

Article On the Integration of CO₂ Capture Technologies for an Oil Refinery

Vadim Fetisov ^{1,*}^(D), Adam M. Gonopolsky ², Maria Yu. Zemenkova ³, Schipachev Andrey ¹, Hadi Davardoost ⁴^(D), Amir H. Mohammadi ⁵^(D) and Masoud Riazi ⁶^(D)

- ¹ Department of Petroleum Engineering, Saint Petersburg Mining University, 2, 21st Line, 199106 Saint Petersburg, Russia
- ² Department of Industrial Ecology, Gubkin Russian State University of Oil and Gas, 119296 Moscow, Russia
- ³ Department of Transportation of Hydrocarbon Resources, Industrial University of Tyumen, 625000 Tyumen, Russia
- ⁴ Department of System Analysis and Management, Saint Petersburg Mining University, 2, 21st Line, 199106 Saint Petersburg, Russia
- ⁵ Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa
- ⁶ EOR Research Center, Shiraz University, Shiraz 71345, Iran
- * Correspondence: fetisov_v@pers.spmi.ru

Abstract: This study determines and presents the capital and operating costs imposed by the use of CO₂ capture technologies in the refining and petrochemical sectors. Depending on the refining process and the CO₂ capture method, CO₂ emissions costs of EUR 30 to 40 per ton of CO₂ can be avoided. Advanced low-temperature CO₂ capture technologies for upgrading oxyfuel reformers may not provide any significant long-term and short-term benefits compared to conventional technologies. For this reason, an analysis was performed to estimate the CO₂ reduction potential for the oil and gas industries using short- and long-term ST/MT technologies, was arriving at a reduction potential of about 0.5–1 Gt/yr. The low cost of CO₂ reduction is a result of the good integration of CO₂ capture into the oil production process. The results show that advanced gasoline fraction recovery with integrated CO₂ capture can reduce the cost of producing petroleum products and reduce CO₂ emissions, while partial CO₂ capture has comparative advantages in some cases.

Keywords: CO2 capture; oil refinery; Residual Oil Zones (ROZ); CCUS

1. Introduction

While the oil and gas industries have assumed the major responsibilities with respect to the transition towards achieving a low carbon footprint by 2050 through the development and implementation of CO_2 capture technologies, at the signing of the Paris Agreement, Russia committed itself to regulating the reduction of greenhouse gas emissions by industry. According to BP, the global emissions of CO_2 (the main greenhouse gas) in 2019 amounted to almost 33.9 billion tons. For this reason, China (9.4 billion tons), the USA (5.1 billion tons), India (about 2.5 billion tons), Russia (about 1.6 billion tons) and Japan (more than 1.1 billion tons), along with large companies in Russia (companies supported by the Russian Federation), are studying CO_2 capture technologies, as well as carbon capture and sequestration (CCS) technologies, with respect to their performance in the specific areas of production, extraction, and storage for economic and technical feasibility. Roadmaps are also being developed to reduce the carbon footprint in the production and processing of heavy oil, the conversion of coal into oil, the production of biofuels, and the conversion of liquefied gas into oil products. Currently, a step-by-step assessment process is underway aimed at reducing carbon emissions using unconventional resources. The goal of these projects is to enable the use of traditional resources in the oil and gas

Citation: Fetisov, V.; Gonopolsky, A.M.; Zemenkova, M.Y.; Andrey, S.; Davardoost, H.; Mohammadi, A.H.; Riazi, M. On the Integration of CO₂ Capture Technologies for an Oil Refinery. *Energies* **2023**, *16*, 865. https://doi.org/10.3390/en16020865

Academic Editor: Zhanna Pisarenko

Received: 27 October 2022 Revised: 28 November 2022 Accepted: 5 January 2023 Published: 12 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). industries to limit carbon emissions without increasing the cost of producing the final products. This methodology was evaluating using the example of the impact of carbon emissions reduction at Russian refineries. The baseline levels of carbon dioxide emissions from refining oil were established, and the cost of reducing these emissions using proven post-combustion carbon capture technology was calculated. Alternatively, a study on the Carbon Capture Project (CCP) study was performed in which the technical and economic possibilities of CO_2 capture technologies were compared and found that this technology reduced the cost of avoiding CO_2 emissions by 35 percent compared to carrying out capture after the reforming process in the refinery scenario [1–3].

Oil refineries are one of the largest sources of anthropogenic CO_2 emissions, with the metallurgical industry being roughly on par with this. In 2020, the oil and gas industries accounted for over 11 gigatons of CO₂, accounting for almost 32 percent of total global CO_2 emissions [4,5]. The industry's overarching goal is to achieve energy efficiency in production using the best available technologies (BAT) using renewable energy sources such as CO₂ capture and storage (CCS) [6,7]. The oil and gas industries consider this BAT option to be one of the options that could result in energy efficiency being achieved by reducing CO₂ emissions. The use of CCS technologies in refineries is being considered due to the large number of processes that generate large amounts of CO_2 emissions such as VOCs and flue gases. At the same time, the introduction of CO_2 capture BAT using the proposed technologies could reduce the economic burden assumed by plants arising from the production of pure CO_2 [8,9]. By 2050, with reference to authoritative reports from international governmental and non-governmental organizations in the field of oil and gas processing, the release of CO_2 emissions into the atmosphere should be reduced by more than 10 Gt per year [10,11]. Today, Russia is operating within the framework of the UN Framework Convention on Climate Change, in which measures for reducing the carbon dioxide content in the atmosphere from 2020 are regulated. Therefore, following the example of the United Nations Industrial Development Organization, Russia intends to implement a roadmap project for the industrial capture and storage of CO₂ [12,13].

For example, at the XII Eurasian Economic Forum in Verona (Italy) in 2019, Rosneft signed an agreement with DeGolyer & MacNaughton Corp. to assess the resources available for underground CO_2 storage at areas licensed by the company in Russia. In December 2021, it became known from open sources that GazpromNeft was going to invest about RUB 30 billion (about USD 383 million) in the first CCS projects in the Orenburg region. In Russia, there are no permanent CCS systems, and large refineries are not technologically equipped for the capture of CO_2 [14,15]. The first stage consists of the implementation of a project in which 1 million tons of CO_2 will be injected into underground layers annually. The Orenburg region was not chosen at random; the deposits in this region enable the pumping of up to 50 million tons of CO_2 per year.

GazpromNeft, in collaboration with NIS, is currently implementing a project in Serbia facilitating the collection and treatment of natural gas with a high carbon dioxide content, with an injection volume of about 100,000 tons of CO_2 per year. The resulting CO_2 is then pumped into the developed deposits, located at a depth of more than 2500 m. A project is also being considered that would allow Sakhalin Island to achieve carbon neutrality by 2025.

To achieve these goals in Russia, there are several unresolved issues:

- 1. There is no regulatory or legal framework regulating the achievement of carbon neutrality and control over CO₂ emissions by industry.
- 2. There is no regulatory framework for regulating industrial safety on the issue of CO₂ in subsoil use.
- 3. For projects related to the capture, transport, and storage of CO₂ to be effective, it is necessary to develop an economic model for state support of and compensation for costs to the owners of enterprises involved in the implementation of capture, transport, and storage technologies.

GazpromNeft owns four major refineries: the Moscow Refinery, the Omsk Refinery, the Slavneft–YANOS plant in Yaroslavl (jointly with Rosneft), and an oil and gas processing complex in Serbia (Pancevo). The total refining volume of the company at these refineries in 2021 amounted to 43.3 million tons of oil. Another problem for the Russian oil refining industry is the lack of ownership of underground natural reservoirs suitable for storing CO_2 . For this reason, some companies are considering ways of utilizing CO_2 , including its reuse in construction and in the food industry.

According to the annual review by the audit company Ernst & Young for 2021, CCS technology in Russia is in the initial stage of development and is not economically beneficial for companies due to the high cost of the technology; 1 ton of sequestered CO₂ costs USD 160–170. For example, in the USA, the state pays enterprises that have implemented CCS technologies a subsidy of USD 35–50 per ton of CO₂ for the purpose of using CO₂. In the countries of the European Union, companies that have implemented CCS technologies pay for them at a cost of 60 to 65 EUR/tCO₂.

It is worth mentioning that Russia is a country with many opportunities for the introduction of new technologies, and there are many projects that need state support, without which the introduction of CCS technologies will be impossible.

Research on CO₂ capture rates in carbon-intensive industrial processes began in the late 20th century and became widespread in the 2000s, as described in works such as [16–18]. Research has been focused on the application of chemical absorption to capture CO₂ in petrochemical plants [19–22]. Scholars have concluded that, compared to CO₂ capture in the operation of thermal power plants [23–26], the cost indicators are comparable to those in the oil and gas industries [27–32]. For example, the IEA Greenhouse Gas Research and Development Program (IEAGHG) compiled reports that include refinery performance and technical and economic carbon neutrality performance [33–35]. An IEA report demonstrated the effectiveness of carbon dioxide capture technologies [36–38], and for refinery technologies, the economics of flue gas amine-based capture and oxy-fuel combustion capture are comparable to those in metallurgy.

The IEA reports contain overviews of the use of CCS technology in the oil and gas industries [39–41]. It is also worth noting the report of the Intergovernmental Panel on Climate Change on CO_2 [42]. These reports present an analysis of the literature on industries such as oil and gas processing, metallurgy, and the construction industry. We conducted a comparative literature review analyzing CO_2 capture rates for a wide range of industrial processes (Table 1).

Reference	Plant Economic Lifetime	CO ₂ Avoidance Costs	
		Petroleum Refineries	Other Industries
[42-44]	20–30	~45 EUR/t captured (2035year)	25–40 EUR/t (2030)
[45]	30	~40 EUR/t captured (2050 year)	45–60 EUR/t (2050)
[46-48]	25	~43 EUR/t captured (2050 year)	45–60 EUR/t (2050)
[49–53]	25	~45 EUR/t captured (2050 year)	45–60 EUR/t (2050)
Varied (original figures from reviewed studies)	30	Catalytic crackers ~45 EUR/t captured (oxyfuel combustion)	30–50 EUR/t (2030)
Varied (original figures from reviewed studies)	Not stated	Not stated	Not stated

Table 1. Review of major publications analyzing CO₂ capture performance.

Reference	Plant Economic Lifetime	CO ₂ Avoidance Costs	
		Petroleum Refineries	Other Industries
[54]	Not stated.	Not stated	Not stated
[55–57]	20–30	~40 EUR/t captured (2050 year)	Not stated
Varied (original figures from reviewed studies)	Not stated	~25 EUR/t captured (gas recycling)	Not stated
[58–60]	Not stated.	~30 EUR/t captured (gas recycling)	35–50 EUR/t (2030)

Table 1. Cont.

The information provided in Table 1 provides an overview of the technologies for CCS of CO₂, as well as research and development efforts in the CO₂ capture industry. The purpose of this review is to comprehensively cover all aspects of CCS, including fuel price, capital cost, interest rate, and life, which can have a big impact on the results of CO₂ technology research. In previous studies, the authors did not provide a specific CO₂ capture technology and did not consider describing the storage costs. Thus, the purpose of this study is to consistently evaluate and compare the technical and economic performance of CO₂ capture technologies for the oil and gas industries.

Based on our analysis of the literature, several CO₂ capture technologies can be identified, which can be grouped into the production of fuel, gasoline, and other raw materials for petroleum products, making chemicals, polymers, and biofuels.

Technical solutions for CO_2 storage in geological formations are another hotly debated CO_2 capture technology, considering the economic and environmental attractiveness of such projects, which include the following technologies for the capture and utilization of CO_2 (Table 2).

Technology	Description
Pre-combustion	Based on the gasification process through which the fuel passes, pre-combustion produces syngas, which is primarily composed of hydrogen and carbon monoxide. Subsequently, hydrogen and carbon monoxide are converted to carbon dioxide, which then goes through a gas separation process.
Combustion	The capture of gases that occurs during combustion is called "oxygen combustion", and its principle is to burn fuel in an oxygen-enriched environment.
Post-combustion	Capture takes place in the final phase of the release of combustion products. This process is ideal for capturing CO_2 from energy-generating sources such as thermal power plants and other plants that use waste to generate energy. After the exit of the flue gases, they go through a process whereby CO_2 is separated from other gases using an appropriate technology.

Table 2. CO₂ utilization technologies.

In the current study, special attention is paid to oil and gas processing and petrochemistry. The petrochemical industry accounts for almost a quarter of industrial CO_2 emissions [61], or approximately 1 GtCO₂/year. As the main sources of CO₂ emissions are similar across industries, industrial processes, and feasibility studies on CO₂ capture technologies, such as metered gas cleaning, ammonia production, and coal or oil gasification, are currently being conducted in an industry-wide manner. According to expert forecasts, CCS technologies will play a significant role, at a level of more than 50 percent, in the production of synthetic fuel, synthesis gas, and hydrogen by 2050 [62]. This study considers technologies for capturing CO₂ at the pilot project, pilot implementation, and commercialization stages [63,64].

2. Methodology

2.1. Process Description of CO₂ Capture Plant

This section describes a research methodology for estimating and reducing CO₂ emissions based on a typical plant using technology consisting of syngas production—the so-called Fischer–Tropsch process.

Flue gas utilization is envisaged in the design of the heat exchanger at temperatures between 160 and 400 °C. Due to the large sources of CO_2 emissions in existing refineries, two separate lines should probably be installed, one for flue gas cooling and the other for CO_2 recovery. The cooled flue gases are combined and sent to the line for CO_2 absorption, heat recovery, and drying, followed by preparation for transportation to the CO_2 pipeline system at the required predetermined pressure. The low-pressure gas stream comes into contact with the amine recycling solution. Instead of a traditional stripper, a saturated amine heat exchanger is used as a flash evaporator to regenerate the amine and remove the top layer of CO_2 . The heat exchanger overhead is condensed in a remote mixing condenser, refluxed with circulating cold diesel distillate, and sent to a drying and CO_2 compression line to meet product specifications (Figure 1).

Figure 1. General view of a heat and mass transfer apparatus for the separation of volatile impurities from liquid mixtures.

The key utility requirements for a post-combustion capture plant include power, steam, and cooling. Accessories support the installation of traps [65,66]. Figure 2 shows a diagram of the CO₂ capture process after oil refining. Technological solutions include the capture process and the possibility of further transportation to the process pipeline system.

To this end, flue gases are cleaned of CO_2 to 90 percent, with further transportation through the process pipeline system located on the territory of the refinery at a pressure of up to 100 bar and a temperature of 35 °C.

Constituents such as amines and the CO_2 steam that forms in the reboiler are passed to the bottom of the reboiler stripper. In the next step, a condenser is installed, which is necessary to receive the steam flow, which exits the upper part of the stripping column after being decomposed into water and absorbent.

2.2. Technical Indicators

Specific avoided CO_2 emissions from an industrial product are used as the main technical measure of CO_2 capture efficiency. When calculating the possible cost of CO_2 as a fuel gas used in the processing of process steam, Equation (1) can be used to determine the volume of CO_2 lost during operation of the refinery [67].

$$\Delta M_{CO2,sp,avoided} = \frac{M_{CO2,cap} - \left[\Delta M_{CO2,site} + \left\{ \left(\Delta P_{Ind} + \Delta H_{Ind} \cdot f_{st,Ind}\right) + \left(p_{Cap} + H_{Cap} \cdot f_{st,Cap}\right) - \Delta F_{gas} \cdot f_{PP} \right\} \cdot Em_{sp,Elec} \right]}{M_{Ind}}$$
(1)

where $\Delta MCO_{2,Cap}$ is the CO₂ capture rate (tonne/s); f_{PP} is the fired plant gas-power efficiency; Em_{Sp,Elec} is the CO₂ emission factor of grid electricity (tCO₂/MJe); f_{St} is the power equivalent factor for steam (dimensionless); ΔF_{gas} is the change in the net process gas export from the industrial process to power plants due to the CO₂ capture (MW); H_{Cap} is the steam import for CO₂ capture and compression (MW); ΔH_{Ind} is the change in the steam import for the industrial process due to the CO₂ capture (MW); $\Delta MCO_{2,site}$ is the change in total carbon input to the industrial process due to CO₂ capture (tCO₂-equivalent/s); M_{Ind} is the production rate of the industrial product (tons/s); P_{Cap} is the electricity import for CO₂ capture and compression (MW); and ΔP_{Ind} is the change in the electricity import for the industrial process due to CO₂ capture (tors/s); P_{Cap} is the electricity import for CO₂ capture and compression (MW); and ΔP_{Ind} is the change in the electricity import for the industrial process due to CO₂ capture (MW).

For all sites, the final pressure after capture is set at 110 bar; deviations in the literature values are corrected using Equation (2) [67]:

$$E_{Sp,comp} = \frac{ZRT_1}{M\eta_{is}\eta_m} \cdot \frac{N_{\gamma}}{\gamma - 1} \left\{ \left(\frac{p_1}{p_1}\right)^{(\gamma - 1)/N_{\gamma}} - 1 \right\}$$
(2)

where *Z* is the CO₂ compressibility factor at 1.0 bar, 20 °C (0.9); *R* is the universal gas constant (8.3145 J/(mol K)); T_1 is the suction temperature (313 K); $E_{Sp,comp}$ is the specific

electricity requirement (kJ/kg CO₂); *N* is the number of compressor stages; p_1 is the suction pressure (101 kPa); p_2 is the discharge pressure (11,000 kPa); *M* is the molar mass (44 g/mol for CO₂); η_m is the mechanical efficiency (90 percent); η_{is} is the isentropic efficiency (80 percent); γ is the specific heat ratio (cp/cv) (about 1,2).

For the investment costs of the compressor, the following equation from the literature was used, using the Kölbel–Schulze Index (Formula (3)) [68]:

$$CAPEX_{compressor}(Euro/USD) = 88 \times 10^3 \cdot (P[MW] \cdot 1000)^{0.55}$$
(3)

This equation considers intermediate cooling and drying as well as installation costs (factor 2.5). The value of operating costs for CO_2 pumping stations corresponds to 5 percent of the investment costs. The CO_2 avoidance costs are calculated using Equation (4) [67]:

$$C_{CO2} = \frac{\alpha \cdot \Delta I + \Delta C_{energy} + \Delta C_{O\&M} + \Delta M_{Mat}}{\Delta M_{CO2,sp,avoided} \cdot M_{Ind,annual}}$$
(4)

According to sources in the literature, the pressure must be at least 100 bar during the compression of CO_2 in the pipelines using this technology. If the CO_2 concentration is below 95 percent, additional purification processes will be necessary, since the CO_2 capture rate is controlled by the multiplication factor η Rec, and since part of the CO_2 is released along with the impurities removed during the purification process η Rec, in most cases, the pipelines through which CO_2 is transported operate at concentrations of 95 percent [69,70]. The specific energy consumption is estimated using Equation (5), adapted from Damenet al. [71]:

$$E_{Sp,comp} = \frac{ZRT_1}{M\eta_{is}\eta_m} \cdot \frac{N_{\gamma}}{\gamma - 1} \left\{ \left(\frac{p_2}{p_1}\right)^{\gamma - 1/N_{\gamma}} - 1 \right\}$$
(5)

Capital costs depend on the productivity of the enterprise. To correctly compare different technologies for capturing CO_2 , it is necessary to present the indicators of the enterprise. Base scales for the refinery were determined based on a review of the literature and open sources. A scaling factor is used to rescale the investment costs in consideration of the effects of different plant sizes according to Equation (6):

$$\frac{CostA}{CostB} = \left(\frac{ScaleA}{ScaleB}\right)^{SF} \tag{6}$$

By analyzing the literature, a method for estimating the cost of CO_2 capture was developed (Table 3), making it possible to obtain the following data:

Cost model inputs	Units
Capital costs	Euro/kWh
- Fuel Cost	Euro/MMBtu
Thermal output based on the lower heating value in determined	Btu/kWh

 Table 3. Cost model inputs.

3. Case Study

3.1. Development Scenarios

Targets in the development of the Russian oil and gas sector and the technical equipment required for low-carbon projects change depending on the external conditions implemented in each scenario. Therefore, when implementing a scenario representing the new era of hydrocarbons, the task of the sector is the maximization of hydrocarbon production, and technologies facilitating enhanced oil recovery and involving hard-to-recover unconventional reserves will become priorities of technological development.

. ---

In other scenarios, value creation will become a priority for industry, in which case integrated design technologies and cost engineering tools (for the manufacturing of high-value-added products) will be the focus of development. The global CO_2 emissions produced by refineries are close to 1 Gt/year, or about 10 percent of total global emissions [72]. Oil and gas refineries are the main sources of CO_2 emissions, with the main contributors being the catalytic crackers used in the production of electricity and heat, as well as hydrogen processes [67]. Additionally, data from refineries around the world show that a large volume of CO_2 emissions come from catalytic crackers, which generate heat to produce electricity [73]. For this reason, for the period 2020–2030, WIPs were included among the large-scale projects with the Net Zero Scenario for industrial CO_2 capture (Figure 3).

Oil refineries are owned by international oil cartels, multinational companies, and small state-owned companies. At refineries, the concentration of flue gases ranges from 6 percent at thermal power plants to 12 percent at facilities that burn heavy oil products [72].

According to a study by Brown et al. addressing the problem of oil refining, the 25 largest oil refineries owned by large oil companies use more than 50 percent of their production capacity to capture CO_2 and VOCs [74]. Furthermore, 55 percent of the capacity of the entire global oil refining sector belongs to transnational oil companies and international cartels such as Gazprom Neft, Rosneft, Lukoil, ExxonMobil, Shell, BP, ConocoPhillips, and Total. Figure 4 shows these companies along with companies from China, Venezuela, and Saudi Arabia. The main difference with the latter group is that they operate exclusively within their regions.

The oil and gas industries are the largest consumers of energy, together accounting for CO_2 emissions of about 1.3 Gt. The main sources of CO_2 emissions from the oil and gas industries are reformers and steam boilers [75]. In the production of ethylene by steam cracking, compounds such as naphtha, liquefied petroleum gas, and ethane cause an increase in CO_2 emissions [73]. In Russia, crude oil accounts for three-quarters of all steam cracker production, while LNG units predominate in the US, Canada, and Norway [76].

Figure 4. Top 12 refining companies by capacity in bbl/d.

In Russia, the depth of oil refining has been at 70–72 percent for a long time; the yield of light oil products is 56–58 percent, and the industry average value of the Nelson complexity index (which estimates the ratio of secondary and primary processing capacities) has not exceeded 6 points, while at the leading foreign refineries in the USA, Canada, and Norway, the refining depth reaches 95 percent and the Nelson index is 14 [77]. A significant proportion of operating secondary processing plants in Russia were built before 1995 and are physically and ethically outdated. In recent years, to overcome the technological backwardness of the industry, there have been significant efforts both on the part of the state and on the processing enterprises. With the emerging modernization of refineries, it has become possible to increase the average depth of oil refining to 73.5 percent and create conditions under which the use of motor fuels belonging to low environmental classes in the domestic market can be avoided (in 2015, the share of motor gasoline belonging to environmental classes 4 and 5 was 93.6 percent, and diesel fuel accounted for 82.4 percent of total production). At the same time, an increase in processing depth has occurred, mainly due to the involvement of vacuum gas oil in the catalytic cracking and hydrocracking processes, and the large volumes of tar remaining following processing, while insufficient attention has been paid to the development and production of non-fuel oil products. In addition, large volumes of straight-run gasoline, which is not involved in processing, remain at Russian refineries, and constitute a valuable raw material in the petrochemical industry. Obviously, the production, economic, and scientific and technological development of the industry in the medium term will have to take place under rather unfavorable natural, climatic, geological, financial, macroeconomic, and foreign policy conditions.

In the broadest sense, three major directions of scientific and technological development in the industry can be distinguished, based on three approaches to production development, being beneficial in the case of high demand and oil price, as well as under alternative conditions:

- 1. Technologies that contribute to the maintenance (or even restoration) of profitable production at existing conventional fields, often already largely depleted (increasing CCS).
- 2. Technologies for the extraction of oil from unconventional fields and the development of unconventional oils (heavy, high-viscosity, and super-viscous oil; oil sands and

bitumen; oil of low-permeability rocks, including shale; oil of the Bazhenov formation; and other hard-to-recover reserves).

3. Technologies for oil production in offshore fields.

In recent decades, the oil refining industry has been particularly affected by the discovery of new supplies of unconventional liquid fuels and the introduction of legislative requirements aimed at combatting climate change. The impact of fuels such as tar sands, liquefied natural gas, shale oil, synthetic oil, natural gas, and coal is likely to impact the oil refining industry in the future. Biofuels are less impacted by the chemical processing process and have the potential to have a positive impact on the refining industry, while synthetic oils extracted from shale oil and tar sands still require deeper processing. Figure 5 shows the volume of crude oil refined at Russian refineries during the year 2021, indicating the impact of traditional raw materials, such as crude oil, on the industry.

Figure 5. Primary oil refining at Russian refineries from January 2021 until December 2021, (thousands of tons) [78].

3.2. Cost Estimation for CO₂ Capture Plants

This section is devoted to comparing the costs of technologies for the capture and cleaning of CO_2 . The technical characteristics of the plant are based on the production of pure CO_2 , which is prepared for transportation and storage through process pipelines that may contain inert gases such as Ar, O_2 , and N_2 . In other plants, the content of CO_2 is lower than 3 percent, with pipeline pressures of up to 100 bar and temperatures of 35 °C. Additionally, the operation of the CO_2 capture unit is assumed to be offline. The power and cryogenic cooling systems are not integrated with the existing plant.

In this study, when calculating the operating costs, it is assumed that the site of the CO_2 capture plant is at a remote, closed location, and that the location allows inexpensive transport of CO_2 through the pipeline. Moreover, the refinery's CO_2 capture plant is expected to use Monoethanolamine for flue gas cleaning. Based on the simulated flue gas data, a process flow diagram is proposed, equipment dimensions are calculated, and a cost estimate model is determined.

The design of the plant is based on the extraction of 90 percent of CO_2 from the feedstock at the refinery. According to open sources, the percentage of gas emitted into the atmosphere during raw material processing at Russian refineries is 10 percent [79–82]. For CO_2 capture technology employing an oxygen system, a furnace design is assumed

that can convert CO_2 into pure oxygen combustion after the implementation of emission control regulations. The capture plant corresponds to a modified design consisting of two absorber tanks, an absorber, an oxygen plant, a flue gas drying system, a flue gas cleaning system, a cryogenic air separation system, a generator, pumps, and the engineering of the necessary technological pipelines.

4. Results and Conclusion

Russian CO₂ Capture Projects in the Oil and Gas Industries

For the end consumers of petroleum products, which include end products such as gasoline, fuel oil, aviation kerosene, diesel fuel, lubricants, oils, bitumen, petrochemical raw materials, coke, etc., the quality of the refined oil is important. Therefore, the value of oil products is entirely dependent on the quality of the refining of crude oil. This highly energy-intensive process results in significant CO_2 emissions. The CO_2 emissions resulting from the refining of oil in the years 2017–2021 amounted to about 1174 million tons of CO_2 -equivalent per year [83–88].

 CO_2 emissions from oil and gas processing and marketing make up 1526 million tons of CO_2 -equivalent per year. Up to 72 percent of emissions are accounted for by oil refining; the remaining 28 percent are caused by gas processing.

Of the total CO₂ emissions coming from refineries, 50 percent come from liquid and steam ejectors, atmospheric vacuum tubes, and oil blocks, 25 percent come from plant production services, and the remaining 25 percent come from hydrogen production [66,83,89]. About two-thirds of CO₂ emissions from refineries come from secondary processes and hydrotreatment. In this way, the number of secondary processes in a refinery is an important factor in determining CO₂ emissions. Small refineries involved only in primary crude oil distillation and a small volume of hydrotreatment processes emit relatively low levels of CO₂. However, the large refineries belonging to companies such as Gazprom Neft, Rosneft, and Lukoil process about 34,300 barrels of oil per day, while emitting about 1.5 million tons of CO₂ per year, thus having much higher emissions (see Figure 4). Details of the CO₂ emissions generated by oil refining are shown in Figure 6.

Figure 6. Percentage of CO₂ emissions from different sources in oil refining.

The purpose of this study was to provide a technical proposal and a short economic analysis regarding CO_2 capture technology in the oil refining industry. We referred to open sources that addressed the main parameters affecting the calculation of costs as well as

direct emissions from the production process of refineries around the world [90–104]. The CO_2 capture technologies found in the literature [105–156] were divided into short-term and long-term technologies. The following conclusions can be drawn from this analysis of the general context:

With respect to refinery technology, the cost of the oxygen capture of CO_2 is about 65 Euros per ton of CO_2 , while post-combustion capture is over 65 Euros per ton CO_2 for catalytic crackers with a capacity of 1 million tons of CO_2 per year. It should be noted that it is necessary to modernize the design of heat exchangers to achieve oxygen fuel capture of CO_2 , which in the long term could become an economical energy carrier for refineries.

Due to the lack of state support for low-carbon technologies, the prediction of costs in Russia is complex, but in the future, the price may drop from 160 US dollars per ton of CO₂ to 70 US dollars or lower. The overall technology for and economics of CCS in the oil and gas industries will be highly dependent on market conditions.

The transition of the oil and gas industries towards economic efficiency is a complex and gradual process. No companies in the industry have yet developed detailed competencies in this area. Therefore, to achieve the stated emission reductions, each company is looking for ways to reduce emissions. At the same time, it is important to emphasize that, with respect to decarbonization, it is hardly possible to find a universal approach that will be optimal for all companies in all sectors, either in terms of emission reduction or regarding the economic efficiency [157].

The economics of CO_2 capture technologies will depend to a large extent on individual technologies and operating conditions, industrial applications, etc. It should be noted that some of the studies surveyed in this article showed that the introduction of new technologies for CO_2 capture is impossible without upgrading the industrial production process at the refinery plant. Therefore, it is highly recommended that in future studies, the industrial production process should be investigated both with and without the upgrades having taken place.

Author Contributions: V.F.: Conceptualization, Methodology, Formal analysis, Investigation, Project administration, Supervision, Writing—original draft and Writing—review and editing. A.M.G.: Conceptualization, Data curation, Formal analysis. M.Y.Z.: Formal analysis, Supervision, Writing—review and editing. S.A., A.H.M., M.R.: Formal analysis; H.D.: Review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

- MW Megawatt
- PSA Pressure Swing Adsorption
- VPSA Vacuum Pressure Swing Adsorption
- ASU Air Separation Unit
- BAT Best Available Technique
- CCP CO₂ Capture Project
- CCS Carbon Capture and Storage
- FCC Fluid Catalytic Cracker

References

- Adams, T.; MacDowell, N. Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based postcombustion CO₂ capture and compression process. *Appl. Energy* 2016, *178*, 681–702. [CrossRef]
- Chaffee, A.L.; Knowles, G.P.; Liang, Z.; Zhang, J.; Xiao, P.; Webley, P.A. CO₂ capture by adsorption: Materials and process development. *Int. J. Greenh. Gas Control* 2007, 1, 11–18. [CrossRef]

- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. *Appl. Energy* 2016, 161, 225–255. [CrossRef]
- Dumée, L.; Scholes, C.; Stevens, G.; Kentish, S. Purification of aqueous amine solvents used in post combustion CO₂ capture: A review. *Int. J. Greenh. Gas Control* 2012, 10, 443–455. [CrossRef]
- Daniel, G.F.; James, F.E.; Hepburn, I. Standard Reference Data System. The Laboratory Consists of the Following Centers: Thermophysics Division Center for Chemical Engineering; The National Engineering Laboratory, National Institute of Standards and Technology: Boulder, CO, USA, 1989; p. 496. Available online: https://www.govinfo.gov/content/pkg/GOVPUB-C13c19f48b42b2c70c342 2cda30d301b8b2/pdf/GOVPUB-C13-c19f48b42b2c70c3422cda30d301b8b2.pdf (accessed on 20 October 2022).
- Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO₂ capture and utilization in mitigating climate change. *Nat. Clim. Chang.* 2017, 7, 243–249. [CrossRef]
- Sullivan, I.; Goryachev, A.; Digdaya, I.A.; Li, X.; Atwater, H.A.; Vermaas, D.A.; Xiang, C. Coupling electrochemical CO₂ conversion with CO₂ capture. *Nat. Catal.* 2021, 4, 952–958. [CrossRef]
- Hedin, N.; Andersson, L.; Bergström, L.; Yan, J. Adsorbents for the post-combustion capture of CO₂ using rapid temperature swing or vacuum swing adsorption. *Appl. Energy* 2013, 104, 418–433. [CrossRef]
- 9. International Energy Agency. Recovery Plan for Europe. 2021. Available online: https://ec.europa.eu/info/strategy/recoveryplan-europe_en (accessed on 20 October 2022).
- 10. International Energy Agency. Special Report on Carbon Capture Utilisation and Storage CCUS in Clean Energy Transitions. 2020. Available online: https://www.iea.org/reports/ccus-in-clean-energy-transitions (accessed on 20 October 2022).
- 11. Isaeva, V.I.; Kustov, L.M.; Beletskaya, I.P. Metal organic frameworks (MOF) as CO₂ adsorbents. *Russ. J. Org. Chem.* **2014**, *50*, 1551–1555. [CrossRef]
- 12. Jiang, L.; Gonzalez-Diaz, A.; Ling-Chin, J.; Roskilly, A.P.; Smallbone, A.J. Post-combustion CO₂ capture from a natural gas combined cycle power plant using activated carbon adsorption. *Appl. Energy* **2019**, 245, 1–15. [CrossRef]
- Jiang, L.; Roskilly, A.P.; Wang, R.Z. Performance exploration of temperature swing adsorption technology for carbon dioxide capture. *Energy Convers. Manag.* 2018, 165, 396–404. [CrossRef]
- Knudsen, J.N.; Bade, O.M.; MAnheden RBjorklund Gorset, O.; Woodhouse, S. Novel Concept for Emission Control in Post Combustion Capture. *Energy Procedia* 2013, 37, 1804–1813. [CrossRef]
- 15. Li, H.; Ditaranto, M.; Yan, J. Carbon capture with low energy penalty: Supplementary fired natural gas combined cycles. *Appl. Energy* **2012**, *97*, 164–169. [CrossRef]
- 16. Li, H.; Ditaranto, M.; Berstad, D. Technologies for increasing CO₂ concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO₂ capture. *Energy* **2011**, *2*, 1124–1133. [CrossRef]
- 17. Pan, M.; Aziz, F.; Li, B.; Perry, S.; Zhang, N.; Bulatov, I.; Smith, R. Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO₂ capture. *Appl. Energy* **2016**, *161*, 695–706. [CrossRef]
- Naef, A.A.; Qasem, R.B.-M. Energy and productivity efficient vacuum pressure swing adsorption process to separate CO₂ from CO₂/N₂ mixture using Mg-MOF-74: A CFD simulation. *Appl. Energy* 2018, 209, 190–202. [CrossRef]
- Bade, O.M.; Knudsen, J.N.; Gorset, O.; Askestad, I. Controlling Amine Mist Formation in CO₂ Capture from Residual Catalytic Cracker (RCC) Flue Gas. *Energy Procedia* 2014, 63, 884–892. [CrossRef]
- 20. Patel, N.C.; Teja, A.S. A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 1982, 3, 463–473. [CrossRef]
- 21. Perspectives for the Energy Transition. Investment Needs for a Low-Carbon Energy System. 2017. Available online: https://www. irena.org/publications/2017/Mar/Perspectives-for-the-energy-transition-Investment-needs-for-a-low-carbon-energy-system (accessed on 20 October 2022).
- Raganati, F.; Ammendola, P.; Chirone, R. CO₂ adsorption on fine activated carbon in a sound assisted fluidized bed: Effect of sound intensity and frequency, CO₂ partial pressure and fluidization velocity. *Appl. Energy* 2014, 113, 1269–1282. [CrossRef]
- Renato, P. Cabral, Niall Mac Dowell. A novel methodological approach for achieving £/MWh cost reduction of CO₂ capture and storage (CCS) processes. *Appl. Energy* 2017, 205, 529–539. [CrossRef]
- Zhao, R.; Zhao, L.; Deng, S.; Song, C.; He, J.; Shao, Y.; Li, S. A comparative study on CO₂ capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle. *Energy* 2017, 137, 495–509. [CrossRef]
- 25. Zhao, R.; Liu, L.; Zhao, L.; Deng, S.; Li, H. Thermodynamic analysis on carbon dioxide capture by Electric Swing Adsorption (ESA) technology. *J. CO*₂ *Util.* **2018**, *26*, 388–396. [CrossRef]
- 26. Sultanbekov, R.; Islamov, S.; Mardashov, D.; Beloglazov, I.; Hemmingsen, T. Research of the Influence of Marine Residual Fuel Composition on Sedimentation Due to Incompatibility. *J. Mar. Sci. Eng.* **2021**, *9*, 1067. [CrossRef]
- 27. Lee, S.-Y.; Park, S.-J. A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 2016, 23, 1–11. [CrossRef]
- Vinod Kumar Singh, E. Anil Kumar. Measurement and analysis of adsorption isotherms of CO₂ on activated carbon. *Appl. Therm.* Eng. 2016, 97, 77–86. [CrossRef]
- Zhang, W.; Sun, C.; Snape, C.E.; Irons, R.; Stebbing, S.; Alderson, T.; Fitzgerald, D.; Liu, H. Process simulations of post-combustion CO₂ capture for coal and natural gas-fired power plants using a polyethyleneimine/silica adsorbent. *Int. J. Greenh. Gas Control* 2017, *58*, 276–289. [CrossRef]
- World Economic Outlook Update. 2019. Available online: https://www.imf.org/en/Publications/WEO/Issues/2019/01/11 /weo-update-january-2019 (accessed on 20 October 2022).

- 31. Wenbin, Z.; Hao, L.; Yuan, S.; Janis, C.; Chenggong, S.; Colin, E.S. Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture. *Appl. Energy* **2016**, *168*, 394–405. [CrossRef]
- Zhao, Y.J.; Wang, L.W.; Wang, R.Z.; Ma, K.Q.; Jiang, L. Study on consolidated activated carbon: Choice of optimal adsorbent for refrigeration application. *Int. J. Heat Mass Transf.* 2013, 67, 867–876. [CrossRef]
- Litvinenko, V.; Bowbrik, I.; Naumov, I.; Zaitseva, Z. Global guidelines and require-ments for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals. J. Clean. Prod. 2022, 338, 130530. [CrossRef]
- Sultanbekov, R.; Beloglazov, I.; Islamov, S.; Ong, M.C. Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods. *Energies* 2021, 14, 8422. [CrossRef]
- 35. Tcvetkov, P.; Cherepovitsyn, A.; Fedoseev, S. The Changing Role of CO₂ in the Transition to a Circular Economy: Review of Carbon Sequestration Projects. *Sustainability* **2019**, *11*, 5834. [CrossRef]
- Smyshlyaeva, K.I.; Rudko, V.A.; Povarov, V.G.; Shaidulina, A.A.; Efimov, I.; Gabdulkhakov, R.R.; Pyagay, I.N.; Speight, J.G. Influence of Asphaltenes on the Low-Sulphur Residual Marine Fuels' Stability. J. Mar. Sci. Eng. 2021, 9, 1235. [CrossRef]
- 37. Abanades, J.C.; Criado, Y.A.; Fernández, J.R. An air CO₂ capture system based on the passive carbonation of large Ca(OH)₂ structures. *Sustain. Energy Fuels* **2020**, *4*, 3409–3417. [CrossRef]
- Gunderson, R.; Stuart, D.; Petersen, B. The fossil fuel industry's framing of carbon capture and storage: Faith in innovation, value instrumentalization, and status quo maintenance. J. Clean. Prod. 2020, 252, 119767. [CrossRef]
- Stephens, J.; Markusson, N.O. Technological optimism in climate mitigation: The case of carbon capture and storage. In *The* Oxford Handbook of Energy and Society; Debra, J.D., Matthias, G., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 503–517.
- 40. Krüger, T. Conflicts over carbon capture and storage in international climate governance. Energy Policy 2017, 100, 58-67. [CrossRef]
- 41. Keith, D.W.; Holmes, G.; Angelo, D.S.; Heidel, K. A Process for Capturing CO₂ from the Atmosphere. *Joule* **2018**, *2*, 1573–1594. [CrossRef]
- Rubin, E.S.; Davison, J.E.; Herzog, H.J. Herzog The cost of CO₂ capture and storage. *Int. J. Greenh. Gas Control* 2015, 40, 378–400. [CrossRef]
- 43. Guandalini, G.; Romano, M.C.; Ho, M.; Wiley, D.; Rubin, E.S.; Abanades, J.C. A sequential approach for the economic evaluation of new CO₂ capture technologies for power plants. *Int. J. Greenh. Gas Control* **2019**, *84*, 219–231. [CrossRef]
- Gardarsdottir, S.O.; De Lena, E.; Romano, M.; Roussanaly, S.; Voldsund, M.; Pérez-Calvo, J.-F.; Berstad, D.; Fu, C.; Anantharaman, R.; Sutter, D.; et al. Comparison of Technologies for CO₂ Capture from Cement Production—Part 2: Cost Analysis. *Energies* 2019, 12, 542. [CrossRef]
- Nazarov, V.; Retivov, V.; Gonopolsky, A.; Makarenkov, D.; Popov, A.; Aflyatunova, G. Study of the Technology of Using Complex Lithium-Cobalt Current Sources Using Combined Processes of Mechanical Processing. *Leaching Extr. Ecol. Ind. Russ.* 2022, 26, 10–16. [CrossRef]
- Samari, M.; Ridha, F.; Manovic, V.; Macchi, A.; Anthony, E.J. Direct capture of carbon dioxide from air via lime-based sorbents. *Mitig. Adapt. Strat. Glob. Chang.* 2020, 25, 25–41. [CrossRef]
- 47. Erans, M.; Nabavi, S.A.; Manović, V. Carbonation of lime-based materials under ambient conditions for direct air capture. *J. Clean. Prod.* **2020**, 242, 118330. [CrossRef]
- 48. Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. *Appl. Energy* **2017**, 208, 1389–1419. [CrossRef]
- 49. Zou, H.; Du, H.; Wang, Y.; Zhao, L.; Mao, G.; Zuo, J.; Liu, Y.; Liu, X.; Huisingh, D. A review of the first twenty-three years of articles published in the Journal of Cleaner Production: With a focus on trends, themes, collaboration networks, low/no-fossil carbon transformations and the future. *J. Clean. Prod.* **2017**, *163*, 1–14. [CrossRef]
- 50. Hanak, D.P.; Jenkins, B.G.; Kruger, T.; Manovic, V. High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner. *Appl. Energy* **2017**, 205, 1189–1201. [CrossRef]
- 51. Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward Energy. *Environ. Sci.* **2018**, *11*, 1062–1176. [CrossRef]
- 52. Santori, G.; Charalambous, C.; Ferrari, M.-C.; Stefano Brandani, S. Adsorption artificial tree for atmospheric carbon dioxide capture, purification and compression. *Energy* **2018**, *162*, 1158–1168. [CrossRef]
- Barkakaty, B.; Sumpter, B.G.; Ivanov, I.N.; Potter, M.E.; Jones, C.W.; Lokitz, B.S. Emerging materials for lowering atmospheric carbon. *Environ. Technol. Innov.* 2017, 7, 30–43. [CrossRef]
- 54. Brethomé, F.M.; Williams, N.J.; Seipp, C.A.; Kidder, M.K.; Custelcean, R. Direct air capture of CO₂ via aqueous-phase absorption and crystalline-phase release using concentrated solar power. *Nat Energy* **2018**, *3*, 553–559. [CrossRef]
- Minx, J.C.; Lamb, F.; Callaghan, M.W.; Bornmann, L.; Fuss, S. Fast growing research on negative emissions. *Environ. Res. Lett.* 2017, 12, 035007. [CrossRef]
- 56. Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Dowell, N.M.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO₂ utilization and removal. *Nature* **2019**, *575*, 87–97. [CrossRef]
- 57. Bjerge, L.M.; Brevik, P. CO₂ Capture in the Cement Industry, Norcem CO₂ Capture Project (Norway). *Energy Procedia* **2014**, *63*, 6455–6463. [CrossRef]
- ECRA. CCS—Carbon Capture and Storage. Available online: https://ecra-online.org/research/ccs/ (accessed on 6 January 2022).

- Nelson, T.O.; Coleman, L.J.; Mobley, P.; Kataria, A.; Tanthana, J.; Lesemann, M.; Bjerge, L.M. Solid Sorbent CO₂ Capture Technology Evaluation and Demonstration at Norcem's Cement Plant in Brevik, Norway. *Energy Procedia* 2014, 63, 6504–6516. [CrossRef]
- National Energy Technology Laboratory (NETL). Cost of Capturing CO₂ from Industrial Sources; DOE/NETL-2013/1602. 2014. Available online: https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=1836 (accessed on 6 January 2022).
- 61. IEA. Energy Technology Transitions for Industry: Strategies for the Next Industrial Revolution; OECD Publishing: Paris, France, 2009. [CrossRef]
- Carbo, M. Biomass-Based Industrial CO₂ Sources: Biofuels Production with CCS; United Nations Industrial Development Organization: Vienna, Austria, 2011; Available online: https://www.globalccsinstitute.com/archive/hub/publications/15681/globaltechnology-roadmap-ccs-industry-biomass-based-industrial-co2-sources-biofuels-production-ccs.pdf (accessed on 21 January 2022).
- 63. Jakobsen, J.; Roussanaly, S.; Anantharaman, R. A techno-economic case study of CO₂ capture, transport and storage chain from a cement plant in Norway. *J. Clean. Prod.* 2017, 144, 523–539. [CrossRef]
- Peeters, A.N.M.; Faaij, A.P.C.; Turkenburg, W.C. Techno-economic analysis of natural gas combined cycles with post-combustion CO₂ absorption, including a detailed evaluation of the development potential. *Int. J. Greenh. Gas Control* 2017, 1, 396–417. [CrossRef]
- Guandalini and Romano, 2019. G. Guandalini, M.C. Romano CCS Economic Benchmarking Calculation Tool. 2019. Available online: https://zenodo.org/record/2600790#.Ye1tcclBzIU (accessed on 20 October 2022).
- Bolland, O.; Undrum, H. A novel methodology for comparing CO₂ capture options for natural gas-fired combined cycle plants. *Adv. Environ. Res.* 2003, 7, 901–911. [CrossRef]
- Kuramochi, T.; Ramírez, A.; Turkenburg, W.; Faaij, A. Comparative assessment of CO₂ capture technologies for carbon-intensive industrial processes. *Prog. Energy Combust. Sci.* 2012, 38, 87–112. [CrossRef]
- Mallon, W.; Buit, L.; van Wingerden, J.; Lemmens, H.; Eldrup, N.H. Costs of CO₂ Transportation Infrastructures. *Energy Procedia* 2013, 37, 2969–2980. [CrossRef]
- Roussanaly, S.; Fu, C.; Voldsund, M.; Anantharaman, R.; Spinelli, M.; Romano, M. Techno-economic Analysis of MEA CO₂ Capture from a Cement Kiln—Impact of Steam Supply Scenario. *Energy Procedia* 2017, 114, 6229–6239. [CrossRef]
- 70. Erin, E.S. The Cost of CO₂ Transport and Storage in Global Integrated Assessment Modeling, Submitted to the Institute for Data, Systems, and Society in Partial Fulfillment of the Requirements for the degree of Master of Science in Technology and Policy at the Massachusetts Institute of Technology, June 2021. Master' Thesis, B.S. Environmental Science, University of California, Berkeley, CA, USA, 2015. Available online: https://globalchange.mit.edu/sites/default/files/Smith-TPP-2021.pdf (accessed on 20 October 2022).
- Damen, K.; van Troost, M.; Faaij, A.; Turkenburg, W. A comparison of electricity and hydrogen production systems with CO₂ capture and storage. Part A: Review and selection of promising conversion and capture technologies. *Prog. Energy Combust. Sci.* 2006, *32*, 215–246. [CrossRef]
- 72. van Straelen, J.; Geuzebroek, F.; Goodchild, N.; Protopapas, G.; Mahony, L. CO₂ capture for refineries, a practical approach. *Int. J. Greenh. Gas Control* **2010**, *4*, 316–320. [CrossRef]
- IPCC. Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf (accessed on 20 October 2022).
- Brown, J.; Holtedahl, P.; Brown, D. Global Technology Roadmap for CCS in Industry, Sectoral Assessment: Refineries, Report No./DNV Reg No.: /12P5TPP-9 Draft Rev 3. 2010-08-25. Available online: https://www.globalccsinstitute.com/archive/hub/ publications/15691/global-technology-roadmap-ccs-industry-sectoral-assessment-refineries.pdf (accessed on 20 October 2022).
- 75. IEA. Energy efficiency, International Energy Agency, Typeset in France by IEA—December 2020. 2020. Available online: https://iea.blob.core.windows.net/assets/59268647-0b70-4e7b-9f78-269e5ee93f26/Energy_Efficiency_2020.pdf (accessed on 20 October 2022).
- 76. Neelis, M.L.; Patel, M.; Gielen, D.J.; Blok, K. Modelling CO₂ emissions from non-energy use with the non-energy use emission accounting tables (NEAT) model. *Resour. Conserv. Recycl.* **2005**, *45*, 226–250. [CrossRef]
- Nikita, O.K.; Dmitry, A.G. Exploring the implications of Russian Energy Strategy project for oil refining sector. *Energy Policy* 2018, 117, 198–207. [CrossRef]
- 78. The Ministry of Energy of the Russian Federation, Statistic, Primary Cruide Oil Proceeding by Domestic Refineries, Russia. 2022. Available online: https://minenergo.gov.ru/en/activity/statistic (accessed on 29 January 2022).
- Wilkinson, M.B.; Boden, J.C.; Gilmartin, T.; Ward, C.; Cross, D.A.; Allam, R.J.; Ivens, N.W. Ivens CO₂ Capture from Oil Refinery Process Heaters Through Oxyfuel Combustion. In *Greenhouse Gas Control Technologies—6th International Conference, Pergamon*; Gale, J., Kaya, Y., Eds.; 2003; pp. 69–74. [CrossRef]
- Flamme, S.; Benrath, D.; Glanz, S.; Hoffart, F.M.; Pielow, C.; Roos, M.; Span, R.; Wagner, H.-J.; Schönauer, A.-L. ELEGANCY: The Interdisciplinary Approach of the German Case Study to Enable a Low Carbon Economy by Hydrogen and CCS. *Energy Procedia* 2019, 158, 3709–3714. [CrossRef]

- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO₂ storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. *Pet. Sci.* 2019, *16*, 1028–1063. [CrossRef]
- The Global CCS Institute. Technology Scouting—Carbon Capture: From Today's to Novel Technologies, Concawe Review Volume 29, Number 2. February 2021. Available online: https://www.concawe.eu/wp-content/uploads/Technology-scouting%E2%80% 94carbon-capture-from-todays-to-novel-technologies.pdf (accessed on 6 January 2022).
- Darde, V.; Maribo-Mogensen, B.; van Well, W.J.; Stenby, E.H.; Thomsen, K. Process simulation of CO₂ capture with aqueous ammonia using the Extended UNIQUAC model. *Int. J. Greenh. Gas Control* 2012, 10, 74–87. [CrossRef]
- Hanak, D.P.; Biliyok, C.; Manovic, V. Efficiency improvements for the coal-fired power plant retrofit with CO₂ capture plant using chilled ammonia process. *Appl. Energy* 2015, 151, 258–272. [CrossRef]
- 85. Kvamsdal, H.M.; Romano, M.C.; van der Ham, L.; Bonalumi, D.; van Os, P.; Goetheer, E. Energetic evaluation of a power plant integrated with a piperazine-based CO₂ capture process. *Int. J. Greenh. Gas Control* **2014**, *28*, 343–355. [CrossRef]
- Lucquiaud, M.; Gibbins, J. On the integration of CO₂ capture with coal-fired power plants: A methodology to assess and optimise solvent-based post-combustion capture systems. *Chem. Eng. Res. Des.* 2011, *89*, 1553–1571. [CrossRef]
- 87. Mantripragada, H.C.; Zhai, H.; Rubin, E.S. Boundary Dam or Petra Nova—Which is a better model for CCS energy supply? *Int. J. Greenh. Gas Control* **2019**, *82*, 59–68. [CrossRef]
- Martínez, I.; Grasa, G.; Parkkinen, J.; Tynjälä, T.; Hyppänen, T.; Murillo, R.; Romano, M.C. Review and research needs of Ca-Looping systems modelling for post-combustion CO₂ capture applications. *Int. J. Greenh. Gas Control* 2016, 50, 271–304. [CrossRef]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [CrossRef]
- 90. Rochelle, G.T. Scrubbing for CO₂ capture. *Science* 2009, 325, 1652–1654. [CrossRef] [PubMed]
- Yu, Y.; Shen, Y.; Zhou, X.; Liu, F.; Zhang, S.; Lu, S.; Ye, J.; Li, S.; Chen, J.; Li, W. Relationship between tertiary amine's physical property and biphasic solvent's CO₂ absorption performance: Quantum calculation and experimental demonstration. *Chem. Eng. J.* 2022, 428, 131241. [CrossRef]
- Vega, F.; Cano, M.; Sanna, A.; Infantes, J.M.; Maroto-Valer, M.M.; Navarrete, B. Oxidative degradation of a novel AMP/AEP blend designed for CO₂ capture based on partial oxy-combustion technology. *Chem. Eng. J.* 2018, 350, 883–892. [CrossRef]
- 93. Afshar-Mohajer, N.; Li, C.; Rule, A.M.; Katz, J.; Koehler, K. A laboratory study of particulate and gaseous emissions from crude oil and crude oil-dispersant contaminated seawater due to breaking waves. *Atmos. Environ.* **2018**, *179*, 177–186. [CrossRef]
- Aklilu, Y.A.; Cho, S.; Zhang, Q.; Taylor, E. Source apportionment of volatile organic compounds measured near a cold heavy oil production area. *Atmos. Res.* 2018, 206, 75–86. [CrossRef]
- 95. Bolaji, B.O.; Huan, Z. Ozone depletion and global warming: Case for the use of natural refrigerant—A review. *Renew. Sustain. Energy Rev.* **2013**, *18*, 49–54. [CrossRef]
- Zhukovskiy, Y.L.; Semenyuk, A.V.; Alieva, L.Z.; Arapova, E.G. Blockchain-based digital platforms to reduce the carbon footprint of mining. *MIAB. Mining Inf. Anal. Bull.* 2022, 6, 361–378. (In Russian) [CrossRef]
- Smyshlyaeva Ksenia, I.; Rudko, V.A. Description of the stability of residual marine fuel using ternary phase diagrams and SARA analysis. E3S Web Conf. 2021, 266, 02006. [CrossRef]
- 98. Cherepovitsyn, A.; Chvileva, T.; Fedoseev, S. Popularization of Carbon Capture and Storage Technology in Society: Principles and Methods. *Int. J. Environ. Res. Public Health* **2020**, *17*, 8368. [CrossRef]
- Johnson, M.R.; Tyner, D.R.; Conley, S.; Schwietzke, S.; Zavala-Araiza, D. Comparisons of Airborne Measurements and Inventory Estimates of Methane Emissions in the Alberta Upstream Oil and Gas Sector. *Environ. Sci. Technol.* 2017, *51*, 13008–13017. [CrossRef] [PubMed]
- Khoramfar, S.; Jones, K.D.; Boswell, J.; Ghobadi, J.; Paca, J. Evaluation of a sequential biotrickling–biofiltration unit for removal of VOCs from the headspace of crude oil storage tanks. *J. Chem. Technol. Biotechnol.* 2018, 93, 1778–1789. [CrossRef]
- 101. Koss, A.; Yuan, B.; Warneke, C.; Gilman, J.B.; Lerner, B.M.; Veres, P.R.; Peischl, J.; Eilerman, S.; Wild, R.; Brown, S.S.; et al. Observations of VOC emissions and photochemical products over US oil-and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS). Atmos. Meas. Tech. 2017, 10, 2941–2968. [CrossRef]
- Salih, Y.M.; Karim, A.R.; Khorshid, I. Estimation the time of spill crude oil in deep soil by the detection of volatile organic compounds (VOCs). *Pet. Sci. Technol.* 2018, *36*, 1497–1502. [CrossRef]
- 103. Fetisov, V.; Gonopolsky, A.M.; Davardoost, H.; Ghanbari, A.R.; Mohammadi, A.H. Regulation and impact of VOC and CO₂ emissions on low-carbon energy systems resilient to climate change: A Case study on an environmental issue in the oil and gas industry. *Energy Sci. Eng.* 2022. [CrossRef]
- Romasheva, N.; Ilinova, A. CCS Projects: How Regulatory Framework Influences Their Deployment. *Resources* 2019, *8*, 181.
 [CrossRef]
- 105. Kovalenko, K.; Kovalenkj, N. The problem of waste in the Russian Federation. MATEC Web Conf. 2018, 193, 02030. [CrossRef]
- 106. State Report of the Ministry of Natural Resources and Environment of the Russian Federation for 2019 [ГосударственныйдокладминистерстваприродныхресурсовиэкологииРоссийскойфедерацииза 2019 год]. Available online: https://www.mnr.gov.ru/upload/iblock/cf1/07_09_2020_M_P_O%20(1).pdf (accessed on 20 October 2022).
- 107. OPEC Annual Statistical Bulletin. 2020. Available online: https://www.opec.org/opec_web/en/press_room/6045.htm (accessed on 20 October 2022).

- 108. Statistical Review of World Energy. 2020. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/ corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (accessed on 20 October 2022).
- 109. Saeed, T.; Al-Mutairi, M. Comparative Composition of Volatile Organic Compounds in the Water-Soluble Fraction of Different Crude Oils Produced in Kuwait. *Water Air Soil Pollut.* **2000**, *120*, *107–119*. [CrossRef]
- Saeed, T.; Lulwa NAli Al-Bloushi, A.; Al-Hashash, H.; Al-Bahloul, M.; Al-Khabbaz, A.; Ali, S.G. Photodegradation of Volatile Organic Compounds in the Water-Soluble Fraction of Kuwait Crude Oil in Seawater: Effect of Environmental Factors. *Water Air Soil. Pollut.* 2013, 224, 1584. [CrossRef]
- 111. Salih, Y.M.; Karim, A.R.; Khurshid, I. A comparative study of the emission of volatile organic compounds (VOCs) from different sulfur content crude oils. *Pet. Sci. Technol.* **2018**, *36*, 1037–1043. [CrossRef]
- 112. Rajabi, H.; Mosleh, M.H.; Mandal, P.; Lea-Langton, A.; Sedighi, M. Emissions of volatile organic compounds from crude oil processin—Global emission inventory and environmental release. *Sci. Total Environ.* **2020**, 727, 138654. [CrossRef] [PubMed]
- 113. Simpson, I.J.; Blake, N.J.; Barletta, B.; Diskin, G.S.; Fuelberg, H.E.; Gorham, K.; Huey, L.G.; Meinardi, S.; Rowland, F.S.; Vay, S.A.; et al. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C₂–C₁₀ volatile organic compounds (VOCs), CO₂, CH₄, CO, NO, NO₂, NOy, O₃ and SO₂. *Atmos. Chem. Phys.* **2010**, *10*, 11931–11954. [CrossRef]
- 114. Sonibare, J.A.; Akeredolu, F.A.; Obanijesu, E.O.-O.; Adebiyi, F.M. Contribution of Volatile Organic Compounds to Nigeria's Airshed by Petroleum Refineries. *Pet. Sci. Technol.* **2007**, *25*, 503–516. [CrossRef]
- 115. Pashkevich, M.A.; Bech, J.; Matveeva, V.A.; Alekseenko, A.V. Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg. *J. Min. Inst.* **2020**, *241*, 125. [CrossRef]
- Uhler, A.D.; McCarthy, K.J.; Emsbo-Mattingly, S.D.; Stout, S.A.; Douglas, G.S. Douglas Predicting Chemical Fingerprints of Vadose Zone Soil Gas and Indoor Air from Non-Aqueous Phase Liquid Composition. *Environ. Forensics* 2010, 11, 342–354. [CrossRef]
- 117. Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J.C.; López, M.T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L.A.; Palmerín, E.; et al. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry. *Atmos. Environ.* 2003, *37*, 3713–3729. [CrossRef]
- Warneke, C.; Geiger, F.; Edwards, P.M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S.S.; Graus, M.; Gilman, J.B.; et al. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: Oil and gas well pad emissions compared to ambient air composition. *Atmos. Chem. Phys. Discuss.* 2014, 14, 10977–10988. [CrossRef]
- 119. Wei, W.; Cheng, S.; Li, G.; Wang, G.; Wang, H. Characteristics of volatile organic compounds (VOC) emitted from a petroleum refinery in Beijing, China. *Atmos. Environ.* **2014**, *89*, 358–366. [CrossRef]
- Wei, W.; Lv, Z.; Yang, G.; Cheng, S.; Li, Y.; Wang, L. VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: A case study on a petroleum refinery in Northern China. *Environ. Pollut.* 2016, 218, 681–688. [CrossRef]
- 121. Yang, C.; Wang, Z.; Li, K.; Hollebone, B.; Brown, C.; Landriault, M. Determination of Volatile Organic Compounds over Crude Oils Using Novel Automatic Liquid Sampler-Headspace (ALS-HS) Gas Chromatography/Mass Spectrometry. 2007. Volume 1. Available online: https://www.osti.gov/etdeweb/biblio/20945115 (accessed on 20 October 2022).
- 122. Ilyushin, Y.; Afanaseva, O. Spatial Distributed Control System Of Temperature Field: Synthesis And Modeling. *ARPN J. Eng. Appl. Sci.* **2021**, *16*, 1491–1506. Available online: http://www.arpnjournals.org/jeas/research_papers/rp_2021/jeas_0721_8642.pdf (accessed on 20 October 2022).
- 123. Martirosyan, A.V.; Ilyushin, Y.V.; Afanaseva, O.V. Development of a Distributed Mathematical Model and Control System for Reducing Pollution Risk in Mineral Water Aquifer Systems. *Water* **2022**, *14*, 151. [CrossRef]
- 124. Yuan, B.; Warneke, C.; Shao, M.; de Gouw, J.A. Interpretation of volatile organic compound measurements by proton-transferreaction mass spectrometry over the deep-water horizon oil spill. *Int. J. Mass Spectrom.* **2014**, *358*, 43–48. [CrossRef]
- 125. Zhang, G.; Wang, N.; Jiang, X.; Zhao, Y. Characterization of Ambient Volatile Organic Compounds (VOCs) in the Area Adjacent to a Petroleum Refinery in Jinan, China. *Aerosol Air Qual. Res.* **2017**, *17*, 944–950. [CrossRef]
- 126. Zhang, Z.; Yan, X.; Gao, F.; Thai, P.; Wang, H.; Chen, D.; Zhou, L.; Gong, D.; Li, Q.; Morawska, L.; et al. Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. *Environ. Pollut.* 2018, 238, 452–461. [CrossRef] [PubMed]
- 127. *GB* 31570-2015; Emission Standard of Pollutants for Petroleum Refining Industry. The General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, The Standardization Administration of the People's Republic of China: 2015. Available online: https://books.google.ru/books?id=icfaCQAAQBAJ&printsec=frontcover&hl=ru& source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 20 October 2022).
- 128. Energy Technology Perspectives. Special Report on Carbon Capture, Utilisation and Storage CCUS in Clean Energy Transitions. 2020. Available online: https://iea.blob.core.windows.net/assets/181b48b4-323f-454d-96fb-0bb1889d96a9/CCUS_in_clean_energy_transitions.pdf (accessed on 20 October 2022).
- 129. An Official Website of the European Union. European Commission Energy, Climate Change, Environment, Climate Action, EU Action, EU Climate Action and the European Green Deal. 2021. Available online: https://ec.europa.eu/climate/climat
- The U.S. Energy Information Administration (EIA). «Short-Term Energy Outlook». 2021. Available online: https://www.eia.gov/ outlooks/steo/report/global_oil.php (accessed on 20 October 2022).

- 131. The UNFCCC Website the INDCs. 2021. Available online: https://www4.unfccc.int/sites/submissions/indc/Submission%20 Pages/submissions.aspx (accessed on 20 October 2022).
- 132. *Global Energy and CO*₂ *Status Report*—2017; International Energy Agency (IEA): March 2018. Available online: https://www.connaissancedesenergies.org/sites/default/files/pdf-actualites/geco2017.pdf (accessed on 20 October 2022).
- 133. Mansfeld, D.; Vodopyanov, A.; Sintsov, S. Disintegration of Carbon Dioxide in a Microwave Plasma Torch Sustained by Gyrotron Radiation at a Frequency of 24 GHz at Atmospheric Pressure, Conference: ISPC24. September 2019. Available online: https://www.researchgate.net/publication/335570845_Disintegration_of_carbon_dioxide_in_a_microwave_plasma_ torch_sustained_by_gyrotron_radiation_at_a_frequency_of_24_GHz_at_atmospheric_pressure (accessed on 20 October 2022).
- 134. Bongers, W.; Bouwmeester, H.; Wolf, B.; Peeters, F.; Welzel, S.; van den Bekerom, D.; den Harder, N.; Goede, A.; Graswinckel, M.; Groen, P.W.; et al. Plasma-driven dissociation of CO₂ for fuel synthesis. *Plasma Process Polym.* **2017**, *14*, e1600126. [CrossRef]
- 135. Kuparinen, K.; Vakkilainen, E.; Tynjälä, T. Biomass-based carbon capture and utilization in kraft pulp mills. *Mitig. Adapt. Strat. Glob. Chang.* **2019**, *24*, 1213–1230. [CrossRef]
- 136. Lechtenböhmer, S.; Dienst, C.; Brenninkmeijer, C.; Fischedick, M.; Hanke, T.; Langrock, T.; Gürtler, M.; Lelieveld, J.; Hennicke, P.; Kruse, S. Treibhausgasemissionen des russischenErdgasExportpipeline-Systems Ergebnisse und HochrechnungenempirischerUntersuchungen in Russland. ProjektimAuftrag der E.ON Ruhrgas AG Wuppertal Institut für Klima, Umwelt und Energie in Zusammenarbeitmit dem Max-Planck-Institut für Chemie, Mainz, Wuppertal und Mainz Februar. 2005. Available online: https://epub.wupperinst.org/frontdoor/deliver/index/docId/2153/file/2153_GEPS_de.pdf (accessed on 20 October 2022).
- 137. Jannik Schlemme, Matthias Schimmel, Christian Achtelik in Zusammenarbeitmit: Institut für Energiewirtschaft und RationelleEnergieanwendungForschungsgesellschaft für Energiewirtschaft. Energiewende in der Industrie, Potenziale und Wechselwirkungenmit dem Energiesektor, Branchensteckbrief der Eisen- und Stahlindustrie. Bundesministerium für Wirtschaft und Energie Navigant Energy Germany GmbH. 2020. Available online: https://www.bmwi.de/Redaktion/DE/Downloads/E/energiewende-in-der-industrie-ap2a-branchensteckbrief-stahl.pdf?__blob=publicationFile&v=4 (accessed on 20 October 2022).
- 138. Cerniauskas, S.; Markewitz, P.; Linßen, J.; Kullmann, F.; Groß, T.; Lopion, P.; Heuser, P.-M.; Grube, T.; Robinius, M.; Stolten, D. WissenschaftlicheBegleitstudie der Wasserstoff Roadmap Nordrhein-Westfalen. Ministerium für wirtschaft, innovation, digitalisierung und energie des landesnordrhein-westfalen, Energie& Umwelt /Energy & Environment Band. 2019. Volume 535, ISBN 978-3-95806-547-5. Available online: https://www.wirtschaft.nrw/sites/default/files/asset/document/eu_535_h2 _roadmap_nrw.pdf (accessed on 20 October 2022).
- Fritsche, U.R.; Schmidt, K. Endenergiebezogene Gesamtemissionenfür Treibhausgaseausfossilen Energieträgernunter Einbeziehungder Bereitstellungsvorketten, Kurzberichtim Auftragdes Bundesverbandsderdeutschen Gas- und Wasserwirtschafte. V. (BGW), Öko-Institut, BüroDarmstadt, Darmstadt, August 2007. Available online: http://iinas.org/tl_files/iinas/downloads/ GEMIS/2007_thg_fossil_BGW.pdf (accessed on 20 October 2022).
- 140. Peletiri, S.P.; Rahmanian, N.; Mujtaba, I.M. CO₂ Pipeline Design: A Review. *Energies* 2018, 11, 2184. [CrossRef]
- Johnsen, K.; Helle, K.; Røneid, S.; Holt, H. DNV recommended practice: Design and operation of CO₂ pipelines. *Energy Procedia* 2011, 4, 3032–3039. [CrossRef]
- 142. Schlesinger, M.; Lindenberger, D.; Christian Lutz, C. Entwicklung der Energiemärkte—Energiereferenzprognose, Projekt Nr. 57/12, Studie imAuftrag des Bundesministeriums für Wirtschaft und Technologie. Basel/Köln/Osnabrück Juni 2014. Available online: https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/entwicklung-der-energiemaerkteenergiereferenzprognose-endbericht.pdf?__blob=publicationFile&v=7 (accessed on 20 October 2022).
- Reuß, M.E. Techno-ökonomische Analyse alternative Wasserstoffinfrastruktur. Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt / Energy & Environment Band. 2019. Volume 467, ISBN 978-3-95806-414-0. Available online: https://juser.fzjuelich.de/record/864486/files/Energie_Umwelt_467.pdf (accessed on 20 October 2022).
- Ochirbat, P.; Chinzorig, B. On enhancement of cooperation between universities for implementation of the program «Sustainable development–2030». J. Min. Inst. 2018, 229, 27. [CrossRef]
- 145. McKinsey & Company. Änderungen der europäischen Richtliniezum Emissionshandel: Auswirkungen auf die deutsche Zementindustrie. ImAuftrag von: Verein Deutscher Zementwerkee.V. und Bundesverband der DeutschenZementindustriee.V. Düsseldorf, Juni 2008. Available online: https://www.vdz-online.de/fileadmin/wissensportal/publikationen/zementindustrie/ EU_ETS_Zementindustrie_DE.pdf (accessed on 20 October 2022).
- 146. Wang, A.; van der Leun, K.; Peters, D.; Buseman, M. European Hydrogen Backbone. July 2020. Available online: https://gasforclimate2050.eu/ehb/ (accessed on 20 October 2022).
- 147. You, F.; Tang, Y. Multicriteria Environmental and Economic Analysis of Municipal Solid Waste Incineration Power Plant with Carbon Capture and Separation from the Life-Cycle Perspective. *ACS Sustain. Chem. Eng.* **2018**, *6*, 937–956. [CrossRef]
- 148. Gabov, V.V.; Zadkov, D.A.; Babyr, N.V.; Xie, F. Nonimpact rock pressure regulation with energy recovery into the hydraulic system of the longwall powered support. *Eurasian Min.* **2021**, *36*, 55–59. [CrossRef]
- 149. Islamov, S.R.; Bondarenko, A.V.; Korobov, G.Y.; Podoprigora, D.G. Complex algorithm for developing effective kill fluids for oil and gas condensate reservoirs. *Int. J. Civ. Eng. Technol.* **2019**, *10*, 2697–2713.

- 150. Kather, A.; Kahlke, S.-L.; Engel, F. Verbund CLUSTER: Auswirkungen von Begleitstoffen in den abgeschiedenen CO₂-Strömen einesregionalen Clusters verschiedener Emittenten auf Transport, Injektion und SpeicherungEndbericht des Teilprojekts CLUSTER—TUHH Definition der CO2-Quellen, Quellenbilanzierung, Interaktion Quelle/Transportnetz, Schiffstransport. Hamburg, 29. Technische Universität Hamburg Institut für Energietechnik. März 2019. Available online: https://www.bgr.bund. de/DE/Themen/Nutzung_tieferer_Untergrund_CO2Speicherung/CO2Speicherung/CLUSTER/Downloads/Schlussbericht_ TUHH.pdf;jsessionid=F91ED51450172690B8D425E557D6ED82.2_cid321?__blob=publicationFile&v=3 (accessed on 20 October 2022).
- 151. Godec, M.L. Global Technology Roadmap for CCS in Industry, Sectoral Assessment CO₂ Enhanced Oil Recovery, Advanced Resources International, United Nations Industrial Development Organization. 5 May 2011. Available online: https://www. unido.org/sites/default/files/2011-05/EOR_0.pdf (accessed on 20 October 2022).
- 152. Müller-Syring, G.; Henel, M.; Poltrum, M.; Wehling, A.; Dannenberg, E.; Glandien, J.; Hartmut Krause, H.; Möhrke, F.; Zdrallek, M.; Ortloff, F. Deutscher verein des gas-und wasserfaches E.V. (DVGW) Transformationspfadezur Treibhausgas-neutralität der Gasnetze und Gasspeichernach COP 21. Energiewende. 2018, pp. 1–3. Available online: https://www.dvgw.de/medien/dvgw/forschung/berichte/transformationspfade-treibhausgasneutralitaet-1810mueller.pdf (accessed on 20 October 2022).
- 153. Element Energy. Shipping CO₂—UK Cost Estimation Study. 2018. Final Report for Business, Energy & Industrial Strategy Department. November 2018. pp. 1–59. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/761762/BEIS_Shipping_CO2.pdf (accessed on 20 October 2022).
- 154. Litvinenko, V.S.; Tsvetkov, P.S.; Dvoynikov, M.V.; Buslaev, G.V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. *J. Min. Inst.* **2020**, *244*, 428–438. [CrossRef]
- 155. Terlouw, W.; Peters, D.; van Tilburg, J.; Schimmel, M.; Berg, T.; Cihlar, J.; Mir, G.U.R.; Spöttle, M.; Staats, M.; Lejaretta, A.V.; et al. Gas for Climate—The Optimal Role for Gas in a Net-Zero Emissions Energy System. Report 18 March 2019. Available online: https://gasforclimate2050.eu/wp-content/uploads/2020/03/Navigant-Gas-for-Climate-The-optimal-role-for-gas-in-a-net-zero-emissions-energy-system-March-2019.pdf (accessed on 20 October 2022).
- 156. Khalifa, O.; Alkhatib, I.I.I.; Bahamon, D.; Alhajaj, A.; Abu-Zahra, M.R.M.; Vega, L.F. Modifying absorption process configurations to improve their performance for Post-Combustion CO₂ capture—, What have we learned and what is still Missing? *Chem. Eng. J.* 2022, 430, 133096. [CrossRef]
- 157. Sandeep Roy. Industry Stories. The Oil and Gas Industry's Path to Net Zero Emissions, Energy, Infosys. 2021. Available online: https://www.infosys.com/insights/industry-stories/oil-gas-industry.html (accessed on 20 October 2022).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.