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Abstract: This study determines and presents the capital and operating costs imposed by the use
of CO2 capture technologies in the refining and petrochemical sectors. Depending on the refining
process and the CO2 capture method, CO2 emissions costs of EUR 30 to 40 per ton of CO2 can be
avoided. Advanced low-temperature CO2 capture technologies for upgrading oxyfuel reformers may
not provide any significant long-term and short-term benefits compared to conventional technologies.
For this reason, an analysis was performed to estimate the CO2 reduction potential for the oil and
gas industries using short- and long-term ST/MT technologies, was arriving at a reduction potential
of about 0.5–1 Gt/yr. The low cost of CO2 reduction is a result of the good integration of CO2

capture into the oil production process. The results show that advanced gasoline fraction recovery
with integrated CO2 capture can reduce the cost of producing petroleum products and reduce CO2

emissions, while partial CO2 capture has comparative advantages in some cases.

Keywords: CO2 capture; oil refinery; Residual Oil Zones (ROZ); CCUS

1. Introduction

While the oil and gas industries have assumed the major responsibilities with respect
to the transition towards achieving a low carbon footprint by 2050 through the development
and implementation of CO2 capture technologies, at the signing of the Paris Agreement,
Russia committed itself to regulating the reduction of greenhouse gas emissions by in-
dustry. According to BP, the global emissions of CO2 (the main greenhouse gas) in 2019
amounted to almost 33.9 billion tons. For this reason, China (9.4 billion tons), the USA
(5.1 billion tons), India (about 2.5 billion tons), Russia (about 1.6 billion tons) and Japan
(more than 1.1 billion tons), along with large companies in Russia (companies supported
by the Russian Federation), are studying CO2 capture technologies, as well as carbon
capture and sequestration (CCS) technologies, with respect to their performance in the
specific areas of production, extraction, and storage for economic and technical feasibility.
Roadmaps are also being developed to reduce the carbon footprint in the production and
processing of heavy oil, the conversion of coal into oil, the production of biofuels, and
the conversion of liquefied gas into oil products. Currently, a step-by-step assessment
process is underway aimed at reducing carbon emissions using unconventional resources.
The goal of these projects is to enable the use of traditional resources in the oil and gas
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industries to limit carbon emissions without increasing the cost of producing the final
products. This methodology was evaluating using the example of the impact of carbon
emissions reduction at Russian refineries. The baseline levels of carbon dioxide emissions
from refining oil were established, and the cost of reducing these emissions using proven
post-combustion carbon capture technology was calculated. Alternatively, a study on the
Carbon Capture Project (CCP) study was performed in which the technical and economic
possibilities of CO2 capture technologies were compared and found that this technology
reduced the cost of avoiding CO2 emissions by 35 percent compared to carrying out capture
after the reforming process in the refinery scenario [1–3].

Oil refineries are one of the largest sources of anthropogenic CO2 emissions, with the
metallurgical industry being roughly on par with this. In 2020, the oil and gas industries
accounted for over 11 gigatons of CO2, accounting for almost 32 percent of total global
CO2 emissions [4,5]. The industry’s overarching goal is to achieve energy efficiency in
production using the best available technologies (BAT) using renewable energy sources
such as CO2 capture and storage (CCS) [6,7]. The oil and gas industries consider this BAT
option to be one of the options that could result in energy efficiency being achieved by
reducing CO2 emissions. The use of CCS technologies in refineries is being considered
due to the large number of processes that generate large amounts of CO2 emissions such
as VOCs and flue gases. At the same time, the introduction of CO2 capture BAT using
the proposed technologies could reduce the economic burden assumed by plants arising
from the production of pure CO2 [8,9]. By 2050, with reference to authoritative reports
from international governmental and non-governmental organizations in the field of oil
and gas processing, the release of CO2 emissions into the atmosphere should be reduced
by more than 10 Gt per year [10,11]. Today, Russia is operating within the framework of
the UN Framework Convention on Climate Change, in which measures for reducing the
carbon dioxide content in the atmosphere from 2020 are regulated. Therefore, following
the example of the United Nations Industrial Development Organization, Russia intends to
implement a roadmap project for the industrial capture and storage of CO2 [12,13].

For example, at the XII Eurasian Economic Forum in Verona (Italy) in 2019, Rosneft
signed an agreement with DeGolyer & MacNaughton Corp. to assess the resources available
for underground CO2 storage at areas licensed by the company in Russia. In December
2021, it became known from open sources that GazpromNeft was going to invest about
RUB 30 billion (about USD 383 million) in the first CCS projects in the Orenburg region. In
Russia, there are no permanent CCS systems, and large refineries are not technologically
equipped for the capture of CO2 [14,15]. The first stage consists of the implementation of a
project in which 1 million tons of CO2 will be injected into underground layers annually.
The Orenburg region was not chosen at random; the deposits in this region enable the
pumping of up to 50 million tons of CO2 per year.

GazpromNeft, in collaboration with NIS, is currently implementing a project in Serbia
facilitating the collection and treatment of natural gas with a high carbon dioxide content,
with an injection volume of about 100,000 tons of CO2 per year. The resulting CO2 is then
pumped into the developed deposits, located at a depth of more than 2500 m. A project
is also being considered that would allow Sakhalin Island to achieve carbon neutrality by
2025.

To achieve these goals in Russia, there are several unresolved issues:

1. There is no regulatory or legal framework regulating the achievement of carbon
neutrality and control over CO2 emissions by industry.

2. There is no regulatory framework for regulating industrial safety on the issue of CO2
in subsoil use.

3. For projects related to the capture, transport, and storage of CO2 to be effective, it
is necessary to develop an economic model for state support of and compensation
for costs to the owners of enterprises involved in the implementation of capture,
transport, and storage technologies.
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GazpromNeft owns four major refineries: the Moscow Refinery, the Omsk Refinery,
the Slavneft–YANOS plant in Yaroslavl (jointly with Rosneft), and an oil and gas processing
complex in Serbia (Pancevo). The total refining volume of the company at these refineries
in 2021 amounted to 43.3 million tons of oil. Another problem for the Russian oil refining
industry is the lack of ownership of underground natural reservoirs suitable for storing
CO2. For this reason, some companies are considering ways of utilizing CO2, including its
reuse in construction and in the food industry.

According to the annual review by the audit company Ernst & Young for 2021, CCS
technology in Russia is in the initial stage of development and is not economically beneficial
for companies due to the high cost of the technology; 1 ton of sequestered CO2 costs USD
160–170. For example, in the USA, the state pays enterprises that have implemented CCS
technologies a subsidy of USD 35–50 per ton of CO2 for the purpose of using CO2. In the
countries of the European Union, companies that have implemented CCS technologies pay
for them at a cost of 60 to 65 EUR/tCO2.

It is worth mentioning that Russia is a country with many opportunities for the
introduction of new technologies, and there are many projects that need state support,
without which the introduction of CCS technologies will be impossible.

Research on CO2 capture rates in carbon-intensive industrial processes began in
the late 20th century and became widespread in the 2000s, as described in works such
as [16–18]. Research has been focused on the application of chemical absorption to capture
CO2 in petrochemical plants [19–22]. Scholars have concluded that, compared to CO2
capture in the operation of thermal power plants [23–26], the cost indicators are comparable
to those in the oil and gas industries [27–32]. For example, the IEA Greenhouse Gas
Research and Development Program (IEAGHG) compiled reports that include refinery
performance and technical and economic carbon neutrality performance [33–35]. An IEA
report demonstrated the effectiveness of carbon dioxide capture technologies [36–38], and
for refinery technologies, the economics of flue gas amine-based capture and oxy-fuel
combustion capture are comparable to those in metallurgy.

The IEA reports contain overviews of the use of CCS technology in the oil and gas
industries [39–41]. It is also worth noting the report of the Intergovernmental Panel on
Climate Change on CO2 [42]. These reports present an analysis of the literature on industries
such as oil and gas processing, metallurgy, and the construction industry. We conducted a
comparative literature review analyzing CO2 capture rates for a wide range of industrial
processes (Table 1).

Table 1. Review of major publications analyzing CO2 capture performance.

Reference Plant Economic
Lifetime

CO2 Avoidance Costs

Petroleum Refineries Other Industries

[42–44] 20–30 ∼45 EUR/t captured
(2035year) 25–40 EUR/t (2030)

[45] 30 ∼40 EUR/t captured
(2050 year) 45–60 EUR/t (2050)

[46–48] 25 ∼43 EUR/t captured
(2050 year) 45–60 EUR/t (2050)

[49–53] 25 ∼45 EUR/t captured
(2050 year) 45–60 EUR/t (2050)

Varied (original figures
from reviewed studies) 30

Catalytic crackers
∼45 EUR/t captured
(oxyfuel combustion)

30–50 EUR/t (2030)

Varied (original figures
from reviewed studies) Not stated Not stated Not stated
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Table 1. Cont.

Reference Plant Economic
Lifetime

CO2 Avoidance Costs

Petroleum Refineries Other Industries

[54] Not stated. Not stated Not stated

[55–57] 20–30 ∼40 EUR/t captured
(2050 year) Not stated

Varied (original figures
from reviewed studies) Not stated ∼25 EUR/t captured

(gas recycling) Not stated

[58–60] Not stated. ∼30 EUR/t captured
(gas recycling) 35–50 EUR/t (2030)

The information provided in Table 1 provides an overview of the technologies for
CCS of CO2, as well as research and development efforts in the CO2 capture industry.
The purpose of this review is to comprehensively cover all aspects of CCS, including fuel
price, capital cost, interest rate, and life, which can have a big impact on the results of
CO2 technology research. In previous studies, the authors did not provide a specific CO2
capture technology and did not consider describing the storage costs. Thus, the purpose of
this study is to consistently evaluate and compare the technical and economic performance
of CO2 capture technologies for the oil and gas industries.

Based on our analysis of the literature, several CO2 capture technologies can be
identified, which can be grouped into the production of fuel, gasoline, and other raw
materials for petroleum products, making chemicals, polymers, and biofuels.

Technical solutions for CO2 storage in geological formations are another hotly debated
CO2 capture technology, considering the economic and environmental attractiveness of
such projects, which include the following technologies for the capture and utilization of
CO2 (Table 2).

Table 2. CO2 utilization technologies.

Technology Description

Pre-combustion

Based on the gasification process through which the fuel passes,
pre-combustion produces syngas, which is primarily composed of
hydrogen and carbon monoxide. Subsequently, hydrogen and carbon
monoxide are converted to carbon dioxide, which then goes through a
gas separation process.

Combustion
The capture of gases that occurs during combustion is called “oxygen
combustion”, and its principle is to burn fuel in an oxygen-enriched
environment.

Post-combustion

Capture takes place in the final phase of the release of combustion
products. This process is ideal for capturing CO2 from
energy-generating sources such as thermal power plants and other
plants that use waste to generate energy. After the exit of the flue gases,
they go through a process whereby CO2 is separated from other gases
using an appropriate technology.

In the current study, special attention is paid to oil and gas processing and petro-
chemistry. The petrochemical industry accounts for almost a quarter of industrial CO2
emissions [61], or approximately 1 GtCO2/year. As the main sources of CO2 emissions
are similar across industries, industrial processes, and feasibility studies on CO2 capture
technologies, such as metered gas cleaning, ammonia production, and coal or oil gasifi-
cation, are currently being conducted in an industry-wide manner. According to expert
forecasts, CCS technologies will play a significant role, at a level of more than 50 percent,
in the production of synthetic fuel, synthesis gas, and hydrogen by 2050 [62]. This study
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considers technologies for capturing CO2 at the pilot project, pilot implementation, and
commercialization stages [63,64].

2. Methodology
2.1. Process Description of CО2 Capture Plant

This section describes a research methodology for estimating and reducing CO2
emissions based on a typical plant using technology consisting of syngas production—the
so-called Fischer–Tropsch process.

Flue gas utilization is envisaged in the design of the heat exchanger at temperatures
between 160 and 400 ◦C. Due to the large sources of CO2 emissions in existing refineries,
two separate lines should probably be installed, one for flue gas cooling and the other for
CO2 recovery. The cooled flue gases are combined and sent to the line for CO2 absorption,
heat recovery, and drying, followed by preparation for transportation to the CO2 pipeline
system at the required predetermined pressure. The low-pressure gas stream comes into
contact with the amine recycling solution. Instead of a traditional stripper, a saturated
amine heat exchanger is used as a flash evaporator to regenerate the amine and remove the
top layer of CO2. The heat exchanger overhead is condensed in a remote mixing condenser,
refluxed with circulating cold diesel distillate, and sent to a drying and CO2 compression
line to meet product specifications (Figure 1).
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Figure 1. General view of a heat and mass transfer apparatus for the separation of volatile impurities
from liquid mixtures.

The key utility requirements for a post-combustion capture plant include power, steam,
and cooling. Accessories support the installation of traps [65,66]. Figure 2 shows a diagram
of the CO2 capture process after oil refining. Technological solutions include the capture
process and the possibility of further transportation to the process pipeline system.
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To this end, flue gases are cleaned of CO2 to 90 percent, with further transportation
through the process pipeline system located on the territory of the refinery at a pressure of
up to 100 bar and a temperature of 35 ◦C.

Constituents such as amines and the CO2 steam that forms in the reboiler are passed
to the bottom of the reboiler stripper. In the next step, a condenser is installed, which is
necessary to receive the steam flow, which exits the upper part of the stripping column
after being decomposed into water and absorbent.

2.2. Technical Indicators

Specific avoided CO2 emissions from an industrial product are used as the main
technical measure of CO2 capture efficiency. When calculating the possible cost of CO2 as a
fuel gas used in the processing of process steam, Equation (1) can be used to determine the
volume of CO2 lost during operation of the refinery [67].

∆MCO2,sp,avoided =
MCO2,cap−[∆MCO2,site+{(∆PInd+∆HInd · fst,Ind)+(pCap+HCap · fst,Cap)−∆Fgas · fPP}·Emsp,Elec]

MInd
(1)

where ∆MCO2,Cap is the CO2 capture rate (tonne/s); fPP is the fired plant gas-power
efficiency; EmSp,Elec is the CO2 emission factor of grid electricity (tCO2/MJe); fSt is the
power equivalent factor for steam (dimensionless); ∆Fgas is the change in the net process gas
export from the industrial process to power plants due to the CO2 capture (MW); HCap is
the steam import for CO2 capture and compression (MW); ∆HInd is the change in the steam
import for the industrial process due to the CO2 capture (MW); ∆MCO2,site is the change in
total carbon input to the industrial process due to CO2 capture (tCO2-equivalent/s); MInd
is the production rate of the industrial product (tons/s); PCap is the electricity import for
CO2 capture and compression (MW); and ∆PInd is the change in the electricity import for
the industrial process due to CO2 capture (MW).

For all sites, the final pressure after capture is set at 110 bar; deviations in the literature
values are corrected using Equation (2) [67]:

ESp,comp =
ZRT1

Mηisηm
·

Nγ

γ− 1

{(
p1

p1

)(γ−1)/Nγ

− 1

}
(2)

where Z is the CO2 compressibility factor at 1.0 bar, 20 ◦C (0.9); R is the universal gas
constant (8.3145 J/(mol K)); T1 is the suction temperature (313 K); ESp,comp is the specific
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electricity requirement (kJ/kg CO2); N is the number of compressor stages; p1 is the suction
pressure (101 kPa); p2 is the discharge pressure (11,000 kPa); M is the molar mass (44
g/mol for CO2); ηm is the mechanical efficiency (90 percent); ηis is the isentropic efficiency
(80 percent); γ is the specific heat ratio (cp/cv) (about 1,2).

For the investment costs of the compressor, the following equation from the literature
was used, using the Kölbel–Schulze Index (Formula (3)) [68]:

CAPEXcompressor(Euro/USD) = 88× 103 · (P[MW] · 1000)0.55 (3)

This equation considers intermediate cooling and drying as well as installation costs
(factor 2.5). The value of operating costs for CO2 pumping stations corresponds to 5 percent
of the investment costs. The CO2 avoidance costs are calculated using Equation (4) [67]:

CCO2 =
α·∆I + ∆Cenergy + ∆CO&M + ∆MMat

∆MCO2,sp,avoided·MInd,annual
(4)

According to sources in the literature, the pressure must be at least 100 bar during
the compression of CO2 in the pipelines using this technology. If the CO2 concentration is
below 95 percent, additional purification processes will be necessary, since the CO2 capture
rate is controlled by the multiplication factor ηRec, and since part of the CO2 is released
along with the impurities removed during the purification process ηRec, in most cases, the
pipelines through which CO2 is transported operate at concentrations of 95 percent [69,70].
The specific energy consumption is estimated using Equation (5), adapted from Damenet
al. [71]:

ESp,comp =
ZRT1

Mηisηm
·

Nγ

γ− 1

{(
p2

p1

)γ−1/Nγ

− 1

}
(5)

Capital costs depend on the productivity of the enterprise. To correctly compare
different technologies for capturing CO2, it is necessary to present the indicators of the
enterprise. Base scales for the refinery were determined based on a review of the literature
and open sources. A scaling factor is used to rescale the investment costs in consideration
of the effects of different plant sizes according to Equation (6):

CostA
CostB

=

(
ScaleA
ScaleB

)SF
(6)

By analyzing the literature, a method for estimating the cost of CO2 capture was
developed (Table 3), making it possible to obtain the following data:

Table 3. Cost model inputs.

Cost model inputs Units

Capital costs Euro/kWh

Fuel Cost Euro/MMBtu

Thermal output based on the lower heating value in determined Btu/kWh

3. Case Study
3.1. Development Scenarios

Targets in the development of the Russian oil and gas sector and the technical equip-
ment required for low-carbon projects change depending on the external conditions im-
plemented in each scenario. Therefore, when implementing a scenario representing the
new era of hydrocarbons, the task of the sector is the maximization of hydrocarbon pro-
duction, and technologies facilitating enhanced oil recovery and involving hard-to-recover
unconventional reserves will become priorities of technological development.
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In other scenarios, value creation will become a priority for industry, in which case
integrated design technologies and cost engineering tools (for the manufacturing of high-
value-added products) will be the focus of development. The global CO2 emissions pro-
duced by refineries are close to 1 Gt/year, or about 10 percent of total global emissions [72].
Oil and gas refineries are the main sources of CO2 emissions, with the main contributors
being the catalytic crackers used in the production of electricity and heat, as well as hydro-
gen processes [67]. Additionally, data from refineries around the world show that a large
volume of CO2 emissions come from catalytic crackers, which generate heat to produce
electricity [73]. For this reason, for the period 2020–2030, WIPs were included among the
large-scale projects with the Net Zero Scenario for industrial CO2 capture (Figure 3).
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Oil refineries are owned by international oil cartels, multinational companies, and
small state-owned companies. At refineries, the concentration of flue gases ranges from 6
percent at thermal power plants to 12 percent at facilities that burn heavy oil products [72].

According to a study by Brown et al. addressing the problem of oil refining, the 25
largest oil refineries owned by large oil companies use more than 50 percent of their pro-
duction capacity to capture CO2 and VOCs [74]. Furthermore, 55 percent of the capacity of
the entire global oil refining sector belongs to transnational oil companies and international
cartels such as Gazprom Neft, Rosneft, Lukoil, ExxonMobil, Shell, BP, ConocoPhillips, and
Total. Figure 4 shows these companies along with companies from China, Venezuela, and
Saudi Arabia. The main difference with the latter group is that they operate exclusively
within their regions.

The oil and gas industries are the largest consumers of energy, together accounting
for CO2 emissions of about 1.3 Gt. The main sources of CO2 emissions from the oil and
gas industries are reformers and steam boilers [75]. In the production of ethylene by
steam cracking, compounds such as naphtha, liquefied petroleum gas, and ethane cause an
increase in CO2 emissions [73]. In Russia, crude oil accounts for three-quarters of all steam
cracker production, while LNG units predominate in the US, Canada, and Norway [76].
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In Russia, the depth of oil refining has been at 70–72 percent for a long time; the yield
of light oil products is 56–58 percent, and the industry average value of the Nelson com-
plexity index (which estimates the ratio of secondary and primary processing capacities)
has not exceeded 6 points, while at the leading foreign refineries in the USA, Canada, and
Norway, the refining depth reaches 95 percent and the Nelson index is 14 [77]. A significant
proportion of operating secondary processing plants in Russia were built before 1995 and
are physically and ethically outdated. In recent years, to overcome the technological back-
wardness of the industry, there have been significant efforts both on the part of the state and
on the processing enterprises. With the emerging modernization of refineries, it has become
possible to increase the average depth of oil refining to 73.5 percent and create conditions
under which the use of motor fuels belonging to low environmental classes in the domestic
market can be avoided (in 2015, the share of motor gasoline belonging to environmental
classes 4 and 5 was 93.6 percent, and diesel fuel accounted for 82.4 percent of total produc-
tion). At the same time, an increase in processing depth has occurred, mainly due to the
involvement of vacuum gas oil in the catalytic cracking and hydrocracking processes, and
the large volumes of tar remaining following processing, while insufficient attention has
been paid to the development and production of non-fuel oil products. In addition, large
volumes of straight-run gasoline, which is not involved in processing, remain at Russian
refineries, and constitute a valuable raw material in the petrochemical industry. Obviously,
the production, economic, and scientific and technological development of the industry
in the medium term will have to take place under rather unfavorable natural, climatic,
geological, financial, macroeconomic, and foreign policy conditions.

In the broadest sense, three major directions of scientific and technological devel-
opment in the industry can be distinguished, based on three approaches to production
development, being beneficial in the case of high demand and oil price, as well as under
alternative conditions:

1. Technologies that contribute to the maintenance (or even restoration) of profitable
production at existing conventional fields, often already largely depleted (increasing
CCS).

2. Technologies for the extraction of oil from unconventional fields and the development
of unconventional oils (heavy, high-viscosity, and super-viscous oil; oil sands and
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bitumen; oil of low-permeability rocks, including shale; oil of the Bazhenov formation;
and other hard-to-recover reserves).

3. Technologies for oil production in offshore fields.

In recent decades, the oil refining industry has been particularly affected by the
discovery of new supplies of unconventional liquid fuels and the introduction of legislative
requirements aimed at combatting climate change. The impact of fuels such as tar sands,
liquefied natural gas, shale oil, synthetic oil, natural gas, and coal is likely to impact the
oil refining industry in the future. Biofuels are less impacted by the chemical processing
process and have the potential to have a positive impact on the refining industry, while
synthetic oils extracted from shale oil and tar sands still require deeper processing. Figure 5
shows the volume of crude oil refined at Russian refineries during the year 2021, indicating
the impact of traditional raw materials, such as crude oil, on the industry.
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Figure 5. Primary oil refining at Russian refineries from January 2021 until December 2021, (thousands
of tons) [78].

3.2. Cost Estimation for CO2 Capture Plants

This section is devoted to comparing the costs of technologies for the capture and
cleaning of CO2. The technical characteristics of the plant are based on the production
of pure CO2, which is prepared for transportation and storage through process pipelines
that may contain inert gases such as Ar, O2, and N2. In other plants, the content of CO2 is
lower than 3 percent, with pipeline pressures of up to 100 bar and temperatures of 35 ◦C.
Additionally, the operation of the CO2 capture unit is assumed to be offline. The power
and cryogenic cooling systems are not integrated with the existing plant.

In this study, when calculating the operating costs, it is assumed that the site of the
CO2 capture plant is at a remote, closed location, and that the location allows inexpensive
transport of CO2 through the pipeline. Moreover, the refinery’s CO2 capture plant is
expected to use Monoethanolamine for flue gas cleaning. Based on the simulated flue gas
data, a process flow diagram is proposed, equipment dimensions are calculated, and a cost
estimate model is determined.

The design of the plant is based on the extraction of 90 percent of CO2 from the
feedstock at the refinery. According to open sources, the percentage of gas emitted into
the atmosphere during raw material processing at Russian refineries is 10 percent [79–82].
For CO2 capture technology employing an oxygen system, a furnace design is assumed
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that can convert CO2 into pure oxygen combustion after the implementation of emission
control regulations. The capture plant corresponds to a modified design consisting of two
absorber tanks, an absorber, an oxygen plant, a flue gas drying system, a flue gas cleaning
system, a cryogenic air separation system, a generator, pumps, and the engineering of the
necessary technological pipelines.

4. Results and Conclusion
Russian CO2 Capture Projects in the Oil and Gas Industries

For the end consumers of petroleum products, which include end products such as
gasoline, fuel oil, aviation kerosene, diesel fuel, lubricants, oils, bitumen, petrochemical
raw materials, coke, etc., the quality of the refined oil is important. Therefore, the value of
oil products is entirely dependent on the quality of the refining of crude oil. This highly
energy-intensive process results in significant CO2 emissions. The CO2 emissions resulting
from the refining of oil in the years 2017–2021 amounted to about 1174 million tons of
CO2-equivalent per year [83–88].

CO2 emissions from oil and gas processing and marketing make up 1526 million tons
of CO2-equivalent per year. Up to 72 percent of emissions are accounted for by oil refining;
the remaining 28 percent are caused by gas processing.

Of the total CO2 emissions coming from refineries, 50 percent come from liquid and
steam ejectors, atmospheric vacuum tubes, and oil blocks, 25 percent come from plant pro-
duction services, and the remaining 25 percent come from hydrogen production [66,83,89].
About two-thirds of CO2 emissions from refineries come from secondary processes and hy-
drotreatment. In this way, the number of secondary processes in a refinery is an important
factor in determining CO2 emissions. Small refineries involved only in primary crude oil
distillation and a small volume of hydrotreatment processes emit relatively low levels of
CO2. However, the large refineries belonging to companies such as Gazprom Neft, Rosneft,
and Lukoil process about 34,300 barrels of oil per day, while emitting about 1.5 million
tons of CO2 per year, thus having much higher emissions (see Figure 4). Details of the CO2
emissions generated by oil refining are shown in Figure 6.
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Figure 6. Percentage of CO2 emissions from different sources in oil refining.

The purpose of this study was to provide a technical proposal and a short economic
analysis regarding CO2 capture technology in the oil refining industry. We referred to open
sources that addressed the main parameters affecting the calculation of costs as well as
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direct emissions from the production process of refineries around the world [90–104]. The
CO2 capture technologies found in the literature [105–156] were divided into short-term
and long-term technologies. The following conclusions can be drawn from this analysis of
the general context:

With respect to refinery technology, the cost of the oxygen capture of CO2 is about
65 Euros per ton of CO2, while post-combustion capture is over 65 Euros per ton CO2 for
catalytic crackers with a capacity of 1 million tons of CO2 per year. It should be noted that
it is necessary to modernize the design of heat exchangers to achieve oxygen fuel capture
of CO2, which in the long term could become an economical energy carrier for refineries.

Due to the lack of state support for low-carbon technologies, the prediction of costs in
Russia is complex, but in the future, the price may drop from 160 US dollars per ton of CO2
to 70 US dollars or lower. The overall technology for and economics of CCS in the oil and
gas industries will be highly dependent on market conditions.

The transition of the oil and gas industries towards economic efficiency is a complex
and gradual process. No companies in the industry have yet developed detailed compe-
tencies in this area. Therefore, to achieve the stated emission reductions, each company
is looking for ways to reduce emissions. At the same time, it is important to emphasize
that, with respect to decarbonization, it is hardly possible to find a universal approach that
will be optimal for all companies in all sectors, either in terms of emission reduction or
regarding the economic efficiency [157].

The economics of CO2 capture technologies will depend to a large extent on individual
technologies and operating conditions, industrial applications, etc. It should be noted
that some of the studies surveyed in this article showed that the introduction of new
technologies for CO2 capture is impossible without upgrading the industrial production
process at the refinery plant. Therefore, it is highly recommended that in future studies, the
industrial production process should be investigated both with and without the upgrades
having taken place.
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MW Megawatt
PSA Pressure Swing Adsorption
VPSA Vacuum Pressure Swing Adsorption
ASU Air Separation Unit
BAT Best Available Technique
CCP CO2 Capture Project
CCS Carbon Capture and Storage
FCC Fluid Catalytic Cracker
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