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Abstract: The hydraulic heightening system is the core component of the shearer, and its stable
operation directly affects the safety and reliability of the equipment, so it is of great significance
to realize an efficient and accurate fault diagnosis. This paper proposes a fault diagnosis method
combining a rough set and radial basis function neural network (RS-RBFNN). Firstly, the RS is used
to discretize the original fault data set and attribute reduction, remove the redundant information,
and mine the implicit knowledge and potential rules. Then, the topology structure of the RBFNN
is determined. The mapping relationship is established between the fault symptom and category.
The fault diagnosis is carried out with Python language. Finally, the method is compared with two
diagnostic methods including a back propagation neural network (BPNN) and RBFNN. The research
results show that the RS-RBFNN has the highest fault diagnosis accuracy, with an average of 98.68%,
which verifies the effectiveness of the proposed fault diagnosis method.

Keywords: hydraulic heightening system; fault diagnosis; RS-RBFNN; simulation; accuracy

1. Introduction

The shearer is one of most the important pieces of equipment to realize the mechaniza-
tion and modernization of coal mine production. It is mainly composed of a cutting part,
loading part, walking part, and hydraulic elevation system [1,2]. In longwall mining faces,
the cutting part breaks down the coal from the coal body and loads it into the mining ma-
chine of the working conveyor, with a complex system and harsh working environment [3].
Its stable operation is directly related to the safety and stability of coal mining. Once failure
occurs, it causes huge economic losses and hidden dangers of safety production. As the
key component of the shearer, the failure rate of the hydraulic heightening system accounts
for about 12% of the total failure, and the duration accounts for about 40% of the average
time of failure. The causes of failure are diverse and uncertain [4]. When the traditional
identification method is used for fault diagnosis, a large amount of redundant data is
obtained, which leads to low efficiency and poor accuracy of fault diagnosis [5]. Therefore,
it is of great significance to establish an efficient and accurate fault diagnosis method for
the hydraulic heightening system of the shearer.

Generally speaking, the failure of the hydraulic heightening system mainly occurs in
the leakage and mechanical failure of hydraulic pumps, valves, and cylinders [6]. At present,
experts and scholars have various methods for the fault diagnosis of hydraulic systems and
internal components. Reference [7] proposed a deep learning model method based on the
combination of a convolutional neural network and long- and short-term memory, which
improves the accuracy of the hydraulic system fault diagnosis by improving the ability
of data extraction. Article [8] proposed a new FDI framework for the closed-loop system
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to diagnose the faults of the hydraulic system, which mainly constructs the performance
residual vector for diagnosis and compares the difference between the real and model
system stability, accuracy, and speed. In [9], a fault diagnosis information fusion method of
the hydraulic system based on the improved D-S evidence theory and time–space domain
was proposed, which uses D-S and decision rules to identify faults. Reference [10] proposed
a fault feature extraction method for hydraulic systems based on a fuzzy ARX model, which
has the advantage of extracting nonlinear features for fault classification and diagnoses.
Reference [11] proposed a two-stage radial basis function neural network model for fault
classification detection and the fault location of the hydraulic system. In [12], a scheme
combining a regression neural network and metric learning was proposed. Degradation
features are extracted from the difference between the actual and estimated outputs to
diagnose the faults of the hydraulic system. Reference [13] optimized the placement and
method of sensors in the hydraulic system, improved the efficiency of data acquisition,
and realized the efficient fault diagnosis of the hydraulic system. Reference [14] proposed
an adaptive particle swarm optimization algorithm to optimize the BP neural network
method. By using a particle purity better than the optimal value and the dynamic fusion
strategy to realize the particle swarm search, the hydraulic system diagnosis efficiency
was improved. Reference [15] proposed a new fault diagnosis method which could extract
leakage information, directly detect and locate faults in the hydraulic system caused by
leakage, and realize intuitive and efficient fault monitoring. In reference [16], based on the
machine learning algorithm and statistical features of vibration monitoring, a C4.5 decision
tree algorithm was adopted to extract statistical features from vibration signals to realize
the fault diagnosis of the hydraulic system.

Aiming at the fault diagnosis of hydraulic systems, the fault features of the hydraulic
pump, valve, and cylinder were extracted for fault diagnosis. Reference [17] used a
cavitation detection framework, including experimental research and numerical signal
processing, to detect the strength of cavitation faults in axial piston pumps, so as to improve
the accuracy of fault diagnosis. Reference [18] improved the identification accuracy and
optimized the parameters of the hydraulic plunker pump through the improved LeNet-5
and PSO hyperparameter optimization fault diagnoses. In [19], a three-layer fault diagnosis
method based on the Dezert–Smarandache theory was used. A multi-classifier was used
to detect the failure of the hydraulic system with the hydraulic valve as the main object.
Reference [20] applied diagnostic methods based on wavelet packet analysis and feature
extraction. By optimizing the identification and extraction of the fault features, the hydraulic
cylinder leakage of the actuator in the hydraulic system was diagnosed.

There are a variety of state-of-art methods based on deep neural networks. In [21],
a multi-scale edge-labeling graph neural-network-based method was developed under
small samples, which take advantage of a graph neural network in the feature extraction of
small samples and improved its performance through a multi-scale trick. Reference [22]
proposed a novel entropy-based sparsity measure for the prognosis and development of
a sparsogram to select a sensitive filtering band. The measurements were sensitive to
pulses and could indicate how sparse the signal was. A sparsogram tool was developed to
help choose the right filtering band for envelope analysis. Reference [23] proposed a fault
diagnosis method based on an RBFNN. A series of fault isolation observers based on an
RBFNN were designed to completely decouple different faults. The diagnosis results of
one component were not affected by other faults, and multiple faults could be diagnosed at
the same time. In [24], a hybrid fault diagnosis method was developed based on relief, a
principal component analysis (PCA), and a deep neural network. Relief and PCA were used
to select fault features to reduce data dimensions, and deep neural networks were used to
improve the accuracy of fault diagnosis. In [25], based on the laboratory measurement data
of the GEROLER motor, the black box model for predicting the operating parameters of the
artificial neural network was established. By comparing the static multilayer feedforward
network and dynamic NARX neural network, the dynamic NARX neural network provided
better results due to its flexibility in processing non-linear dynamic systems. The above
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fault diagnosis methods are diverse, but there are few fault diagnosis methods for hydraulic
systems based on an RS-RBFNN.

Through the analysis of the existing hydraulic system fault diagnosis methods, it can
be seen that the diagnosis data is complicated and the diagnosis method is single, resulting
in low diagnosis efficiency and accuracy. This paper presents a fault diagnosis method of
the shearer hydraulic heightening system based on an RS-RBFNN. First, the RS was used to
discretize the dataset and attribute reduction, which removed redundant information and
retained the key features of the data [26]. It laid a data foundation for subsequent feature
extraction, shortened the training time of the network, and significantly improved the
efficiency. Then, the RBFNN had a strong input and output mapping function, with only
the best approximation characteristics. Combined with the better association and memory
ability of the RBFNN, the hidden knowledge was mined and the potential rules were
objectively described [27,28]. Therefore, aiming at the problems of fault data redundancy
and the complex mutual relationship of shearer hydraulic heightening systems, compared
with the existing single method, the combination method of an RS and RBFNN not only
takes advantage of RS data processing, but also combines the best local approximation
performance and global optimal characteristics of the RBFNN to achieve a faster and more
accurate fault diagnosis.

The organization of this paper is as follows: Section 2 mainly introduces the RS-
RBFNN fault diagnosis model and methods. Section 3 is the fault simulation analysis of
the hydraulic heightening system. Section 4 presents the process of fault diagnosis with
the RS-RBFNN. Section 5 is the comparison of the three fault diagnosis methods. Finally,
Section 6 draws the conclusion.

2. Models and Methods

Figure 1 shows the whole idea of the RS-RBFNN fault diagnosis method. It mainly
included five parts: model building, fault data collection, RS preprocessing (includes
cutting the clutter and attribute reduction), RBFNN training diagnosis, and fault output.
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2.1. RS Model

Data plays an important role in artificial intelligence. In order to solve complex
problems, large amounts of data are often needed and structures are established to process
them. An RS is also based on a large amount of data, building models for discretization
and attribute reduction [27,29].



Energies 2023, 16, 956 4 of 15

The data system used was represented by S = (U, A, V, f ) where U is the domain and
A is the set of attributes, both of which are non-empty finite sets; V = UVa where Va is the
attribute range; and f : U × A→ V is the value of an object’s property, a ∈ A, f (x, a) ∈ Va.

Data systems are usually represented by relational tables. As a special information sys-
tem, decision tables play a key role in decision applications. The row attribute represented
our research object, and the column attribute represented the object attribute.

In the data system S, A = C ∪ D, C ∩ D = ∅, C represented the set of conditional
attributes and D represented the set of decision attributes. If the data system contained a
set of C and D, the system was a decision table.

Assume an equivalence relation cluster L on U, P ⊆ L, P 6= ∅, ∩P is an equivalence
relation in U, defined as an indistinguishable relation on P, expressed as:

ind(P) : [x]ind(P) = ∩
L∈P

[x]L (1)

The indistinguishable relationship divides U into multiple sets, in which the objects
are indistinguishable. U/ind(P) is the knowledge related to all equivalence classes of
ind(P) in the domain. K = (U, S) is called the basic set of P in U, recorded as U/P.
The equivalence class of ind(P) is the basic category of knowledge P. If T is called the
T-elementary knowledge about U, the equivalence class of T is called the T-elementary
category of R. There is the knowledge base K = (U, R), for each subset x ⊆ U and
R ∈ ind(K), the R lower approximation set and the R upper approximation set of X are
defined as follows:

RX = ∪{Y ∈ U/R|Y ⊆ X} (2)

RX = ∪{Y ∈ U/R|Y ∩ X 6= ∅} (3)

The R boundary region of X is defined as BNR(X) = RX− RX; the R-positive region
of X is defined as POSR(X) = RX. The R-negative domain of X is defined as NEGR(X) =
U − RX. It can be concluded that RX = POSR(X) ∪ BNR(X).

The set is approximated by the exact sets RX and RX. All objects of POSR(X) belong
to X. The object of the negative domain NEGR(X) must not belong to X, and the object of
the boundary domain BNR(X) is not sure whether it belongs to X.

If Q ⊆ P, then Q is independent and if ind (Q) = ind(P), then Q is a reduction of P.
The reduction of the decision table does not affect the original knowledge expression after
removing the redundant conditional attributes.

2.2. RBFNN Model

Figure 2 shows the topology structure of the RBFNN used in this study. The RBFNN is
a kind of feedforward network, where the number of nodes in the input, hidden, and output
layers are n, h, and m, respectively. The input vector of the network is x = [x1, x2, . . . , xn]

T ∈
Rn, the weight matrix is W ∈ Rh×m, and the output vector is Y = [y1, y2, . . . , ym]

T . The
activation function of the hidden layer neurons is Ri in the network, and the ∑ represents
the function of the output that is linear in the output layer.

In the network structure, the basis functions of the hidden layer are radial basis
functions as activation functions, which are radially symmetric [30]. The most commonly
used Gauss function can be expressed as follows:

Ri(x) = exp(−||x− ci||
2σ2

i

2
), i = 1, 2, . . . , p (4)

where ci is the center of the ith basis function; σi is the variance of the ith basis function;
and Ri(x) is the hidden layer activation function corresponding to the input xi.
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The input and hidden layers of the network have a nonlinear relationship, and the
hidden and output layers have a linear relationship [31]. The output of the network is
as follows:

yk =
p

∑
i=1

ωkiRi(x), k = 1, 2, . . . , q (5)

where ωki is the adjustment weight between the output and hidden layers and q is the
number of output layer nodes.

2.3. RS-RBFNN Fault Diagnosis Model

Figure 3 shows the flow chart of fault diagnosis model based on the RS-RBFNN. The
specific flow is as follows.
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• The model of the hydraulic heightening system was established, and the typical faults
in the system were taken as the research object. Pressure, flow, displacement, and
speed sensors were used to collect the fault data.

• RS theory was used to construct the original fault decision table. The fault symptoms
that occurred many times in the system were taken as the condition attributes, and the
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fault type was taken as the decision attribute to generate the original fault decision
table. The data of the original fault decision table was discretized at an equal dis-
tance. Then, using the attribute reduction based on genetic algorithm, the redundant
conditional attributes were deleted under the condition of retaining the key input
information, and the minimum set of conditional attributes was obtained.

• The minimum attribute reduction set was used as the input of the RBFNN. The
mapping relationship between the fault symptoms and categories of the RBF neural
network was used for learning and training. Finally, the fault diagnosis classification
results of the shearer hydraulic heightening system were obtained.

3. Simulation
3.1. Research Object

In this paper, the hydraulic heightening system of an MG750/1940-WD AC traction
shearer used in the actual production of a coal mine was taken as the research object
to model and analyze. The hydraulic heightening system includes a hydraulic cylinder,
hydraulic pump, three-bit four-way reversing valve, relief valve, etc. Figure 4 shows the
schematic diagram of the hydraulic heightening system. In the schematic diagram, the
red line represents “the high pressure flow channel”, and the blue line represents “the low
pressure flow channel”.
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3.2. Simulation Model

According to the actual working parameters, the simulation model of the hydraulic
heightening system was established using Matlab R2018b/SimHydraulics software, which
was highly close to the actual production. Table 1 shows the main parameters of the model.

Table 1. The main parameters of the model.

Category Parameter

Hydraulic pump pressure 21 MPa
Hydraulic pump speed 188 rad/s

Hydraulic pump displacement 3.675 × 10−6 m3/rad
Valve core opening amount 5 × 10−3 m

Leakage area 1 × 10−12 m2

Cylinder piston rod displacement 490 mm
Hydraulic cylinder rodless cavity area 4.15 × 10−2 m2

Hydraulic cylinder rod cavity area 2.82 × 10−2 m2
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Figure 5 shows the simulation model of the hydraulic heightening system. To monitor
the operating status of the system, multiple sensors were set up to detect the hydraulic
pump pressure and flow, actuator speed, displacement, etc. The locations of the pressure,
flow, displacement, and velocity measurement points are indicated in the fault simulation
model diagram. In the simulation model, the brown line represents “hydraulic pipeline”,
the dark green line represents “mechanical structure connection”, and the light green line
represents “electric and hydraulic power source”.
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In the hydraulic heightening system, the most frequently occurring faults in actual
production were selected as typical faults for analysis, including hydraulic pump internal
leakage, the reversing valve being stuck, and the external leakage of the hydraulic cylinder.
In the established simulation model, the fault conditions were simulated and datasets were
collected. Firstly, the hydraulic pump was connected in parallel with a throttle hole. By
adjusting the flow rate of the throttle hole, the simulation of different internal leakages
of the hydraulic pump was realized. Then, by setting different displacement openings of
the directional valve, the jamming condition of the directional valve was simulated. Last,
the external leakage of the hydraulic cylinder was caused by a gap between the piston
rod and hydraulic cylinder cover, so the external leakage was simulated by adding an
external orifice.

When the internal leakage occurred in the hydraulic pump, Figure 6 shows the outlet
flow of the hydraulic pump, the outlet pressure of the hydraulic pump, and the speed and
the displacement curve of the hydraulic cylinder. When the internal leakage occurred in the
hydraulic pump, the outlet flow stability value and outlet pressure of the pump decreased.
With the serious leakage of the hydraulic pump, the rotation speed of the cylinder piston
rod decreased, and the extension time of the cylinder piston rod became longer.

When the reversing valve failed, Figure 7 shows the pressure of the rod chamber and
the speed of the hydraulic cylinder curve. With the decrease of the opening of the reversing
valve, the response time of the system gradually increased, and the running speed of the
piston rod decreased.
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When the hydraulic cylinder was exposed to external leakage, Figure 8 shows the
pressure of the rodless chamber and the displacement of the hydraulic cylinder. The
pressure gradually decreased in the rodless chamber of the hydraulic cylinder, and the time
required became longer for the piston rod of the hydraulic cylinder to reach the maximum
stroke. Since the given flow of the system was larger than the flow required by the rocker
arm movement, the hydraulic cylinder could still complete the work when the leakage was
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small. But the external leakage had a serious impact on the accuracy and stability of the
hydraulic heightening system to reach the specified position.
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4. Results of Fault Diagnosis
4.1. RS Preprocessing

An RS was used to preprocess the typical fault data of the hydraulic heightening
system. Based on the typical faults of hydraulic heightening systems, 510 groups of fault
data samples were selected to establish an original fault decision table.

Table 2 is the original fault decision table. The set C of fault symptoms was used as
the condition attribute C = {C1, C2, . . . C11}. It represented the working condition of the
shearer, the speed of the hydraulic cylinder, the displacement of the hydraulic cylinder,
the outlet flow of the hydraulic pump, the inlet flow of the hydraulic pump, the outlet
pressure of the hydraulic pump, the inlet pressure of the hydraulic pump, the inlet flow of
the hydraulic cylinder, the outlet flow of the hydraulic cylinder, the pressure of the rodless
chamber, and the pressure of the rod chamber, respectively. The fault category served as
the decision attribute D, D = {0, 1, 2, 3, 4}. These represented the normal system, the slight
leakage of the hydraulic pump, the serious leakage of the hydraulic pump, the jamming
of the reversing valve, and the external leakage of the hydraulic cylinder of five typical
conditions, respectively.

Table 2. The original fault decision table.

Sample
Condition Attribute Decision

Attribute DC1 C2 (mm/s) C3 (mm) C4 (L/min) C5 (L/min) C6(kPa) . . . C10 (kPa) C11 (kPa)

1 0 0.00 0.00 34.17 34.17 21,003.89 . . . 10,501.95 10,501.95 0
2 0 0.00 0.00 34.17 34.17 21,003.89 . . . 8203.76 12,071.76 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
260 1 11.99 65.61 29.88 29.88 8307.38 . . . 5975.21 796.04 2
261 2 11.94 71.59 29.76 29.76 8786.80 . . . 6473.89 789.43 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
510 1 13.08 4.40 34.17 34.17 4106.27 . . . 1052.44 949.01 4

C1 in Table 2 represents the shearer’s working condition, “0” represents the shearer’s
initial working condition, and the shearer parameters remained constant in C1. The number
“1” represents the starting condition of the shearer when the roller reached the specified
height and the traction speed reached the normal speed from “0”; “2” indicates the normal
working condition of the shearer, and the height and traction speed of the drum reached
the rated value and remained unchanged.
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The set C of fault symptoms and five decision attributes constituted the original data
matrix, which constituted the decision system domain U.

The continuous attributes of data samples were discretized and normalized as follows:

x′ =
x− Zmin

Zmax − Zmin
(6)

where Zmin and Zmax represent the minimum and maximum values in data C, respectively,
and x’ represents the processed data.

Physical quantities, such as pressure and flow rates, are continuous values in the
original fault decision table. Because it did not meet the processing conditions of rough
sets, it needed to be discretized. The normalized decision table was processed by the equal
distance discretization method. The range of attributes was divided into five parts and
represented by the corresponding numbers: zero, one, two, three, and four.

The reduction algorithm based on the genetic algorithm was used for reduction. Using
the mathematical toolkit ROSETTA based on the RS theoretical framework, the minimum
conditional attribute set obtained was eight, which was {C1, C2, C3, C4, C6, C8, C10, C11}.
The minimum conditional attribute set corresponded to the discretized decision table data,
and then the minimum decision table was obtained by deleting repeated rows, as shown in
Table 3.

Table 3. The minimum decision table.

Sample
Condition Attribute Decision

Attribute DC1 C2 C3 C4 C6 C8 C10 C11

1 0 1 1 4 4 1 2 4 0
2 1 4 1 4 1 4 1 2 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
260 0 1 1 4 4 1 2 4 2
261 1 4 1 4 2 4 1 3 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
510 2 1 4 4 4 1 4 1 4

Based on RS theory, the data was well-mined and reduced in scale and quantity, and
the core knowledge in the data was obtained, which laid the foundation for the subsequent
diagnosis.

4.2. RBFNN Diagnosis

The minimal condition attribute set after RS reduction was taken as the input of the
RBFNN, x = [x1, x2, x3, x4, x5, x6, x7, x8]T. The x values were the normal working condition of
the system, the speed of the hydraulic cylinder, the displacement of the hydraulic cylinder,
the outlet flow of the hydraulic pump, the outlet pressure of the hydraulic pump, the
inlet flow of the hydraulic cylinder, the pressure of the hydraulic cylinder with the rodless
chamber, and the pressure of the hydraulic cylinder with the rod chamber, respectively.
The number of neural nodes in the network input layer was eight. The fault category was
used as the output, y = [y1, y2, y3, y4, y5]. The y values represented no fault, slight leakage
fault of the hydraulic pump, serious leakage fault of the hydraulic pump, stuck fault, and
hydraulic cylinder leakage fault, respectively. The number of neural nodes in the network
output layer was five. According to the network training results, the number of hidden
layer neurons was eleven with fast convergence. Figure 9 shows the topology structure of
the RS-RBFNN.

According to the topology structure of the RBFNN, 450 groups of samples were
selected as training samples, and 60 groups of samples were selected as test samples for
training and testing. The parameters of the RBFNN function were initialized by Python
programming language, including the center and width of the hidden layer and the weight
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from the hidden layer to the output layer. Table 4 shows the training sample, and Table 5
shows the test sample.

Energies 2023, 16, 956 11 of 15 
 

 

… … … … … … … … … … 
510 2 1 4 4 4 1 4 1 4 

Based on RS theory, the data was well-mined and reduced in scale and quantity, and 
the core knowledge in the data was obtained, which laid the foundation for the subse-
quent diagnosis. 

4.2. RBFNN Diagnosis 
The minimal condition attribute set after RS reduction was taken as the input of the 

RBFNN, x = [x1, x2, x3, x4, x5, x6, x7, x8]T. The x values were the normal working condition of 
the system, the speed of the hydraulic cylinder, the displacement of the hydraulic cylin-
der, the outlet flow of the hydraulic pump, the outlet pressure of the hydraulic pump, the 
inlet flow of the hydraulic cylinder, the pressure of the hydraulic cylinder with the rodless 
chamber, and the pressure of the hydraulic cylinder with the rod chamber, respectively. 
The number of neural nodes in the network input layer was eight. The fault category was 
used as the output, y = [y1, y2, y3, y4, y5]. The y values represented no fault, slight leakage 
fault of the hydraulic pump, serious leakage fault of the hydraulic pump, stuck fault, and 
hydraulic cylinder leakage fault, respectively. The number of neural nodes in the network 
output layer was five. According to the network training results, the number of hidden 
layer neurons was eleven with fast convergence. Figure 9 shows the topology structure of 
the RS-RBFNN. 

 
Figure 9. The topology structure of the RS-RBFNN. 

According to the topology structure of the RBFNN, 450 groups of samples were se-
lected as training samples, and 60 groups of samples were selected as test samples for 
training and testing. The parameters of the RBFNN function were initialized by Python 
programming language, including the center and width of the hidden layer and the 
weight from the hidden layer to the output layer. Table 4 shows the training sample, and 
Table 5 shows the test sample. 

Table 4. The training sample. 

Training Sample x1 x2 x3 x4 x5 x6 x7 x8 y 
1 0.50 1.00 0.02 1.00 0.06 1.00 0.05 0.09 0 
2 0.50 1.00 0.04 1.00 0.08 1.00 0.08 0.09 0 
3 1.00 0.73 0.77 0.44 1.00 0.73 0.92 0.05 1 

… … … … … … … … … … 
447 0.50 0.86 0.01 0.61 0.00 0.86 0.04 0.06 2 

Figure 9. The topology structure of the RS-RBFNN.

Table 4. The training sample.

Training
Sample x1 x2 x3 x4 x5 x6 x7 x8 y

1 0.50 1.00 0.02 1.00 0.06 1.00 0.05 0.09 0
2 0.50 1.00 0.04 1.00 0.08 1.00 0.08 0.09 0
3 1.00 0.73 0.77 0.44 1.00 0.73 0.92 0.05 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
447 0.50 0.86 0.01 0.61 0.00 0.86 0.04 0.06 2
448 1.00 0.44 0.82 1.00 1.00 0.44 0.94 0.05 3
449 0.50 0.61 0.75 1.00 1.00 0.81 0.91 0.03 4
450 1.00 0.00 1.00 1.00 1.00 0.21 0.99 0.00 4

Table 5. The test sample.

Test
Sample x1 x2 x3 x4 x5 x6 x7 x8

1 1.0 0.68 0.97 1.00 1.00 0.68 0.93 0.04
2 1.0 0.73 0.85 0.44 1.00 0.73 0.92 0.05
3 1.0 0.00 1.00 0.00 1.00 0.00 1.00 0.00
4 1.0 0.44 0.87 1.00 1.00 0.44 0.94 0.05

. . . . . . . . . . . . . . . . . . . . . . . . . . .
60 0.5 0.95 0.02 1.00 0.05 1.00 0.05 0.08

The RBFNN used the gradient descent method as the learning algorithm of the net-
work. In Python programs, the distance between the feature sample and the RBF mean
value was calculated, and the output of the hidden layer, input, and output of the output
layer were calculated. The maximum number of iterations of the RBFNN was set to 5000,
the learning rate η = 0.1, and the training error target value was 0.001. Figure 10 shows the
RS-RBFNN training error curve.

The results showed that the RS-RBFNN fault diagnosis method was used to diagnose
the typical faults of the hydraulic heightening system, which had high diagnostic accuracy
and a fast network convergence speed. The average diagnostic accuracy reached 98.68%.
When the training step was 47, the network tended to be stable and the learning speed was
fast, which can meet the technical requirements of the system in practical applications.
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5. Simulation Comparison

To further verify the effectiveness of the proposed method, a variety of simulation
methods were compared. Two other mainstream fault diagnosis schemes are introduced:
BPNN and RBFNN.

The BPNN diagnosis method is the most traditional neural network diagnosis method,
which belongs to a nonlinear forward network. The main idea of diagnosis is to input data
samples and use a back-propagation algorithm to adjust the weights and deviations of the
network so that the output vector is as close as possible to the expected vector. When the
error square sum of the network output layer is less than the specified error, the diagnosis
method training is completed [32,33]. However, the network connection mode is “weight
connection”, and the convergence speed is slow. A BPNN is trained and tested by using
the original fault decision table.

RBFNN diagnostic methods, similar to those of a BPNN as described above, are a class
of commonly used three-layer feedforward networks that can be used for both function
approximation and pattern classification. They have the best approximation performance
and global optimal characteristics, and the training speed is fast. An RBFNN uses the
original fault decision table to train and test the network.

The RS-RBFNN diagnosis method is based on RBFNN diagnosis. Using an RS to
reduce the original fault decision table, the minimum condition attribute set is obtained
for training. The number of hidden nodes of the network is the optimal number of nodes
according to multiple simulations. Table 6 shows the comparison parameter of the three
neural network simulations.

Table 6. The comparison parameter of the three neural network simulations.

Parameter BPNN RBFNN RS-RBFNN

Fault data sample 510 510 510
Number of iterations 5000 5000 5000

Learning rate 0.1 0.1 0.1
Error target value 0.001 0.001 0.001

Output layer Sigmoid Gaussian Gaussian
Network structure 11-14-5 11-14-5 8-11-5

The diagnostic results of the three typical fault diagnosis methods were obtained with
a simulation comparison, as shown in Figure 11. The RS-RBFNN diagnosis method had
the best fault diagnosis performance, and its average diagnostic accuracy can reach 98.68%.
The diagnostic effect of an RBFNN was lower than that of an RS-RBFNN, and the average
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diagnostic accuracy was 92.59%. A BPNN had the worst diagnostic effect, and its average
diagnostic accuracy was only 83.09%.
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6. Conclusions

Aiming at the requirements of high efficiency and high precision for the fault diagnosis
of hydraulic heightening systems, this paper proposes a fault diagnosis method based on
an RS-RBFNN. The original fault data was extracted by establishing the shearer hydraulic
heightening system model. The ability of RS theory was utilized to process redundant
data, including discretizing processing and attribute reduction, which provided better data
input for fault diagnosis. The mapping relationship between the fault symptoms and fault
categories of the RBF neural network was used for learning and training. The average
accuracy of the final diagnosis result was 98.68%.

To verify the accuracy of the proposed method, two other mainstream fault diagnosis
schemes were introduced for comparison: the BPNN and RBFNN methods. The results
showed that the RS-RBFNN diagnosis method had the best fault diagnosis performance,
and its average diagnostic accuracy could reach 98.68%, which was higher than that of the
RBFNN by about 6.09%, and higher than that of the BPNN by 15.59%.

For the shearer hydraulic heightening system, the method was proved to be effective.
In the future, this method can be extended to the fault diagnosis of hydraulic systems of
various machines, including excavators, cranes, forklifts, and heavy trucks.
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