. Let the HPt be the next unit in the AOLt, and go to step 9.
Step 13. Solve the ED problem by a lambda-iteration method, which finds the optimal value of Pt

gi of
all on-line units to meet the load demand while satisfying the power balance and generation
limit constraints.

Step 14. If t < T, t = t + 1 and go to step 1; otherwise, stop this process.

4.6. The Application of the iDA-PSO Approach for Solving the UC Problem

The application of the iDA-PSO approach for solving the UC problem is as follows:

Step 1. Produce the initial population of dragonflies and particles by randomly generating them to be
on or off status (1 or 0) over the time horizon T.

Step 2. Calculate the objective function of each dragonfly, and set the best one to be the first personal
best (Xpbesti) of PSO.

Step 3. Compute the coefficients used in DA (s, a, c, f, e and ω).
Step 4. Update the food source and enemy of DA.
Step 5. Compute the representative behavior factors of DA, namely S, A, C, F, and E by (9)–(13).
Step 6. If each dragonfly consists of at least one neighboring, update the step vector (∆X) of a dragonfly

by (14), and check whether any element of each population violates its limit, then move ∆X of
that population into its minimum/maximum limit. Then, update the position of dragonfly
(XDA) by sigmoid function as in (25), as described in Section 4.1. However, if a dragonfly
does not have any neighboring, calculate the Levy flight as in (18) and multiply it by XDA,
then update XDA by the sigmoid function, (25), and set ∆X to be zero.

Step 7. Set the best position provided by DA to be the global best position of PSO (Xgbest).
Step 8. Update the velocity of each particle (V) by (22), and check whether any element of each

population violates its limit, then move V of that population into its minimum/maximum
limit. Then, apply the sigmoid function, Equation (25), to update the position of each particle
(XPSO) as described in Section 4.1.

Step 9. Change the status of units of the newly generated population to satisfy the spinning reserve
constraint as presented in Section 4.3.

Step 10. Repair the newly generated population violating the minimum up- or down-time constraint
as explained in Section 4.4.

Step 11. Solve ED problem as expressed in Section 4.5 to find the optimal Pt
gi of all on-line units of the

newly generated population.
Step 12. Calculate start-up costs, which are hot or cold starts, of the units started in each hour by

comparing with the status of the previous hour. For the first hour, compare the status with
that of the initial status of each unit.

Step 13. Calculate the objective function of the newly generated population.
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Step 14. Test whether any obtained objective function from an individual is better than that of the
previous Xpbesti, then the newly generated population is set to be a new Xpbesti. Likewise,
if the best Xpbesti is better than Xgbest, that Xpbesti is set to be new Xgbest.

Step 15. If the maximum number of iterations is not reached, go to step 3; otherwise, stop the
implementation and the optimal solution of UC problem is the particle with the
non-dominated Xgbest.

The flowchart of the iDA-PSO approach for solving the UC problem is presented in Figure 1.Energies 2019, 12, x FOR PEER REVIEW 11 of 26 
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Figure 1. Flowchart of Improved Dragonfly Algorithm-Particle Swarm Optimization (iDA-PSO)
approach for Unit Commitment (UC) problem.
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5. Numerical Results

The effectiveness of the iDA-PSO algorithm is now examined by solving the UC problem using
24-hour scheduling time horizon for four systems of different sizes. The systems are the 5-unit
system [48], 6-unit system [48], 10-unit system [16] and 26-unit system [49]. The spinning reserve
requirement is equal to 10% of the total load demand of each hour in the 5-unit, 6-unit, and 10-unit
systems. However, the spinning reserve requirement in the 26-unit system is equal to 5% of the total
load demand of each hour as in [49]. The data of each system comprising of generator maximum and
minimum limits, fuel cost coefficients, minimum up- and down-time limits, hot and cold start costs,
cold start hours, and initial status of the units can be found in Tables 1–4. The 24-hour load demand for
the 5-unit, 6-unit, 10-unit and 26-unit systems are provided in Tables 5–8, respectively. For each test
system, the proposed approach operated for 30 independent runs, and the number of the population
and maximum iteration number were set to be 100 and 200, respectively.

Table 1. System data for 5-unit system.

Unit No. Pgimax Pgimin a ($/MW2) b ($/MW) c ($/h) MUTi MDTi HSCi CSCi CSHi ISi

U1 250 10 0.00315 2 0 1 1 70 176 2 1
U2 140 20 0.0175 1.75 0 2 1 74 187 2 −3
U3 100 15 0.0625 1 0 1 1 50 113 1 −2
U4 120 10 0.00834 3.25 0 2 2 110 267 1 −3
U5 45 10 0.025 3 0 1 1 72 180 1 −2

Table 2. System data for 6-unit system.

Unit No. Pgimax Pgimin a ($/MW2) b ($/MW) c ($/h) MUTi MDTi HSCi CSCi CSHi ISi

U1 200 50 0.00375 2 0 1 1 70 176 2 1
U2 80 20 0.0175 1.7 0 2 2 74 187 1 −3
U3 50 15 0.0625 1 0 1 1 50 113 1 −2
U4 35 10 0.00834 3.25 0 1 2 110 267 1 −3
U5 30 10 0.025 3 0 2 1 72 180 1 −2
U6 40 12 0.025 3 0 1 1 40 113 1 −2

Table 3. System data for 10-unit system.

Unit No. Pgimax Pgimin a ($/MW2) b ($/MW) c ($/h) MUTi MDTi HSCi CSCi CSHi ISi

U1 455 150 0.00048 16.19 1000 8 8 4500 9000 5 8
U2 455 150 0.00031 17.26 970 8 8 5000 10000 5 8
U3 130 20 0.002 16.6 700 5 5 550 1100 4 −5
U4 130 20 0.00211 16.5 680 5 5 560 1120 4 −5
U5 162 25 0.0398 19.7 450 6 6 900 1800 4 −6
U6 80 20 0.00712 22.26 370 3 3 170 340 2 -3
U7 85 25 0.00079 27.74 480 3 3 260 520 2 −3
U8 55 10 0.00413 25.92 660 1 1 30 60 0 −1
U9 55 10 0.00222 27.27 665 1 1 30 60 0 −1

U10 55 10 0.00173 27.79 670 1 1 30 60 0 −1
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Table 4. System data for 26-unit system.

Unit No. Pgimax Pgimin a ($/MW2) b ($/MW) c ($/h) MUTi MDTi HSCi CSCi CSHi ISi

U1 400 100 0.0019 7.5031 311.9102 8 5 500 500 10 10
U2 400 100 0.0019 7.4921 310.0021 8 5 500 500 10 10
U3 350 140 0.0015 10.8616 177.0575 8 5 300 200 8 10
U4 197 68.95 0.0026 23.2000 260.1760 5 4 200 200 8 −4
U5 197 68.95 0.0026 23.1000 259.6490 5 4 200 200 8 −4
U6 197 68.95 0.0026 23.0000 259.1310 5 4 200 200 8 −4
U7 155 54.25 0.0049 10.7583 143.5972 5 3 150 150 6 5
U8 155 54.25 0.0048 10.7367 134.3719 5 3 150 150 6 5
U9 155 54.25 0.0047 10.7154 143.0288 5 3 150 150 6 5

U10 155 54.25 0.0046 10.6940 142.7348 5 3 150 150 6 5
U11 100 25 0.0060 18.2000 218.7752 4 2 70 70 4 −3
U12 100 25 0.0061 18.1000 218.3350 4 2 70 70 4 −3
U13 100 25 0.0062 18.0000 217.8952 4 2 70 70 4 −3
U14 76 15.2 0.0093 13.4073 81.6259 3 2 50 50 3 3
U15 76 15.2 0.0091 13.3805 81.4641 3 2 50 50 3 3
U16 76 15.2 0.0089 13.3538 81.2980 3 2 50 50 3 3
U17 76 15.2 0.0088 13.3272 81.1364 3 0 50 50 3 3
U18 20 4 0.0143 37.8896 118.8206 0 0 20 20 2 −1
U19 20 4 0.0136 37.7770 118.4576 0 0 20 20 2 −1
U20 20 4 0.0126 37.6637 118.1083 0 0 20 20 2 −1
U21 20 4 0.0120 37.5510 117.7551 0 0 20 20 2 −1
U22 12 2.4 0.0285 26.0611 24.8882 0 0 0 0 1 −1
U23 12 2.4 0.0284 25.9318 24.7605 0 0 0 0 1 −1
U24 12 2.4 0.0280 25.8027 24.6382 0 0 0 0 1 −1
U25 12 2.4 0.0265 25.6753 24.4110 0 0 0 0 1 −1
U26 12 2.4 0.0253 25.5472 24.3891 0 0 0 0 1 −1

Table 5. 24-hour load demand for 5-unit system.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand 148 173 220 244 259 248 227 202 176 134 100 130

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand 157 168 195 225 244 241 230 210 176 157 138 103

Table 6. 24-hour load demand for 6-unit system.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand 166 196 229 267 283.4 272 246 213 192 161 147 160

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand 170 185 208 232 246 241 236 225 204 182 161 131

Table 7. 24-hour load demand for 10-unit system.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

Table 8. 24-hour load demand for 26-unit system.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Dmd. 2223 2052 1938 1881 1824 1825.5 1881 1995 2280 2508 2565 2593.5

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Dmd. 2565 2508 2479.5 2479.5 2593.5 2850 2821.5 2764.5 2679 2662 2479.5 2308.5
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The simulation results of the proposed iDA-PSO approach for the 5-unit system are shown in
Table 9, and the convergence curve is presented in Figure 2. The unit schedule and generation schedule
for the 24-hour duration and the total generation cost are presented in this Table. The total generation
cost through the scheduling duration obtained from the proposed iDA-PSO algorithm is equal to
$11,830.94. The total generation cost provided by the iDA-PSO solution is better than that obtained by
PSO-GWO, which is documented in the literature, for solving this UC problem. PSO-GWO achieved a
generation cost of $12,281 [24].

Table 9. Commitment and generation schedule of the 5-unit system by Improve Dragonfly Algorithm-
Particle Swarm Optimization (iDA-PSO) approach.

Hour Unit Schedule Generation Schedule

U1 U2 U3 U4 U5 U1 U2 U3 U4 U5

1 1 0 1 0 0 133 0 15 0 0
2 1 0 0 0 0 173 0 0 0 0
3 1 0 1 0 0 205 0 15 0 0
4 1 0 1 0 0 229 0 15 0 0
5 1 0 1 0 0 244 0 15 0 0
6 1 0 1 0 0 233 0 15 0 0
7 1 0 0 0 0 227 0 0 0 0
8 1 0 0 0 0 202 0 0 0 0
9 1 0 1 0 0 161 0 15 0 0

10 1 0 1 0 0 119 0 15 0 0
11 1 0 0 0 0 100 0 0 0 0
12 1 0 1 0 0 115 0 15 0 0
13 1 0 0 0 0 157 0 0 0 0
14 1 0 0 0 0 168 0 0 0 0
15 1 0 1 0 0 180 0 15 0 0
16 1 0 1 0 0 210 0 15 0 0
17 1 0 1 0 0 229 0 15 0 0
18 1 0 1 0 0 226 0 15 0 0
19 1 0 1 0 0 215 0 15 0 0
20 1 0 0 0 0 210 0 0 0 0
21 1 0 0 0 0 176 0 0 0 0
22 1 0 0 0 0 157 0 0 0 0
23 1 0 0 0 0 138 0 0 0 0
24 1 0 0 0 0 103 0 0 0 0

Total Cost ($) 11,830.94
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Table 10 presents the unit schedule, generation schedule for the 24-hour duration and the total
generation cost obtained by the proposed algorithm for the 6-unit system, and Figure 3 demonstrates
the convergence curve of the algorithm for this system. The total generation cost of the proposed
approach, which is $13,292.28, is once again better than that of the PSO-GWO, which is $13,600 [24].

Table 10. Commitment and generation schedule of the 6-unit system by iDA-PSO.

Hour
Unit Schedule Generation Schedule

U1 U2 U3 U4 U5 U6 U1 U2 U3 U4 U5 U6

1 1 1 1 0 0 0 131 20 15 0 0 0
2 1 1 0 0 0 0 176 20 0 0 0 0
3 1 1 1 0 0 0 194 20 15 0 0 0
4 1 1 1 0 0 0 200 52 15 0 0 0
5 1 1 1 0 0 0 200 68.4 15 0 0 0
6 1 1 1 0 0 0 200 57 15 0 0 0
7 1 1 0 0 0 0 200 46 0 0 0 0
8 1 1 0 0 0 0 193 20 0 0 0 0
9 1 1 0 0 0 0 172 20 0 0 0 0
10 1 0 0 0 0 0 161 0 0 0 0 0
11 1 0 0 0 0 0 147 0 0 0 0 0
12 1 1 0 0 0 0 140 20 0 0 0 0
13 1 1 0 0 0 0 150 20 0 0 0 0
14 1 1 0 0 0 0 165 20 0 0 0 0
15 1 1 0 0 0 0 188 20 0 0 0 0
16 1 1 0 0 0 0 200 32 0 0 0 0
17 1 1 0 0 0 0 200 46 0 0 0 0
18 1 1 0 0 0 0 200 41 0 0 0 0
19 1 1 0 0 0 0 200 36 0 0 0 0
20 1 1 0 0 0 0 200 25 0 0 0 0
21 1 1 0 0 0 0 184 20 0 0 0 0
22 1 1 0 0 0 0 162 20 0 0 0 0
23 1 0 0 0 0 0 161 0 0 0 0 0
24 1 0 0 0 0 0 131 0 0 0 0 0

Total Cost ($) 13,292.28
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For the 10-unit system, the simulation results including unit and generation schedule for the
24-hour duration and the total generation cost of the iDA-PSO approach are given in Table 11, and its
convergence curve is provided in Figure 4. Through the scheduling duration, the total generation
cost provided by the iDA-PSO is equal to $565,807.3094, which is slightly worse than those obtained
by some algorithms in the literature. However, the total generation cost obtained by the iDA-PSO is
significantly better than that of many algorithms presented in the literature. The algorithms GA [16],
DP [16], LR [16], PSO-LR [17], EP [18], NGA [19], LCA-PSO [20], IPSO [20], MPSO [20], TSGA [21],
ICGA [22], BCGA [22], SA [23], SM [23], PSO-GWO [24], HPSO [25], improve Lagrangian relaxation
method (ILR) [25] and greedy randomized adaptive search procedure (GRASP) [50] are compared
with the proposed approach as shown in Table 12. The best, average and worst generation costs and
the computation times of the proposed iDA-PSO and other algorithms are also presented in Table 12.
The computation time of the proposed iDA-PSO is slightly slower than those of some algorithms
because of the sequential process of both DA and PSO.

Table 11. Commitment and generation schedule of the 10-unit system by iDA-PSO.

Unit Schedule Generation Schedule

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

1 1 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 455 370 0 0 25 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 455 455 0 0 40 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 455 455 0 65 25 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 455 455 35 130 25 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 455 455 85 130 25 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 455 455 130 130 85 20 25 0 0 0
1 1 1 1 1 1 1 1 0 0 455 455 130 130 162 33 25 10 0 0
1 1 1 1 1 1 1 1 1 0 455 455 130 130 162 73 25 10 10 0
1 1 1 1 1 1 1 1 1 1 455 455 130 130 162 80 58 10 10 10
1 1 1 1 1 1 1 1 0 0 455 455 130 130 162 33 25 10 0 0
1 1 1 1 1 1 1 0 0 0 455 455 130 130 85 20 25 0 0 0
1 1 0 1 1 1 1 0 0 0 455 455 0 130 115 20 25 0 0 0
1 1 0 1 1 0 0 0 0 0 455 455 0 115 25 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 455 455 0 65 25 0 0 0 0 0
1 1 0 1 1 0 0 1 0 0 455 455 0 130 50 0 0 10 0 0
1 1 0 1 1 1 1 0 0 0 455 455 0 130 115 20 25 0 0 0
1 1 1 1 1 1 1 1 0 0 455 455 130 130 162 33 25 10 0 0
1 1 1 1 1 1 1 0 0 0 455 455 130 130 85 20 25 0 0 0
1 1 1 0 1 1 0 0 0 0 455 455 130 0 40 20 0 0 0 0
1 1 1 0 0 0 0 0 0 0 455 425 20 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 455 325 20 0 0 0 0 0 0 0

Total Cost ($) 565,807.3094
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Table 12. Simulation results of the iDA-PSO approach compared with other algorithms in the literature
for the 10-generating unit system.

Methods
Total Generation Cost ($)

Time (s)
Best Average Worst

GA [16] 565,825 - 570,032 221
DP [16] 565,825 - - -
LR [16] 565,825 - - 257

PSO-LR [17] 565,869 - - 42
EP [18] 564,551 - 566,231 100

NGA [19] 591,715 - - 677
LCA-PSO [20] 570,006 - - 18.34

IPSO [20] 599,782 - - 14.48
MPSO [20] 574,905 - - 15.73
TSGA [21] 568,314.56 - - -
ICGA [22] - 566,404 - 7.4
BCGA [22] 567,367 - - 3.7

SA [23] 565,828 565,988 566,260 3.35
SM [23] 566,686 566,787 567,022 -

PSO-GWO [24] 565,210.2564 - - -
HPSO [25] 574,153 - - -

ILR [25] 565,823 - - -
GRASP [50] 565,825 - - 17

iDA-PSO 565,807.3094 565,827.0145 565,891.7599 231.31

In the larger 26-unit system, the outcome of the UC for 24-hour duration together with the total
generation cost provided by the proposed approach are shown by the non-zero numbers in Table 13,
and Figure 5 displays the convergence curve of the proposed approach for this system. The total
generation cost obtained by the iDA-PSO is equal to $741,587.7088 and is better than those of other
algorithms, including GA [49], discrete binary particle swarm optimization (BPSO) [49], and modified
particle swarm optimization (MPSO) [51] in the literature as presented in Table 14.
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Table 13. Generation schedule of the 26-unit system by iDA-PSO.

Generation Schedule (Units 1–13)

1 2 3 4 5 6 7 8 9 10 11 12 13

400 400 350 0 0 0 155 155 155 155 0 35.4 100
400 400 350 0 0 0 155 155 155 155 0 25 29
400 400 350 0 0 0 155 155 155 155 0 25 67
400 400 350 0 0 0 155 155 155 155 0 25 25
400 400 350 0 0 0 155 155 155 155 0 0 0
400 400 350 0 0 0 155 155 155 155 0 0 0
400 400 350 0 0 0 155 155 155 155 0 0 0
400 400 350 0 0 0 155 155 155 155 0 0 0
400 400 350 0 0 101.2 155 155 155 155 0 0 100
400 400 350 0 0 120.4 155 155 155 155 100 100 100
400 400 350 0 68.95 122.05 155 155 155 155 100 100 100
400 400 350 0 68.95 150.55 155 155 155 155 100 100 100
400 400 350 0 68.95 122.05 155 155 155 155 100 100 100
400 400 350 0 120.4 0 155 155 155 155 100 100 100
400 400 350 0 98.3 0 155 155 155 155 100 100 100
400 400 350 0 98.3 0 155 155 155 155 100 100 100
400 400 350 68.95 150.55 0 155 155 155 155 100 100 100
400 400 350 74.8 197 197 155 155 155 155 100 100 100
400 400 350 68.95 181.55 197 155 155 155 155 100 100 100
400 400 350 68.95 124.55 197 155 155 155 155 100 100 100
400 400 350 98.4 0 197 155 155 155 155 100 100 100
400 400 350 83.8 0 197 155 155 155 155 100 100 100
400 400 350 0 0 98.3 155 155 155 155 100 100 100
400 400 350 0 0 0 155 155 155 155 25 97.5 100

Generation Schedule (Units 14–26)

14 15 16 17 18 19 20 21 22 23 24 25 26

76 76 76 76 0 0 0 4 0 2.4 2.4 2.4 2.4
0 76 76 76 0 0 0 0 0 0 0 0 0
0 0 0 76 0 0 0 0 0 0 0 0 0
0 0 0 61 0 0 0 0 0 0 0 0 0
0 0 15.2 38.8 0 0 0 0 0 0 0 0 0
0 0 15.2 40.3 0 0 0 0 0 0 0 0 0
0 15.2 19.8 76 0 0 0 0 0 0 0 0 0

15.2 53 76 76 0 0 0 0 0 0 0 2.4 2.4
76 76 76 76 0 0 0 0 0 0 0 2.4 2.4
76 76 76 76 0 0 0 4 0 2.4 2.4 2.4 2.4
76 76 76 76 0 0 0 0 0 0 0 0 0
76 76 76 76 0 0 0 0 0 0 0 0 0
76 76 76 76 0 0 0 0 0 0 0 0 0
76 76 76 76 0 0 0 4 0 2.4 2.4 2.4 2.4
76 76 76 76 0 0 0 0 0 0 2.4 2.4 2.4
76 76 76 76 0 0 0 0 0 0 2.4 2.4 2.4
76 76 76 76 0 0 0 0 0 0 0 0 0
76 76 76 76 0 0 0 0 0 0 2.4 2.4 2.4
76 76 76 76 0 0 0 0 0 0 0 0 0
76 76 76 76 0 0 0 0 0 0 0 0 0
76 76 76 76 0 0 0 0 0 2.4 2.4 2.4 2.4
76 76 76 76 0 0 0 0 0 0 2.4 2.4 2.4
76 76 76 76 0 0 0 0 0 0 2.4 2.4 2.4
76 76 76 76 0 0 0 0 2.4 2.4 2.4 2.4 2.4

Total Cost ($) 741,587.7088
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Table 14. Simulation results of the iDA-PSO approach compared with other algorithms for the
26-generating unit system.

Methods
Total Generation Cost ($)

Time (s)
Best Average Worst

GA [49] 782,373 784,910 786,522 87.33
BPSO [49] 773,191 774,653 776,342 516.57
MPSO [51] 746,600.6 - - -
iDA-PSO 741,587.7088 743,176.1415 745,894.2814 327.76

From the generation schedule of each system, it can be noticed that the different units are
dispatched in different ways. This is because the different units have different fuel cost coefficients,
generation limits, minimum up- and down-time constraints, hot and cold and start-up costs and cold
start hours, etc. Therefore, the units which have the cheapest fuel cost coefficient should be prioritized
to be firstly dispatched, and the units which have the highest fuel cost coefficient should be dispatched
only in the high-demand hour. However, these also depend on the start-up cost of each unit. Another
noticeable point is most of the units keep a constant level of production over different time intervals.
This is because when any unit has been turned off and turned on again, the start-up cost is added to
the total generation cost causing a higher cost. Thus, if the units have low fuel cost coefficients and
high maximum power generation, it is unnecessary to turn them off and on again.

According to all simulation results presented in Tables 9–14, the proposed approach can efficiently
find the optimal unit schedule during 24-hour time horizon for four different system sizes. The total
generation cost obtained by the proposed iDA-PSO approach is better than that of the recently proposed
algorithm, PSO-GWO, for the 5- and 6-unit systems. For the 10-unit system, the iDA-PSO could
provide considerably better total generation cost than many algorithms in the literature. The iDA-PSO
could also produce considerably better total generation cost than several algorithms in the literature
for the larger 26-unit system. Thus, adopting the sigmoid function to the recently proposed efficient
optimization algorithm, DA-PSO, could make it able to solve the UC problem, which is a mixed-integer
combinational optimization problem. The optimal on/off status of generating units, which is the
mixed-integer part of the UC problem, could be efficiently provided for all studied systems, and the
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optimal total generation costs could also be obtained and are significantly better than that of many
algorithms in the literature.

6. Conclusions

This paper has presented an improved DA-PSO algorithm that is capable of solving the UC problem
in an electrical power system. The DA-PSO is a recent and efficient optimization algorithm, which has
been proven to successfully solve a complicated optimization problem, which is a multi-objective,
such as the OPF problem. However, DA-PSO cannot solve mixed-integer combination optimization
problem such as the UC problem. To overcome this limitation, a new iDA-PSO algorithm has been
proposed which employed the sigmoid function to enable finding the optimal on/off status of generation
units, while satisfying the system constraints. The four test systems of different sizes (consisting of
5-unit, 6-unit, 10-unit and 26-unit systems) were used to demonstrate the effectiveness of the iDA-PSO
algorithm. The proposed approach proved reliable by could successfully finding the optimal results for
the generation schedule for a 24-hour duration for the test systems. The total generation costs over the
scheduled time horizon obtained by iDA-PSO are less than those of many algorithms reported in the
literature. Thus, applying the sigmoid function to the DA-PSO algorithm could enable it to solve the
UC problem, which is a mixed-integer combinational problem, and the iDA-PSO also has a superiority
over many algorithms reported in the literature. In the future work, the iDA-PSO approach could be
improved and tested against other hybrid metaheuristic approaches such as fuzzy adaptive PSO.
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