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Abstract: The urgent need to reduce greenhouse gas emissions to achieve a decarbonized society has
led to the active introduction of electric vehicles worldwide. Renewable energy sources that do not
emit greenhouse gases during charging must also be used. However, the uncertainty in the supply
of renewable energy is an issue that needs to be considered in practical applications. Therefore,
in this study, we predicted the amount of electricity generated by renewable energy using model
predictive control, and we considered the operation of a complete island-operated park and ride
EV parking station that does not depend on commercial electricity. To perform appropriate model
predictive control, we performed comparative simulations for several different forecast interval
cases. Based on the obtained results, we determined the forecast horizon and we simulated the
economic impact of implementing EV demand response on the electricity demand side. We found
that without demand response, large amounts of electricity are recharged and a very high return
on investment can be achieved, but with demand response, the return on investment is faster. The
results provide a rationale for encouraging infrastructure development in areas that have not yet
adopted electric vehicles.

Keywords: electric vehicle; microgrid; model predictive control; park and ride; renewable energy

1. Introduction

Efforts to reduce greenhouse gas emissions have recently gained momentum to achieve
a carbon-neutral society. To reduce emissions by 46% by 2030 and achieve carbon neutrality
by 2050, a strategy has been established in accordance with the Paris Agreement, and a
policy to aggressively introduce electric vehicles (EVs) in the transportation sector strategy
has been set [1]. However, if electricity derived from thermal power generation is used
to charge EVs, greenhouse gases will be emitted in the process of charging EVs, and the
benefits of EV deployment will be reduced. Therefore, we propose the use of renewable
energy sources, such as photovoltaic (PV) and wind generation (WG), which do not emit
greenhouse gases. We can choose to operate a facility in a microgrid using renewable
energy, either grid-connected or independently operated. Both have advantages and
disadvantages. Grid-connected operation allows for stable operation, but greenhouse
gases are emitted due to the purchase of electricity that is not derived from renewable
energy. With independent operation, the system is not connected to the existing grid, so the
surrounding grid constraints do not need to be considered. In addition, because the system
is assumed to be operated entirely with electricity derived from renewable energy, it can
substantially contribute to the reduction in greenhouse gas emissions. However, facility
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managers must solve the problem of unstable power sources with daily fluctuations in
power generation. Several studies have been conducted on the combination of EVs and
renewable energy [2–4]. We also propose that the above be implemented as a park and ride
(P&R)-type EV parking station to reduce traffic congestion caused by private cars in urban
areas and improve EV infrastructure.

Several researchers have discussed the problem of optimizing EV charging stations
in a microgrid. Renewable energy sources such as PV and WG were introduced in one
study, but the simulation period was one month, which is short [5]. The period was not
continuous because specific days of the year were selected to compose a month. In another
study [6], a simulation comparison was conducted on independently operated microgrids
using the artificial bee colony (ABC) algorithm and the particle swarm optimization (PSO)
algorithm, but the researchers focused on the comparison of methods and the simulation
period was short (24 h), focusing on the operational waveforms. Researchers [7] considered
an EV parking station connected to the grid (not an independent grid). PVs were installed
as a power generation facility, but WG, which can generate power even at night, was not
installed because power could be purchased from the grid at any time. In another study [8],
PV and WG were considered for power generation facilities that could generate electricity
24 h per day. However, the researchers assumed a grid-connected microgrid, which limited
the locations for building EV charging stations. The microgrid to which an EV charging
parking station was connected was connected to the PV, WG, and storage batteries, and
the structure was considered to be able to simultaneously meet the residential load [9].
This study also focused on a grid-connected system and described the phases of collecting
EV charging information, controling the microgrid and allocating the generated electricity
to the EVs. Grid connection provides considerable stability but at the cost of greenhouse
gas emissions. In one study [10], Monte Carlo methods were used to generate random
EV loads and describe operational optimization during recharging in the distribution
network. However, the total computation time of the source code was 48 h, which is not
computationally efficient. A one-year EV charging facility considering the island type has
been proposed, and the impact of EV charging prices on EV charging profits has been
discussed in [11]. To reduce CO2 emissions, PVs can be used for power generation facilities.
However, the available time for charging is limited because electricity cannot be generated
at night. In addition, the service life of PVs has rarely been considered, so the long-term
operation equivalent to the time of replacement of the power-generation equipment has
not been taken into account. In another study [12], a distributed power control system that
considers both grid-connected and independent operation was proposed. A system was
constructed so that when the microgrid was separated from the grid supply for some reason,
it became an independent operation. Independent operation causes problems such as power
quality degradation, out of phase reclosure, loss of grounding, and safety concerns. The
researchers proposed using a primary–secondary islanding scheme to survive the period
of independent operation mode. In contrast, we built a model assuming an independent
operation mode from the beginning, so the risk of the previously described problems [12]
is very low.

As mentioned above, few examples exist of EV charging stations being considered as
independent systems, and to the best of our knowledge, no study has yet addressed optimal
scheduling for EV charging throughout the day and night during the year. Therefore, we
considered the optimal operation of a stand-alone EV parking station where fine power
regulation is possible. We assumed that each charging class in the station has its own
guaranteed charging rate and that an operation schedule is constructed to meet this rate
every day. In one aspect of balancing electricity supply and demand, vehicle-to-grid (V2G)
can be applied in different ways. V2G is a method in which users of parking stations
cooperate with each other by having EV owners sell electricity to parking station operators
when electricity generation is low. Researchers [13,14] have described the operation of a
power distribution network using V2G. One of the features of this method is that it allows
power sales from EVs to help with charging other EVs and to allow appliances to operate.
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However, the application of this method requires that there are many EV owners who are
willing to sell electric power to the grid. In this study, EVs were assumed to be charged
only, and a guarantee was provided regarding the EV charging rate. In principle, EVs are
charged with electricity from renewable energy sources, and the guaranteed EV charging
rate is relaxed when a shortage of electricity is forecasted. The two innovations of this study
are as follows: The first is a simulation of the operation of a P&R-type EV charging station
using model predictive control (MPC) and EV charge guarantee rate mitigation adjustment
(demand response) for a full year. The second is the mitigation adjustment of the EV
charging guarantee rate according to the amount of electricity generated in an independent
EV charging parking station. The method of predicting electric power flow using MPC has
often been employed [15,16]. This optimization problem can be expressed as a cost function
minimization problem consisting of the initial and maintenance costs required to install
power generation equipment, the charging revenues from selling electricity to EVs, and the
EV parking fee revenues, which is transformed into a mixed integer linear programming
(MILP) problem [17]. The contribution of this study is discovering the potential of island EV
parking stations that do not rely on commercial electricity. By considering model predictive
control and demand response in the system, we found that the instability of renewable
energy can be substantially reduced and the return on investment can be increased.

The rest of this paper is organized as follows. Section 2 describes the proposed EV
charging station model and the renewable energy to be installed. Section 3 describes
the objective function and constraints of this study. Section 4 describes the simulation
conditions and results. The different conditions for EVs are explained in this study. A
comparative study of the two patterns is performed and the usefulness of the proposed
method is discussed. Finally, Section 5 summarizes the results obtained, explains future
steps, and concludes the paper.

2. EV Parking Station

In this study, the microgrid consists of photovoltaics (PVs), wind generation (WG),
a battery energy storage system (BESS), and an electric vehicle (EV) charging station.
The charging station is a park and ride (P&R) parking station, and the users have their own
reasons for using the station, such as to reduce traffic congestion, reduce the burden on
the environment, and move smoothly to their destinations. Figure 1 shows the model of
the microgrid considered in this study. Electric power flows in the direction of the arrow.
This microgrid was constructed for Urasoe, Okinawa Prefecture, Japan. In addition, the
charging station has five classes with different charging priorities, one for daytime and one
for nighttime; EV owners can select a class according to their own usage. These classes
differ in recharge priority as well as recharge unit price, basic monthly fee, and recharge
guarantee rate. In addition, a charge guarantee rate was set for each class to provide an
appropriate guarantee for the class with the highest overall charge rate. Figure 2 shows the
daily PV generation with a rated output of 500 kW by month from April 2019 to March
2020, and Figure 3 shows the daily generation of PV, with a rated output of 500 kW, by
month. The electricity generated by the PV and WG is either used in charging the EV,
stored in the BESS, or disposed of as surplus electricity.

EV Parking Station WG

BESS

PV

Figure 1. Microgrid model.
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Figure 2. Daily generation of PV with a rated output of 500 kW by month.
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Figure 3. Daily generation of WG with a rated output of 250 kW by month.

In addition, model predictive control (MPC) is used to predict the amount of renewable
energy generated up to a certain time. MPC is executed in the following steps.

(i) A control problem is solved based on an objective function and constraints over a
predefined period of time to be controlled.

(ii) The first value of the obtained result is executed on the controlled object.
(iii) The time is advanced by one step and return to step (i).

This method allows for operational optimization at the present time considering the
future several hours ahead. Notably, although predicting power generation farther into the
future increases the stability of the system, it also increases the computational load.

3. Problem Formulation and Constraints

In this study, the optimization problem with the objective function and constraints
formulated below is the operation of a P&R EV parking station for one year.

3.1. Objective Function

The objective function of the system includes PV, WG, and BESS facility costs and sale
revenues to EV owners. To maximize the profit of the EV parking station operator, we
determined the number of power generation facilities installed and the scheduling of BESS
recharging and discharging.

min : Cyear = Cnpv + Cnwg + Cnba −∑
i

∑
t
{Rbase(i) · 12 · NEV(i) + Rev(i, t)} (1)

where Cnpv, Cnwg, and Cnba are the annual PV, WG, and BESS equipment costs (JPY),
respectively; Rbase(i) is the monthly basic charge for EV charging in class i (JPY); NEV(i)
is the number of EVs in class i; Rev is the revenue from electricity sales to EVs in class i at
time t (JPY); and Rev is the class i revenue from the sale of electricity to EVs at time t (JPY).
Cnpv, Cnwg, and Cnba are defined as follows:

Cnpv =
Npv · (Ipv + OMpv · LTpv)

LTpv
(2)
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Cnwg =
Nwg · (Iwg + OMwg · LTwg)

LTwg
(3)

Cnba =
Nba · Iba

LTba
(4)

where Npv, Nwg, and Nba are the amounts of PV, WG, and BESS equipment, respectively;
Ipv, Iwg, and Iba are the initial costs of PV, WG, and BESS (JPY), respectively; OMpv and
OMwg are the annual operational maintenance costs of PV and WG (JPY), respectively; and
LTpv, LTwg, and LTba are the lifetimes of PV, WG, and BESS (years), respectively.

3.2. Constraints

To consider the EV charging and renewable energy optimization problem with a BESS,
several constraints need to be satisfied.

To balance electricity supply and demand:

PPV,t + PWG,t + PBESSD,t = PBESSC,t + PEV,t (5)

where PPV,t and PWG,t are the amount of electricity generated by PV and WG at time t
(kWh), respectively; PBESSD,tis the amount of BESS discharged at time t (kWh); PBESSC,t is
the amount of BESS charged at time t (kWh); and PEV,t is the amount of EV charged at time
t (kWh).

For EV charging guarantee constraints:

0 ≤ PEVC ≤ −PEVCap − PEVE (tsta ≤ t ≤ t f in) (6)

where PEVC is the EV charge (kWh); PEVCap is the EV storage battery capacity (kWh); PEVE
is the initial EV charge (kWh); tsta is the EV arrival time; and t f in is the EV departure time.

For EV charge rate constraints,

SOCminEV ≤ SOCEV,t ≤ SOCmaxEV (ti ≤ t < to) (7)

SOCgEV ≤ SOCEV,t ≤ SOCmaxEV (to ≤ t) (8)

where SOCminEV and SOCmaxEV are the minimum and maximum EV charging rates, re-
spectively; SOCEV,t is the EV charging rate at time t; and SOCgEV is the guaranteed EV
charging rate.

For the BESS charge rate constraint:

20 ≤ SOCBESS,t ≤ 100 (%) (9)

where SOCBESS,t is the rate of charge of the BESS for any time t in the simulation period.

3.3. Model Predictive Control

The prediction period operation of the MPC algorithm is described by the follow-
ing equation:

min : −∑
i

tpred

∑
t
{Rbase(i) · 12 · NEV(i) + Rev(i, t)} (10)

where tpred is the MPC forecast period. After calculating the optimal solution for this period,
only the solution for the first step is saved. Next, the forecast period is shifted one step into
the future. In this paper, one step is 24 h. The optimal solution for each period is saved and
the calculation is repeated until all simulation optimal solutions are saved.
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4. Simulation

In this section, we define several parameters that must be determined for the simula-
tion and describe the results calculated based on these conditions.

4.1. Simulation Condition

Mixed integer linear programming (MILP), provided by MATLAB, was used to de-
termine the optimal scheduling. The simulation period was 366 days from April 2019 to
March 2020. We obtained the meteorological data for this period from the Japan Mete-
orological Agency website [18]. The sources of power to the microgrid for the P&R EV
parking station include PV and WG, with an additional lithium-ion storage battery. The
rated output and storage battery specifications for each installation are shown in Table 1.
For the simulation, we used the prediction error, as shown in Figure 4. The prediction error
is 0% at the current time (0 h), proportionally increases to 50% after 24 h, and is assumed to
be constant at 50% after 24 h. The error is generated to the extent that it does not exceed
the prediction error line shown in Figure 4 and affects the prediction of renewable energy
generation. Figures 5–12 show the actual amount of electricity generated by the PV and
WG1 units in April, July, October, and January, as well as the amount of electricity predicted
by MPC.

Table 1. Specifications of each power generation facility and storage battery.

Parameter Value

PV rated output 0.5 MW
WG rated output 0.25 MW

BESS performance 0.2 MW/1.2 MWh
BESS charge/discharge efficiency 90%

Initial charge rate of BESS 50%
Lifetime of PV 17 years
Lifetime of WG 17 years

Lifetime of BESS 6 years

Time t [hour]
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Figure 4. Upper limit of prediction error.
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Figure 5. Generated power of PV (spring).
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Figure 6. Power generated by WG (spring).
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Figure 7. Power generated by PVs (summer).
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Figure 8. Power generated by WG (summer).
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Figure 9. Power generated by PVs (autumn).
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Figure 10. Power generated by WG (autumn).
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Figure 11. Power generated by PVs (winter).
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Figure 12. Power generated by WG (winter).

The generation waveforms show that the difference between the predicted and mea-
sured values increases over time. The number of EVs in the parking station was assumed
to be 1000 during the day and 500 at night. In other words, the total number of active
EVs is 1500 units. All EVs were assumed to have a storage battery capacity of 40 kWh
and a charging efficiency of 0.9. The initial SOC of EVs coming to the parking station was
assumed to be between 30% and 70%. The initial SOC of each EV was determined by
a normal random number centered at 50%. We considered five day/night classes of EV
parking stations, with a total of 10 classes, and each rate type is shown in Table 2. As a first
comparative study to confirm the usefulness of MPC, the benefits of changing the forecast
time to 24, 48, 72, and 96 h were considered. The number of EVs per class was assumed
to be 5 classes with 200 EVs per class for daytime and 5 classes with 100 EVs per class for
night-time.
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Table 2. EV contract class.

Class Name Power Rate (JPY/kWh) Basic Rate (JPY/Month)

EV1 35 12,000
EV2 30 10,000
EV3 25 9000
EV4 20 8000
EV5 15 7000
EVn1 25 7000
EVn2 20 6500
EVn3 15 6000
EVn4 10 5500
EVn5 5 5000

For the second comparative study, the range to be projected by the MPC based on
the considerations from the previous comparative study is determined. For EV charging
stations, a minimum guaranteed charge rate was set for each class to differentiate the service
between classes with higher and lower total charge rates. However, if there is insufficient
power generation due to bad weather, it will be difficult to meet this guaranteed rate, which
may lead to an unnecessary increase in the number of installations. Therefore, we will
examine the impact on asset management by comparing the case where the guaranteed
charge rate is changed according to the amount of electricity generated with the case where
it is not changed. The number of EVs in each charging class assumed in this study is
shown in Table 3. Table 4 shows the guaranteed rate for each EV class after mitigation
adjustments and the guaranteed mitigation coverage. The mitigation tiers are expressed
as levels, with lower and high daily generation resulting in higher and lower mitigation
levels, respectively. Daily generation means the amount of electricity generated per day for
the forecast period. The initial SOC of EVs arriving at the parking station is in a normal
distribution with 50% as the average; therefore, the EVs may not charge at all if power
generation is extremely low. As a result, the possibility of an imbalance between electricity
supply and demand may be substantially reduced even on days when electricity generation
is low. If the guaranteed rate is not changed, the mitigation level is assumed to be constant
at 1.

Table 3. Number of EVs in each charging class (when mitigation conditions were changed).

Class Name Number of EVs (Unit)

EV1 360
EV2 280
EV3 120
EV4 80
EV5 160
EVn1 100
EVn2 100
EVn3 100
EVn4 100
EVn5 100

Table 4. EV guaranteed mitigation levels and guaranteed mitigation coverage.

Level EV1 EV2 EV3 EV4 EV5 Daily Generation (kWh)

1 100 60 50 40 30 9000∼
2 80 60 50 40 30 8400∼9000
3 60 50 50 40 30 7200∼8400
4 60 50 40 30 30 6000∼7200
5 50 40 40 30 30 4500∼6000
6 40 40 30 30 30 ∼4500
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4.2. Simulation Results and Discussion

First, we conducted a comparative study of simulations with different forecasting
periods to confirm the usefulness of MPC. The comparative study cases were as follows:

• Case 1: The MPC-predicted horizon is 24 h and the control horizon is 24 h.
• Case 2: The MPC-predicted horizon is 48 h and the control horizon is 24 h.
• Case 3: The MPC-predicted horizon is 72 h and the control horizon is 24 h.
• Case 4: The MPC-predicted horizon is 96 h and the control horizon is 24 h.

We do not discuss EV charging rates or detailed operational results here, as we
focused on the benefits of the change in MPC forecast horizon. The results obtained
from the comparison are shown in Table 5. The table shows the optimal number of units,
annual profit, annual revenue, annual costs and their breakdown, and surplus power. The
computation time for the one-year simulation was 62 s for Case 1, 137 s for Case 2, 182 s for
Case 3, and 253 s for Case 4. Table 6 shows the internal rate of return (IRR) for these cases.

Table 5. Simulation results (when predicted horizon is changed).

Case Number
of PVs

Number
of Wind
Genera-

tors

Number
of BESSs

Annual
Profit

(Million
JPY)

Annual
Revenue
(Million

JPY)

Annual
Cost

(Million
JPY)

PV Cost
(Million

JPY)

WG Cost
(Million

JPY)

BESS
Cost

(Million
JPY)

Surplus
(MWh)

1 (24 h) 5 2 14 83 239 157 45 20 92 26.6
2 (48 h) 6 1 10 118 247 129 53 10 66 91.8
3 (72 h) 6 2 7 144 264 120 53 20 46 165.6
4 (96 h) 5 2 8 143 260 117 45 20 52 31.2

Table 6. IRR and cumulative profit (when predicted horizon is changed) *1.

Case 1 Case 2 Case 3 Case 4

Year IRR

Cumulative
Profit

(Million
JPY)

IRR

Cumulative
Profit

(Million
JPY)

IRR

Cumulative
Profit

(Million
JPY)

IRR

Cumulative
Profit

(Million
JPY)

(Initial
investment) −1312 (Initial

investment) −1174 (Initial
investment) −1151 (Initial

investment) −1076

1 −85.57% −1123 −83.00% −974 −81.63% −940 −80.49% −866
2 −54.13% −934 −49.40% −775 −46.98% −728 −45.00% −656
3 −32.52% −744 −27.36% −575 −24.76% −517 −22.65% −446
4 −18.87% −555 −13.82% −375 −11.27% −305 −9.22% −236
5 −9.99% −366 −5.18% −176 −2.76% −94 −0.82% −26
6 −3.98% −176 0.57% 24 2.86% 118 4.70% 184
7 (*2) −538 −5.37% −170 1.40% 54 2.27% 79
8 −9.17% −348 0.68% 29 5.49% 266 6.50% 289
9 −3.06% −159 4.24% 229 8.21% 477 9.27% 499

10 0.47% 30 6.66% 429 10.15% 689 11.21% 709

*1 Add JPY 30 million per year in labor as the cost. *2 IRR calculation was not possible because of the rapid decline
in profits due to equipment replacement.

By examining the IRR for each year, we could compare the rate of return, which could
not be read from just one year’s income and expenses. In this study, we calculated IRRs up
to 10 years into the future. In addition to capital investment, labor costs were considered
when calculating the IRR. In this case, we assumed that JPY 30 million is allocated to labor
costs each year. From the results in Table 5, we confirmed that the annual profit increases
from 24 to 72 h in advance, but from 72 to 96 h in advance, the annual profit does not
increase; on the contrary, it decreases. Here, we focused on the IRR for the next 10 years
to obtain information that cannot be read only from the change in annual profit. After
the initial investment is completed, OM costs and labor costs are required each year for
each facility. At the end of the useful life of the equipment, additional initial costs for a
number of units are incurred for replacement. The IRR for the 24- and 48-h-ahead cases
were markedly lower than for the other two situations. Both the 72- and 96-h-ahead cases
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are expected to be profitable after the sixth year, but the 96-h-ahead case has a higher return.
Based on the above results, in the next comparative study, we simulated the MPC with the
96-h-ahead forecast, which has a higher return.

Next, we discussed the simulation results related to the mitigation adjustment of the
guaranteed charge rate. Based on the results of the first comparison study, we used MPC
with a forecast horizon of 96 h and a control horizon of 24 h. The comparative cases were
as follows:

• Case 1: No mitigation adjustment.
• Case 2: With six levels of mitigation adjustment.

The obtained optimal number of units, annual profit, annual revenue, annual cost and
its breakdown, and excess power are shown in Table 7. The computation time for the one-
year simulation was 119 s for Case 1 and 111 s for Case 2. Figures 13–16 show the generation
and consumption of Case 1 in spring, summer, fall, and winter and Figures 17–20 show the
recharge rate of the BESS. Similarly, Figures 21–24 show the generation and consumption
for Case 2 and Figures 25–28 show the BESS charge rate. The EV charging rates for each
class are shown in Table 8. Table 9 shows the IRR considering an annual labor cost of JPY
30 million. Table 7 shows that the profit without mitigation adjustment is higher than that
with mitigation adjustment. Table 8 confirms that the reason for this is that the amount of
electricity used to charge the EVs is also higher because no mitigation adjustment is applied.
However, this is achieved at the cost of requiring more power generation equipment and
storage batteries, i.e., higher annual costs. We focus on the IRR in Table 9. In the case with
mitigation adjustment, the investment payback is achieved in the sixth year, whereas in
the case without mitigation adjustment, the investment payback is not achieved even by
the tenth year. This indicates that it is better to include charging mitigation adjustments in
the operation of park and ride EV charging facilities. Note Figures 14, 18, 22 and 26. These
figures show that power generation declined after July 4.

For MPC, which forecasts 96 h ahead, this phenomenon could be predicted as early
as July 1. During this period, the SOC of the BESS is trying to keep the battery as fully
charged as possible to cope with the periods when power generation is scarce. This allows
the BESS to operate from July 4 to 7 while discharging the power stored in the BESS.

Table 7. Simulation results (when the mitigation conditions were changed).

Case Number
of PVs

Number
of Wind
Genera-

tors

Number
of

BESSs

Annual
Profit

(Million
JPY)

Annual
Revenue
(Million

JPY)

Annual
Cost

(Million
JPY)

PV Cost
(Million

JPY)

WG
Cost

(Million
JPY)

BESS
Cost

(Million
JPY)

Surplus
(MWh)

1 (no mitigation) 14 6 13 127 398 271 125 61 85 1202
2 (with mitigation) 6 2 6 158 272 113 53 20 39 195

Figure 13. Generated power and load from April 1 to 7 (Case 1).
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Figure 14. Generated power and load from July 1 to 7 (Case 1).

Figure 15. Generated power and load from October 1 to 7 (Case 1).

Figure 16. Generated power and load from January 1 to 7 (Case 1).
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Figure 17. SOC of BESS from April 1 to 7 (Case 1).
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Figure 18. SOC of BESS from July 1 to 7 (Case 1).
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Figure 19. SOC of BESS from October 1 to 7 (Case 1).
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Figure 20. SOC of BESS from January 1 to 7 (Case 1).

Figure 21. Generated power and load from April 1 to 7 (Case 2).
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Figure 22. Generated power and load from July 1 to 7 (Case 2).

Figure 23. Generated power and load from October 1 to 7 (Case 2).

Figure 24. Generated power and load from January 1 to 7 (Case 2).
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Figure 25. SOC of BESS from April 1 to 7 (Case 2).
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Figure 26. SOC of BESS from July 1 to 7 (Case 2).
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Figure 27. SOC of BESS from October 1 to 7 (Case 2).
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Figure 28. SOC of BESS from January 1 to 7 (Case 2).

Table 8. EV charging rates (when mitigation conditions are changed).

Case EV1
(%)

EV2
(%)

EV3
(%)

EV4
(%)

EV5
(%)

EVn1
(%)

EV2
(%)

EV3
(%)

EV4
(%)

EV5
(%)

1 (no mitigation) 100 99.7 98.8 95.2 85.9 98.9 93.6 82.7 73.4 67.6
2 (with mitigation) 79.9 68.8 66.7 57.0 54.0 91.5 74.1 61.2 54.0 50.1
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Table 9. IRR and cumulative profit (when mitigation conditions are changed) *3.

Case 1 Case 2

Year IRR Cumulative Profit
(Million JPY) IRR Cumulative Profit

(Million JPY)

(Initial investment) −2682 (Initial investment) −1112
1 −88.43% −2372 −80.27% −893
2 −59.72% −2061 −44.64% −673
3 −38.73% −1752 −22.26% −454
4 −25.01% −1441 −8.85% −235
5 −15.86% −1131 −0.46% −15
6 −9.53% −821 5.04% 204
7 −13.98 −1022 4.70% 188
8 −7.36% −711 8.28% 407
9 −3.40% −401 10.73% 626
10 −0.66% 91 12.48% 846

*3 Add JPY 30 million per year in labor costs.

5. Conclusions

In this study, we investigated the optimal design of a park and ride EV charging
station with PV, wind, and Li-ion batteries. The objective function consisted of PV, WP, and
BESS facility costs and sales revenue to EV owners, which we set to maximize annual profit.
In this study, model predictive control was used, and a comparative study with different
forecast horizons was conducted to find the optimal conditions for model predictive control.
The results showed that the longer the forecast horizon, i.e., the farther into the future was
forecast, the higher the annual profit or IRR. Extending the forecast horizon allows more
flexibility in the operation of stationary storage batteries. Based on the obtained results,
a comparative study was conducted using model predictive control that predicted 96 h
in advance, with and without mitigation adjustment to the guaranteed charge rate. The
results showed that without the mitigation adjustment, the annual EV charge rate was
higher, but so was the facility cost. With mitigation adjustment, the annual revenue of
EVs was slightly lower, but equipment costs were lower and annual profits were higher.
Furthermore, by focusing on IRR, we found that a faster return on investment could be
achieved in cases where mitigation adjustments are applied.

If the number of park and ride EV stations increases, EV users will be able to choose
either a plan with a high charging rate or the station itself at the expense of cost. How-
ever, not many EV parking stations currently exist in Japan. The infrastructure for EVs
should be established as soon as possible by adopting a plan that provides a good return
on investment.
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