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Abstract: The transition from the current energy architecture to a new model is evident and inevitable.
The coming future promises innovative and increasingly rigorous projects and challenges for ev-
eryone involved in this value chain. Technological developments have allowed the emergence of
new concepts, such as renewable energy communities, decentralized renewable energy production,
and even energy storage. These factors have incited consumers to play a more active role in the
electricity sector and contribute considerably to the achievement of environmental objectives. With
the introduction of renewable energy communities, the need to develop new management and
optimization tools, mainly in generation and load management, arises. Thus, this paper proposes a
platform capable of clustering consumers and prosumers according to their energy and geographical
characteristics to create renewable energy communities. Thus, this paper proposes a platform capable
of clustering consumers and prosumers according to their energy and geographical characteristics to
create renewable energy communities. Moreover, through this platform, the identification (homo-
geneous energy communities, mixed energy communities, and self-sufficient energy communities)
and the size of each community are also obtained. Three algorithms are considered to achieve this
purpose: K-means, density-based spatial clustering of applications with noise, and linkage algorithms
(single-link, complete-link, average-link, and Wards’ method). With this work, it is possible to verify
each algorithm’s behavior and effectiveness in clustering the players into communities. A total of
233 members from 9 cities in the northern region of Portugal (Porto District) were considered to
demonstrate the application of the proposed platform. The results demonstrate that the linkage
algorithms presented the best classification performance, achieving 0.631 by complete-ink in the Sil-
houette score, 2124.174 by Ward’s method in the Calinski-Harabasz index, and 0.329 by single-link on
the Davies-Bouldin index. Additionally, the developed platform demonstrated adequacy, versatility,
and robustness concerning the classification and sizing of renewable energy communities.

Keywords: classification and sizing; clustering algorithms; clustering evaluation metrics; decentralized
renewable energy generation; renewable energy communities

1. Introduction

Renewable and distributed energy sources, such as wind and solar sources, dispersed
along the distribution grid are gaining great importance and contribute to policy and
environmental objectives. However, the variability and intermittent nature of these energy
sources pose new challenges to power grid management and planning. Currently, the global
energy demand is increasing, and the transition to electric vehicles is growing every year.
Consequently, energy consumption in the power grid is expected to increase considerably,
mostly powered by non-renewable energy sources. Thus, there is an inevitable need to
minimize the subsequent carbon footprint by implementing large-scale renewable energy
generation and energy storage systems [1–3].
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The desire to increase the use of renewable sources and achieve carbon neutrality
resulted in the development of renewable energy communities (RECs). RECs, in recent
years, have been the subject of much interest both at the industrial and research levels since
they are the fundamental pillars for building a smart energy system [4,5] The expectations
are high since it could bring solutions to problems we are currently facing, such as high
energy demand and load management [6–10]. Moreover, some cooperative models between
distributed RECs have been investigated in several applications, such as:

• Optimizing mechanisms against power loss by replacing central power management
units with smart devices [11];

• Load management by exchanging and sharing locally generated energy [12–16].

Members of an REC may include public or private companies, domestic consumers,
businesses, municipalities, and industries, among others. It should be managed by its
participants and be located near renewable energy projects [17,18]. The possible integration
of several types of consumers in RECs allows participants to be included in the energy
sector chain, becoming, in this way, more active in what contributes to electricity genera-
tion [19]. Moreover, with RECs, a reduction in the power flowing in the transmission and
distribution lines can be achieved, leading to a reduction in congestion and power loss [20].
RECs will allow greater flexibility in using locally generated energy, making it possible to
control energy sharing and load balancing. As a result, the net energy resulting from these
communities is nothing more than the difference between the energy generated and the
energy consumed during a certain period [21,22]

The problems related to the identification and sizing of RECs should consider not only
the spatial distances of the members in the electricity grid but also the net energy of each one
over a time period [9]. An REC can be divided into three types according to their net energies:

• Homogeneous energy communities (HEC);
• Mixed energy communities (MEC);
• Self-sufficient energy communities (SEC).

The net energy value is the difference between energy generation and consumption in
a considered time period. If the difference is negative, it means that net energy is negative,
i.e., consumption is greater than the generation. On the other hand, if the difference is
positive, the net energy is positive, meaning that consumption is lower than the generation.

An HEC is defined as a set of members whose net energies are exclusively positive
or negative over a time period. The RECs with a set of members whose net energies are
mixed with positive and negative are known as an MEC. In this REC, the members can
share their locally generated energy with other adjacent members, avoiding resorting to
the power grid and ensuring better resilience and reliability of the power supply. Finally,
the SEC corresponds to a set of members with total positive net energy (the individual net
energy of each member is irrelevant).

In this context, developing tools that can analyze and group these vast amounts of
data is essential. Clustering is one of the techniques capable of analyzing and grouping
huge amounts of data into small groups based on their characteristics. This technique is
defined through the similarity function, which proceeds to aggregate data with similarities
and divides them into groups or clusters. Clustering can be performed in several ways as
many categories of clustering algorithms exist. However, it is important to note that each
category has its strengths and weaknesses, so specific algorithms may be better suited to
an input dataset than others.

1.1. Related Work

To the best of the authors’ knowledge, there is a lack of work concerning the identi-
fication and clustering of RECs in the specialized literature. Reference [23] proposes an
optimization model that simulates an electric energy market involving prosumers and
electric vehicles. Furthermore, it presents an energy community with several categories
of prosumers: household, commercial, and industrial. These prosumers were equipped
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with photovoltaic panels and battery storage systems. Faia et al. [24] propose an LEM
model that considers an energy community with a large concentration of electric vehicles
and who were capable of facilitating prosumer-to-vehicle (P2V) transactions. Every energy
community participant can sell and buy electricity from the community’s retailer as well
as other members. A mixed-integer linear programming (MILP) formulation is used to
model the problem, and it is solved using a decentralized and iterative procedure. A local
market mechanism is proposed in [25] in which end-users (consumers, small producers,
and prosumers) exchange energy amongst themselves. However, due to the possible low
market liquidity, the method implies that end-users satisfy their energy needs through bilateral
contracts with an aggregator/retailer with wholesale market access. Reference [26] introduces
a methodology based on demand response (DR) participation in a citizen energy community
environment, employing unsupervised learning methods, including convolutional neural
networks and K-means. Using end-user flexibility, it can assess future grid events and balance
consumption and generation by analyzing the grid’s future occurrences. Invitations to the
DR event were extended to end-users based on their position and evaluated by three metrics.
These metrics were energy flexibility, participation rate, and the end-users past flexibility.
Hong et al. [27], propose an approach for REC identification and clustering by considering
a power grid where the generation and energy sharing are predominate. However, there
were limitations regarding the range of clustering algorithms studied and the lack of analysis
and comparison between them to determine which ones are more effective in clustering. A
summary of related work in the literature is presented in Table 1.

Table 1. Summary of related work.

Ref. Topic Technique/Method Data Sources Main Findings Limitations

[23]

Optimization
model for an

electric energy
market with

prosumers and
electric vehicles

(EV).

Mixed-Integer
Linear

Programming

Hypothetical
energy

community
with 15

prosumers and
20 EVs.

Energy costs reduction in
energy communities that

include prosumers and EVs;
increase the efficiency of the

energy flow.

Based on several assumptions,
such as the availability of

real-time energy data, which
may not always be practical or

feasible; assumes that all
prosumers and EVs will
participate in the local

electricity market, which may
not be the case in real-world
scenarios; small-scale energy
community and may not be

generalizable to larger
communities or different

geographical regions.

[24]

A decentralized
iterative approach
for implementing

local electricity
markets (LEM) to

manage the
charging and

discharging of
electric vehicles.

Mixed-Integer
Linear

Programming

A generated
dataset of EV

driving
patterns based
on real-world
data from a
Portuguese

mobility
survey;

realistic-world
electricity

market prices
data.

Manage the EVs charging and
discharging in a LEM,

considering factors such as EV
driving patterns, battery

degradation, and market price
fluctuations;

economic efficiency of the
LEM by enabling price signals

to incentivize EV owners to
charge or discharge; improve

the environmental
performance of the LEM by
reducing the need for peak

power generation and
increasing the use of

renewable energy sources.

The study focuses on a
small-scale LEM with a

limited number of EVs; the
authors made several

assumptions to simplify the
modeling of the system;

unclear how the proposed
approach would perform in

practice and what challenges
would arise.
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Table 1. Cont.

Ref. Topic Technique/Method Data Sources Main Findings Limitations

[25]

Bidding strategies
in local electricity
markets and the

potential effects of
cascading

wholesale market
integration on
those markets.

Bi-level optimization
using computational
intelligence through

ant colony
optimization, a variant

of differential
evolution called

HyDE-DF, vortex
search algorithm, and

an estimation
distribution algorithm

called
CUMDANCauchy++.

Hypothetical power
profiles of residential

houses and PV;
realistic wholesale

market (WSM)
prices based on
MIBEL market.

Showed that LEMs can
reduce user costs and
increase the profits of

small producers in
realistic case studies;

take advantage of energy
traded at the local level;

benefits for both users and
the aggregator.

Assumed an
aggregator fixed tariff
calculated using the
forecast of the WSM

prices; LEM
transactions are done
within a voltage limit

and that the
aggregator tariff

offered to the
consumers considers
grid fees somehow.

[26]

Development of
evaluation metrics
for identifying the

most suitable
energy community

end-users to
participate in

demand response
(DR) programs

Clustering analysis by
K-means and

hierarchical clustering.

Realistic data
collected from an

energy community.

Clustering analysis can be
an effective way to group

energy community
end-users based on their

energy consumption
patterns; the authors

found that the K-means
clustering algorithm is

more effective than
hierarchical clustering in

grouping energy
community end-users for

demand response
programs.

Limited number of
performance metrics;

the findings of the
research are based on a

specific energy
community.

[27]

Energy
communities for

microgrids on the
power grid.

A combination of
clustering algorithms

K-means and
DBSCAN.

Real world datasets:
National Imagery

and Mapping
Agency [28];

Richardson et al. [29]
in East Midlands, UK;
Barker et al. [30] in

Massachusetts, USA.

Group energy consumers
and producers based on

their energy usage
patterns and optimize the

microgrid community
based on energy flow and

cost; enable the
collaboration between
energy consumers and
producers to balance

energy production and
consumption.

The method relies on
accurate data on

energy consumption
and production, which

may not always be
available.

1.2. Research Gap

To our best knowledge, since no studies reflect and evaluate the performance of
different algorithms in REC clustering, it is of the utmost significance to determine which
algorithms produce the best outcomes in this procedure. In this way, the following question
arises: What is the best approach for clustering and classifying RECs to make them energy-
efficient and balanced?

This research work will consider three clustering algorithms, with the main objective
of grouping the different members of a database into several RECs, according to the
characteristics and similarities of each member:

• K-means—an iterative unsupervised learning algorithm that attempts to partition a
dataset into K distinct and non-overlapping subgroups or clusters, where each point
only belongs to one group. It is characterized by having an ambitious approach to
discovering clustering that minimizes the sum of squared error, converging to a local
solution rather than a globally optimal solution [31];



Energies 2023, 16, 2389 5 of 26

• Density-based spatial clustering of applications with noise (DBSCAN)—a classic
algorithm and one of the most important spatial density-based clustering algorithms. It
can be applied to large datasets with outliers and simultaneously discover clusters with
varied shapes with acceptable efficiency, even in the presence of noise. Furthermore,
DBSCAN can find clusters that considers the characteristics of the data, and it is not
necessary to define the number of clusters in advance. Hence, it allows the formation
of groups with arbitrary formats [32];

• Linkage algorithms—an approach that uses the agglomerative hierarchical clustering
method, which considers that the fusion of clusters is based on the distance between
them [33]. There are several types of linkage algorithms, and these are divided into two
major groups, the algorithms based on graphical methods and the algorithms based
on geometric methods. Within the algorithms based on graphical methods, the most
important and most widely used are single-link, average-link, and complete-link [33].
On the other hand, the most commonly used algorithm based on geometric methods
is Ward’s method [34]. All of them are based on the similarity and Euclidean distance
between the various data points, but the main difference is how this same distance is
calculated.

These algorithms incorporate several clustering strategies, allowing a critical and
comparative analysis of each algorithm’s performance to determine the most suitable
method for clustering datasets of this sort.

It is worth noting that the clustering techniques are useful because they provide a way
to identify structures in the data that might not be immediately apparent through traditional
data analysis techniques (e.g., statistical analysis and regression analysis). Moreover, in the
case of geographic location, net energy, and member identification, the clustering techniques
would help to identify clusters of data points that share similar attributes or characteristics,
such as similar geographic locations or similar net energy levels. This information can then
be used to make more informed decisions about where to invest resources or what types
of members to target for outreach. Additionally, clustering techniques can be useful for
identifying anomalies or outliers in the data, which can be important for understanding
the data and making predictions. For example, members in a cluster with significantly
different net energy levels compared to the other members in the cluster might indicate an
issue that needs to be investigated.

1.3. Contributions

The proposed platform can contribute to the minimization of power losses and con-
gestion, mitigate power failures, and maximize local energy generation and sharing.

Considering the existing research gaps in the previous works, this paper presents the
following contributions:

• Development of a clustering and classification model of RECs;
• Identification of an REC taking into consideration its energy characteristics;
• Understanding to what extent the correct formation of an REC contributes to a more

stable and less congested power grid;
• Analyzing and comparing the efficiency of several clustering algorithms.

Furthermore, several performance metrics will also be addressed to enable a better
evaluation of the clustering quality.

1.4. Paper Organization

After this introduction, Section 2 covers the proposed methodology and the details
of its operation. A case study has been conducted and described in Section 3 to verify the
performance of the proposed methodology. In Section 4, the results and their discussion
are presented. Finally, Section 5 presents the most pertinent findings.
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2. Proposed Methodology

This section presents a detailed description of the proposed methodology used in this
research work. First, Section 2.1 discusses the methodology used to identify and classify
different types of RECs. Next, Section 2.2 provides information about the developed model,
which can group several members into RECs according to their net energy and geographical
characteristics. Finally, Section 2.3 presents the three evaluation metrics used to assess the
performance of each clustering model.

2.1. Identification and Classification of Renewable Energy Communities

We define N as the number of members existing in a community, E(t) as the net
energy per unit of time t, and D as the spatial distance between two members in an
electrical network. The net energy value is the difference between energy generation and
consumption. It can be observed that if E(t) < 0, then the member needs to request external
energy to sustain itself energetically; if E(t) > 0, then the member holds an excessive amount
of energy that can be shared. Based on these variables, a distinction will be made between
the different types of energy communities.

This research work also includes the sizing of renewable energy communities, i.e.,
determining the appropriate scale of the community’s renewable energy infrastructure to
meet its energy needs by trying to approximate the net energy closer to zero. This involves
considering factors such as the community’s current energy demand, local generation, and
the availability of renewable energy resources (e.g., solar). In other words, the sizing aims to
find the ideal number of members that form an REC and the right balance between energy
generation and consumption to ensure that the community is able to generate enough
renewable energy to meet its needs while avoiding overproduction or energy waste.

2.1.1. Homogeneous Energy Community (HEC)

An HEC classification is relatively easy when compared to the others (namely, MEC
and SEC) since it can be defined by a set of members whose net energies are only positive
(E(t) > 0) or only negative (E(t) < 0).

For the identification of the different HECs in the electrical network, two variables
are necessary: the net energy (E(t)) and the geographical distances between members (D).
Therefore, the problem of identifying the energy community can be considered a clustering
problem based on geographical distances between members, where the number of groups
is given by K, and the net energy of the HEC can be aggregated. However, other constraints
will have to be considered in the implementation of this concept since the E(t) of each HEC
is limited, i.e., the power supply depends on the capacity of the installed generation units.
In these cases, the number of RECs is unknown, and the following additional constraints
(1) should be applied: if HEC Σ E(t) is positive, it may not exceed a positive upper limit; if
HEC Σ E(t) is negative, it may not be less than a lower limit.

N

∑
i=1

E(t) = E1(t) + E2(t) + E3(t) + (. . .) + E(t)N (1)

where:
E(t)— is the difference between the value of generated and consumed energy;
N—is the number of members that form an REC;
i—is the member number.

2.1.2. Mixed Energy Community (MEC)

As previously verified, some members have positive E(t), i.e., excess energy that can
be shared or stored. In contrast, others have negative E(t), i.e., they need energy from
the grid. In this way, these members can connect and form an MEC. In an MEC, the
members can share their locally generated energy surplus. In this power-sharing process,
not only members with negative E(t) are favored as they can acquire cheaper energy, but
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also members with positive E(t) are favored once they can increase the profitability of their
generation units by selling the surplus.

The ideal MEC can be defined as a set of members geographically close to each
other, with a balance between energy generation and consumption. Therefore, all locally
generated energy is consumed in the vicinity, avoiding energy waste or injection into the
grid. For instance, a member with positive E(t) and another with negative E(t) can mutually
balance their energy needs using locally produced energy.

2.1.3. Self-Sufficient Energy Community (SEC)

The SEC can be classified as a special case within the MEC group since they are also
composed of positive and negative E(t) members. However, there is an important difference:
the members who constitute an SEC can fully balance the energy demand with locally
generated energy through their generation units, mainly used for self-consumption. In this
case, it can be considered that the E(t) > 0, which makes the study of these communities
quite interesting since they do not depend, in part, on the electricity grid, thus creating
several advantages for those who belong to them (e.g., they are not affected in case of
contingencies of the main grid).

To consolidate the concepts related to identifying the types of RECs discussed above,
Figure 1 shows how this classification is done, taking into account the net energy of each
REC. As can be seen, an HEC is only formed by members with E(t) > 0 or E(t) < 0. On
the other hand, an MEC is constituted by members whose net energies can be negative or
positive, while SECs require Σ E(t) > 0.
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2.2. Clustering and Classification Model

The development of three processes characterizes the proposed model, as can be
seen in the flowchart in Figure 2. Initially (Step 1), the identification of the geographic
coordinates of each member is done, enabling their graphical georeferencing. After that
(Step 2), each algorithm (K-means, DBSCAN, and linkage algorithms) can run, and group
(cluster) all the considered members. Finally (Step 3), each cluster (REC) is classified at the
end of the process.
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With the need to geographically represent each member of the community, it was indis-
pensable to collect each member’s latitude and longitude values and store them in a database.
In addition, it was also necessary to collect the energy generation and consumption values to
calculate each member’s net energy. The database stores the following data:

• Identification of each member;
• Annual net energy of each member (MWh/year);
• Latitude location of each member;
• Longitude location of each member.

The proposed model imports the data previously stored in the database. Initially, the
latitude and longitude of each member are converted from the WGS84 (WGS 84 (World
Geodetic System 1984) is a 3D geodetic datum that provides a consistent coordinate system
for the entire earth and is the reference coordinate system used by the Global Positioning
System (GPS) [35].) reference system to the UTM (UTM (Universal Transverse Mercator) is a
type of map projection that is used to project the surface of the earth onto a two-dimensional
plane. It divides the earth into 60 zones, each 6 degrees of longitude wide. Furthermore,
it provides a convenient method for specifying positions on the earth’s surface using a
rectangular coordinate system [36].) system. This conversion allows each member to be
represented in a Cartesian referential. After this process, the data are properly processed,
allowing their importation to each considered algorithm.

As seen in Figure 3, the model starts by normalizing the values relative to each
community’s net energy (correlated energy) for the correct classification. After that, the
classification of each REC starts. Thus, if all members belong to an REC with only positive
net energy, it is classified as an HEC positive. On the other hand, if all members belong to
an REC with only negative net energy, it is classified as an HEC negative. Moreover, an
REC is classified as an MEC if its members have negative and positive net energies.
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According to the sum of its members’ net energies, an REC classification can be one of
two types: self-sufficient and non-self-sufficient. For an REC to be considered self-sufficient,
it must have a value of E(t) ≥ 0. However, to speed up the classification process, the
authors included two data intervals for the net energies summation. In this way, if the sum
is within the range of [−20, max_energy] it is classified as self-sufficient. Conversely, if
the summation value falls between the range of [min_energy, −20], it is classified as not
self-sufficient.

2.3. Metrics for Clustering Assessment

It is essential to thoroughly analyze the effectiveness of different clustering techniques.
Therefore, we typically turn to cluster performance evaluation metrics to acquire more
accurate findings that are easy to compare. This is because numerous situations require
more than a manual and qualitative evaluation. To determine which algorithms produced
the best clustering results, all of the algorithms that were being examined were subjected to
the following three evaluation metrics:

• Silhouette score index: Used to measure how far apart clusters are from each other. It
shows how close each point in a cluster is to each point in the clusters next to it and
gives back the average silhouette coefficient used on all the samples. The silhouette
coefficient is determined by taking the average distance between each sample’s intra-
cluster and its nearest cluster. The range of this coefficient is from −1 to 1. The more
space between clusters, the higher the coefficients are (the closer they are to +1). If the
value is 0, the sample is on or very close to the line that divides two nearby clusters. If
the value is negative, the samples might have been put in the wrong cluster [37].

• Calinski-Harabasz index: The variance ratio theory is the basis for the Calinski-
Harabasz index. Within-cluster diffusion and between-cluster dispersion are the
factors used to determine this ratio. Clustering is more accurate for a higher index [38].

• Davies-Bouldin index: This index is defined as the average similarity measure of
each cluster with its most similar cluster. The similarity is defined as the ratio of
within-cluster and between-cluster distances. As a result, clusters that are farther apart
and less dispersed will score higher. Conversely, the lowest possible score is 0, and
unlike most performance metrics, a lower value corresponds to a greater clustering
performance [39].

2.4. Clustering Algorithms—Objectives and Constraints

K-means is a well-known clustering algorithm that aims to partition a set of data
points into K clusters, where each data point belongs to the cluster with the closest mean.

The objective for K-means is to minimize the sum of squared distances between each
data point (member) and the mean of its assigned cluster (REC). To achieve this objective,
the K-means algorithm works by iteratively updating the cluster and reassigning the
members to the closest REC. The algorithm repeats these steps until the cluster assignments
no longer change, or a maximum number of iterations is reached. The constraints for the
problem are: (i) the number of K clusters (REC) must be specified; (ii) it is assumed that the
members are continuous variables; and (iii) it is assumed that the variance of each REC is
spherical, meaning that each dimension of the feature space has an equal variance.

The math of K-means involves the calculation of distances and centroids.
The distance between two points (members) i and j is calculated using the Euclidean

distance (the Euclidean distance is a measure of the distance between two points in
Euclidean space. It is the straight-line distance between two points in a 2- or higher-
dimensional space.) (2):

Di,j =

√
∑
[(

ip − jp
)2
]

(2)

where Di,j is the Euclidean distance between points i and j, ip and jp are the pth dimensions
of points i and j, respectively.
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The centroid of a cluster is the mean of all the data points in the cluster (3):

C =
1
A
·∑ B (3)

where: A is the number of data points in the cluster, B is the set of data points in the cluster.
The objective function of K-means is to minimize the sum of the squared distances

between each data point and its assigned centroid (4):

OF = min ∑ Di,C(i)
2 (4)

where i is a data point, Ci is the centroid of the cluster to which i belongs, and Di,C(i) is the
distance between i and its centroid.

DBSCAN groups members close to each other in a dense region. The objective of this
algorithm in our work is to create an REC with closely packed members. For this, some
constraints must be satisfied: (i) a minimum number of members to form a dense region
(in our study, the minimum number of members to create a cluster (REC) is two) and (ii) a
metric distance to determine the proximity of members to each other (it is considered 2 km
of distance—see Section 4.1).

The DBSCAN involves the calculation of distances and densities between data points
(members) and clusters (RECs).

A point i is considered a core point if it has at least minP other points within a radius
δ around it (5):

Xi =
{

j
∣∣ Di,j ≤ δ} i f

∣∣Xi
∣∣≥ minP ; i → core point (5)

where Xi is the set of points within δ distance from point i, minP is the minimum number
of points required to create a cluster, and δ is the radius within which minP points are
counted.

A point j is a border point if it is not a core point but is within δ distance of a core point (6):

i f |Xi| ≤ minP; j ∈ ϕ (6)

where ϕ is the set of all points in the dataset.
A point m is a noise point if it is neither a core point nor a border point (7):

i f m /∈ ϕ (7)

Finally, two points i and j are density-connected if there exists a core point n such that
both i and j are reachable from n. Additionally, a point i is reachable from a core point n if
there exists a sequence of core points {i1 , i2, i3, . . . , iz} such that i1 = n, pz = i and pp + 1
is directly density-reachable from pp.

The linkage algorithms are a class of hierarchical clustering algorithms. The objective
is aimed at the minimization of the distance between members within an REC while
maximizing the distance between the RECs. This objective is subject to the following
constraints: (i) determining which members can be grouped together in an REC. In single
linkage, for instance, only the closest members are grouped together, while in complete
linkage, all members within a certain distance threshold are grouped together; (ii) ensuring
that the hierarchy of RECs is consistent with the metric distance used. In other words,
for instance, if members 1 and 2 are closer to each other than 1 and 3, then the algorithm
should not group 1 with 3 before grouping it with 2.

Each linkage algorithm differs in how they calculate the distance between clusters (RECs).
Single linkage is the simplest and fastest of the linkage algorithms. It calculates the distance

between two clusters as the minimum distance between any two points in the two clusters (8):

DI,J = minDi,j; ∀ i ∈ I, j ∈ J (8)

where I and J are two clusters, and i and j are individual points within the clusters.



Energies 2023, 16, 2389 12 of 26

Complete linkage calculates the distance between two clusters as the maximum dis-
tance between any two points in the two clusters (9):

DI,J = maxDi,j; ∀ i ∈ I, j ∈ J (9)

Average linkage calculates the distance between two clusters as the average distance
between all pairs of points in the two clusters (10):

DI,J =
∑ Di,j

a·b ; ∀ i ∈ I, j ∈ J (10)

where a and b are the number of points in clusters I and J, respectively.
Ward’s linkage minimizes the increase in the total within-cluster sum of squares when

two clusters are merged. It calculates the distance between two clusters as (11):

DI,J =
‖CI − CJ‖2

a + b
(11)

where CI and CJ are the centroids of clusters I and J, respectively, and ‖CI − CJ‖ denotes
the Euclidean distance between the centroids.

3. Case Study

The subject addressed in this research work is relatively unknown and innovative.
Consequently, it was only possible to obtain a small quantity of real data (from an existent
renewable energy community in the north of Portugal), and most of the data of generation
and consumption created considers several installations typologies.

3.1. Data Analysis and Characterization

The necessary data for 170 members in the Porto district in Portugal were created to
show how the proposed model is applied. Each member’s electricity generation and con-
sumption values and their geographical positions (latitude and longitude) were determined.
To complement the study, the authors also used real data (from a renewable energy commu-
nity project located in the north of Portugal) in conjunction with the generated data. These
data were obtained through the community members’ invoices. Figure 4 demonstrates the
geographic location of each member considered in this case study. The red dots denote the
considered/created members, and the yellow dots represent the real members.
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The idea to include created data (from fictitious members) in conjunction with real
data (from real members) is to have the opportunity to consider in the proposed platform
more cities in the same region (north of Portugal), many more members, make the problem
much more complex in computing terms, obtain more reliable conclusions, and stress the
proposed platform.

It is important to note that the latitude and longitude of each member is transformed
from the WGS84 reference system to the UTM system, with a reference of 0 degrees for
both latitude and longitude. Furthermore, the correlated energy is generated using a factor
of 1000. This is critical for the built model to avoid issues during execution when dealing
with energy quantities in MWh and kilometers for latitude and longitude.

The members were distributed by the zones of greater population/industrial density
within the district of Porto. As shown in Figure 5, around 43% of the members are located in
Porto city, with the remaining 57% distributed in neighboring regions, namely in Valongo,
Lousada, Ermesinde, Paredes, Paços de Ferreira, Penafiel, Rebordosa, and Gandra.
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The created energy consumption and generation vary between [0–400] MWh/year,
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shows the energy intervals distribution of members for annual generation and demand.

Energies 2023, 16, x FOR PEER REVIEW 13 of 26 
 

 

 

Figure 5. Geographical distribution of members by region. 

The created energy consumption and generation vary between [0–400] MWh/year, 

referring to several types of installations, from private consumers to industries. Figure 6 

shows the energy intervals distribution of members for annual generation and demand. 

 

Figure 6. Members’ annual generation and demand percentage—(a) annual generation (b) mem-

bers’ annual consumption values. 

3.2. Renewable Energy Community—North of Portugal 

The real REC is characterized as a mixed community, with about 14 electro-produc-

ing centers (photovoltaics) and about 63 consumer members. This set of members consid-

ers several types of facilities, from residential to commercial and industrial. For those, real 

data was used, namely the demand and local generation in MWh/year and their exact 

locations (latitude and longitude). Unfortunately, and for confidentiality reasons, it is not 

possible to identify the members, the entity responsible for the REC, and their exact loca-

tion. 

The photovoltaic (PV) installations considered the estimated electricity consumption 

profile relative to all REC members, ensuring that most of the energy generated is con-

sumed within it (aiming to self-consumption and energy sharing). It was also necessary 

to calculate the energy generated annually and, consequently, estimate the average num-

ber of hours of solar radiation per day in the considered region, allowing the authors to 

calculate the average energy generated annually (513 MWh/year). Figure 7 shows the per-

centage of energy generated by each producer in the REC in the north of Portugal. The 

members’ energy bills were used to calculate the REC average annual consumption, rep-

resenting a total of 402 MWh/year (Figure 8). 

Figure 6. Members’ annual generation and demand percentage—(a) annual generation (b) members’
annual consumption values.



Energies 2023, 16, 2389 14 of 26

3.2. Renewable Energy Community—North of Portugal

The real REC is characterized as a mixed community, with about 14 electro-producing
centers (photovoltaics) and about 63 consumer members. This set of members considers
several types of facilities, from residential to commercial and industrial. For those, real data
was used, namely the demand and local generation in MWh/year and their exact locations
(latitude and longitude). Unfortunately, and for confidentiality reasons, it is not possible to
identify the members, the entity responsible for the REC, and their exact location.

The photovoltaic (PV) installations considered the estimated electricity consumption
profile relative to all REC members, ensuring that most of the energy generated is consumed
within it (aiming to self-consumption and energy sharing). It was also necessary to calculate
the energy generated annually and, consequently, estimate the average number of hours
of solar radiation per day in the considered region, allowing the authors to calculate the
average energy generated annually (513 MWh/year). Figure 7 shows the percentage of
energy generated by each producer in the REC in the north of Portugal. The members’
energy bills were used to calculate the REC average annual consumption, representing a
total of 402 MWh/year (Figure 8).
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4. Results and Discussion

The proposed methodology has been applied to the case study presented in Section 3
to show its applicability. To have an equal comparison base between all algorithms, it was
necessary to predefine some variables before running the algorithms, namely the maximum
distance between members (DBSCAN algorithm) and the predefined number of clusters
for the K-means and linkage algorithms.

Figure 9 shows how the different members are distributed at the spatial and energetic
levels. All members are represented in a Cartesian referential of 3 dimensions, where the
x-axis represents the longitude, the y-axis the latitude, and the z-axis the correlated net
energy. It can also be seen that overall, no cluster members stand out for the net energy
value since the color gradient is uniformly distributed.
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4.1. DBSCAN Results

The study was developed considering the fact that all generation units are connected
to a low-voltage distribution network. In this way, and according to Portuguese law, the
geographical distance between the power plants and the consumer cannot be greater than
2 km in a REC [40]. Furthermore, only two members are required for an REC to be formed.
Thus, the input parameters for the DBSCAN algorithm are:

• maximum distance between points = 2 (km);
• minimum number of points = 2.

Figures 10 and 11 show that the DBSCAN algorithm has grouped the members into
ten RECs of which four RECs were classified as non-self-sufficient, and six RECs were
classified as self-sufficient. In addition, it was also verified that seven of those RECs were
classified as mixed, two as positive homogeneous, and one as negative homogeneous. As a
result, the RECs’ net energy values range between −497 MWh/year and 249 MWh/year.
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For a proper and efficient methods comparison, the number of clusters to be used
in the other methods will be equal to the number of clusters given by DBSAN, i.e., ten
clusters (communities).

4.2. K-Means Results

The K-means algorithm, beyond the data relating to members, requires the number of
desired clusters.

The results obtained by the K-means algorithm were quite interesting. It was possible
to see a more balanced distribution of members among the RECs at a quantitative level
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compared to the DBSCAN algorithm (Figures 12 and 13). The K-means algorithm uses the
partitional clustering technique, i.e., it is a non-deterministic algorithm. Thus, it generates
different results in each run. As a result, in some runs, it was possible to verify that the
K-means could not identify the real REC. This example is shown in Figures 14 and 15.
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Most of the results obtained from the K-means algorithm (when the real REC was
identified) were very similar to those obtained by the Ward’s method (Section 4.3.1).

4.3. Linkage Algorithms

Similar to the K-means algorithm, the linkage algorithms only need the number of
clusters to perform the data clustering.

4.3.1. Ward’s Method Results

Ward’s method presents three self-sufficient RECs and seven non-self-sufficient RECs,
of which one was classified as positively homogeneous and the others as mixed. As can be
seen in Figure 16, this method presented more similar communities compared to the other
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methods, in terms of the number of members and clusters/community size (no formation
of large clusters).
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However, at the energy level, Ward’s method presented the largest number of non-
self-sufficient communities, ranging from −347 MWh/year to 399 MWh/year (Figure 17).
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4.3.2. Complete-Link Results

The complete-link method created five self-sufficient and five non-self-sufficient RECs.
Two were classified as positive homogeneous, and the others as mixed (Figure 18). Analyzing
the RECs created, this method presents the smallest variation in terms of net energy, varying
between −281 MWh/year (REC 4) and 249 MWh/year (REC 5), as can be seen in Figure 19.
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4.3.3. Average-Link Results

The average-link method presents six self-sufficient and four non-self-sufficient RECs
(Figure 20). Two are positive homogeneous, and eight are mixed. This method showed more
self-sufficient communities when compared to the complete-link method. Furthermore,
this method presents more RECs with the net energy closest to zero, as shown in Figure 21.
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4.3.4. Single-Link Results

Figures 22 and 23 depict the single-link method results. This method presents the same
number of self-sufficient and non-self-sufficient communities as the average-link method.
However, with a small difference in classification, as it created two positive homogeneous
RECs, one negative homogeneous, and seven mixed. This method’s results present some
similarities with the DBSCAN algorithm. Both found more homogeneous RECs and created
the RECs with the most members and the lowest net energy.
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4.4. Clustering Evaluation Metrics

There were substantial differences in performances for the algorithms under study,
as shown by the clustering evaluation metrics presented in Section 2.3. Table 2 shows the
classifications obtained by the clustering techniques under consideration. The Silhouette,
Calinski-Harabasz, and Davies-Bouldin indexes are commonly used to evaluate the quality
of clustering results.
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Table 2. Performance evaluation of clustering algorithms.

Silhouette Score
Index

Calinski-Harabasz
Index

Davies-Bouldin
Index

K-means 0.568 1951.153 0.578
DBSCAN 0.653 897.255 0.329

Ward’s method 0.619 2124.174 0.590
Complete-link 0.631 1980.555 0.451
Average-link 0.671 1760.073 0.429
Single-link 0.653 897.255 0.329

Analyzing the Silhouette score index, it is possible to see that the average-link method is
the one that achieves the best classification—the higher value (0.671), indicating that this method
chose the members that were more well-matched to its own cluster. Moreover, the single-link
and DBSCAN methods follow the average-link very closely, presenting a score of 0.653.

Regarding Calinski-Harabasz index, Ward’s method obtained the best classification
with 2124.174. This high ratio means that the clusters are well-separated (the between-
cluster variance is large, and the within-cluster variance is small), presenting the most
suitable clustering solution.

Concerning the Davies-Bouldin index, the single-link and DBSCAN methods are the
ones that show the lower values (0.329), i.e., the lower average similarity score between each
cluster and its most similar cluster. This means that the single-link and DBSCAN methods
present the best results with the clusters well separated compared to the other methods.

Additionally, it is possible to see in Table 2 that the K-means method was the one with
the worst overall performance, presenting the classification of 0.568, 1951.153, and 0.578 for
the Silhouette score index, Calinski-Harabasz index, and Davies-Bouldin index, respectively.

It is worth noting that the Silhouette score index measures how well each data point
fits into its assigned cluster, the Calinski-Harabasz index measures the separation between
the different clusters, and the Davies-Bouldin index measures the distance between the
clusters. However, the results of using these indexes to evaluate the quality of clustering
results will depend on the specific parameters used in the clustering algorithm, such as the
number of clusters, the metric distance used, and the initialization method. Therefore, it is
important to carefully select these parameters to obtain meaningful and reliable results. For
instance, increasing the number of clusters can improve the Silhouette score, as each cluster
will have a smaller number of data points, leading to a better fit. However, increasing the
number of clusters can also decrease the Calinski-Harabasz and Davies-Bouldin indexes,
as the clusters may become less separated or more overlapped. Similarly, changing the
metric distance used can affect the clustering results and, therefore, the evaluation indexes.
For example, Euclidean distance can be appropriate for clustering continuous variables,
while Hamming distance (in clustering algorithms, the Hamming distance is used as a
measure of dissimilarity between two data points that are represented as binary vectors.
The Hamming distance is simply the number of positions in which the two binary vectors
differ.) can be appropriate for clustering categorical variables.

In general, these metrics can be used to compare different clustering algorithms or to
tune the parameters of a single algorithm. A good clustering algorithm should produce
high Silhouette scores, high Calinski-Harabasz indexes, and low Davies-Bouldin indexes,
indicating that the clusters are well-separated and distinct.

4.5. Classification and Sizing of Renewable Energy Communities—Adequacy, Versatility, and Robustness

By accurately classifying and sizing renewable energy communities, the adequacy
of the renewable energy system can be improved, which means that it can be designed
to meet the energy demands of the community without over or under-sizing the system.
This can result in a more reliable and cost-effective renewable energy system. Moreover,
classifying and sizing RECs can also improve the versatility of the renewable energy
system. By understanding the energy demands and characteristics of the community, it
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can be designed to incorporate multiple renewable energy sources and energy storage
technologies. This can increase the flexibility and adaptability of the renewable energy
system, making it more versatile to changes in energy demand and supply.

On the other hand, the robustness of the renewable energy system can be improved.
Thus, the system can be designed to be more resilient to environmental changes and
fluctuations in energy supply by accurately predicting the energy demand and supply. This
can improve its reliability and resilience, making it more robust and capable of withstanding
unforeseen events.

5. Conclusions

Due to the cooperation between network members and energy communities, the
study of renewable energy communities with dispersed energy resources would improve
the energy management of power grids. Several clustering and identification strategies
for renewable energy communities, including homogenous, mixed, and self-sufficient
energy communities, were proposed in this research work. We also tested the methods’
effectiveness and efficiency using real and created datasets.

DBSCAN and single-link proved to be the algorithms capable of detecting the greatest
number of energy communities with identical characteristics. Consequently, these algo-
rithms could provide significant support in network energy management. They could
predict, for instance, the optimal location for installing new generation unit resources
with energy supply capacity in order to balance homogeneous energy communities with
high energy consumption, thereby preventing excessive energy requests to the grid. The
DBSCAN algorithm, on the other hand, was shown to be ineffective when clustering large
high-density clusters since it only considers the distance between each cluster member and
does not consider the distance between the most distant members of the cluster. Due to this,
not all renewable energy communities generated by this algorithm satisfied the maximum
distance requirement between generation units and customer installations.

Regarding the real CER, there was no problem for most of the algorithms under study
in identifying it, except the K-means algorithm (as it generates a different solution on each
run). Therefore, this REC is classified as mixed self-sufficient, confirming the pre-analysis
for this REC.

Comparing the results obtained from the clustering evaluation metrics and the re-
sults obtained graphically, we can conclude that the results are identical, i.e., the linkage
algorithms obtained the best results. In addition, they established the largest number of
self-sufficient communities with net energies near zero, and the largest number of com-
munities with homogenous energy. Regarding classification, this strategy proved to be
effective, appropriately categorizing all formed renewable energy communities. Moreover,
the linkage algorithms also stood out positively by presenting the best evaluation metrics
classifications, i.e., 0.631 (complete-link) in the Silhouette score, 2124.174 (Ward’s method)
in the Calinski-Harabasz index, and 0.329 (single-link) on the Davies-Bouldin index.

The main limitations of the proposed model are: (a) it does not include any stochastic
model for generation and demand forecast to improve the efficiency of each algorithm
search; (b) it does not include a previous identification of the possibility of each community
member supplying energy flexibility to improve the cluster’s creation; and (c) since data
gathering from all members is necessary for energy community classification and size,
privacy issues could arise.

The findings indicate that identifying, classifying, and clustering renewable energy
communities can be a valuable tool for distribution network planning, operation, and
management.
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