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Abstract: Overhead lines that are exposed to the outdoors are susceptible to faults such as open
conductors on weak points and disconnection caused by external factors such as typhoons. Arcs that
occur during disconnection generate energy at a high heat of over 10,000 ◦C, requiring swift fault shut-
off. However, most conventional fault detection methods to protect electrical power systems detect
an overcurrent; thus, they can only detect faults after the line is disconnected and the cross-section of
the line that generates the arc discharge makes contact with another line or the ground, causing a high
risk of fire. Furthermore, in the case of ground faults owing to the disconnection of overhead lines,
the load and the grounding impedance are not parallel. Therefore, in the case of the fault current
not exceeding the threshold or a high impedance fault due to the high grounding impedance of the
surrounding environment, such as grass or trees, it is difficult to determine overhead line faults with
conventional fault detection methods. To solve these issues, this paper proposes an AI-based open
conductor fault detection method on overhead lines that can clear the fault before the falling open
conductor line comes into contact with the ground’s surface so as to prevent fire. The falling time
according to the height and span of the overhead line was calculated using a falling conductor model
for the overhead line, to which the pendulum motion was applied. The optimal input data cycle
that enables fault detection before a line–ground fault occurs was derived. For artificial intelligence
learning to prevent wildfires, the voltage and current signals were collected through a total of 432 fault
simulations and were wavelet-transformed with a deep neural network to verify the method. The
proposed total scheme was simulated and verified with MATLAB.

Keywords: open conductor fault; deep neural network; fire protection; fault detection; high impedance
fault

1. Introduction

Faults in electrical power systems can cause financial loss and casualties; thus, the
development of fault detection methods for electrical power systems is a key research area
for many researchers [1–3]. Since 1901, when the first electro-mechanical induction relay
emerged to protect electrical power systems, electrical power system protection methods
have continuously developed, including ultrahigh speed, adaptive protection, AI-based
protection, and others [4]. Despite such efforts, however, there is still a risk of fire owing to
faults in overhead lines [5]. If a fault detection system cannot detect line faults in time, arcs
with high heat are generated at the point of the fault and can cause combustion, leading
to wildfire [6]. According to [7], many fires in recent years have been caused by downed
power lines used by The California Public Utilities Commission, and at least 17 out of
21 major fires in Northern California in the Fall of 2018 were determined to have occurred
due to electrical lines and utility poles. Fires caused by line faults, in turn, affect power
grids, resulting in problems in the operation of electrical power systems [8]. Thus, faults in
electrical power systems need to be removed as quickly as possible. While there are various
scenarios where overhead line faults can occur, this study considered a specific scenario
where an overhead line breaks and falls on the ground. Conventional high-impedance
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fault (HIF) and downed powerline detection methods can detect faults once the line comes
into contact with the ground [5,9–16]. In this case, even if a fault detection process takes
action and clears the fault, the arc at the cross-section of the line generates high heat, over
10,000 ◦C, resulting in a risk of fire in a short space of time. Therefore, areas where overhead
lines run through mountains or forests, particularly areas that are dry with many deciduous
leaves, require additional means for preventing wildfire.

Therefore, various studies have been conducted to deal with faults, including open
conductor faults, which are also called broken conductor faults. The authors of [17]
proposed a time-shifting method for determining open conductor faults in distribution
systems’ overhead lines. While the difference in the voltage vector that changes in the
case of faults was verified by simulation, a concrete application plan using the changed
voltage vector could not be presented. The authors of [18] proposed a sequence component
method that determined open conductor faults by using the ratio of the positive sequence
component current and the negative sequence component current. However, this method
cannot be used in situations where there is an unbalanced load. The authors of [19]
proposed installing an open conductor detector between loads and lines, considering
that the voltage would drop when measuring the power supply due to the high load of
open conductors and subsequent HIF faults. While this method is simple and can be a
good solution, it is inefficient in terms of cost due to the number of detectors needed in
those areas. EPRI proposed two open conductor detection methods [20,21]. One involves
determining the open conductor status by measuring the excitation current after applying
the voltage source to the neutral point of the transformer. This determines whether it is an
open conductor if the current is low. The disadvantage is that a large amount of money
needs to be invested in a new, additional voltage source. The second method involves
determining faults by monitoring the 1, 3, 5, and other harmonic components of the neutral
current and checking the changes in the frequency content. Open conductor faults cause
a rapid change in the frequency content, and the arcs generated by such faults produce
current waves with a high-frequency content and a voltage imbalance. In addition, HIF
caused by an open line making contact with the ground’s surface generates a fault current
at a high frequency due to the arc [22–24]. This method is more efficient than the first in
terms of cost.

However, it is difficult to determine an open conductor by setting a frequency thresh-
old value. The measured frequency content can be affected by other factors, including the
power conversion system (PCS) used when the distributed resources are connected, power
capacitors for compensating reactive power, the exciting current of the transformer, corona,
and harmonic content from loads [25–27]. Thus, a new open conductor detection method
is required that uses frequency as an input but does not use a threshold. The authors
of [28,29] recognized this issue. The authors of [28] proposed a method that detects open
conductors using the third harmonic content, and the authors of [29] determined open
conductors by verifying the zero-sequence voltage at the neutral point, current imbalance,
and changes in the current frequency. Since the zero-sequence current at each phase flows
to the neutral point, this can determine open conductors to measure the zero-sequence
voltage and current at the neutral point. However, the authors of [28,29] could not detect
the open conductor location or type. Since an artificial neural network can classify minute
differences in the data that cannot be differentiated by the human eye through learning
the patterns of the class that need to be differentiated, it has been used in open conductor
fault detection [30,31]. However, the authors of [30,31] did not use a feature extraction
process, and thus high accuracy cannot be expected. In addition, the measuring points
were located at the ends of the protection line, which requires measuring devices on both
ends of the region that need to be protected. Since the phase of input data is not consid-
ered, a high-speed fault diagnosis is difficult because the point at which fault detection is
possible resets every cycle. The research topic of diagnosing transmission line faults using
a deep neural network (DNN) with wavelet transform has been widely studied [32–37].
The authors of [32] studied the extraction of features via wavelet transformation and the
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diagnosis of line faults using naive Bayes. Input data were measured with a sampling
frequency of 20 kHz and 333 data points per cycle. However, the authors of [32] did not
consider the cycle of the measuring equipment installed in the actual system. Therefore,
this method cannot be used without STATCOM. The authors of [34] diagnosed line faults
using wavelet transform and a convolutional neural network (CNN). The authors of [35–38]
also extracted feature quantities using wavelet transform and diagnosed line failures using
AI algorithms. However, the authors of [32–37] had no limit on the time taken for fault di-
agnosis. In addition, these studies were conducted with L2G (line-to-ground fault) and L2L
(line-to-line) faults as classification classes, but open conductor faults were not considered.
Therefore, this paper proposes a method that diagnoses and clears open conductor faults
before said open conductor lines make contact with the surface. Furthermore, the proposed
method extracted the features via a wavelet transformation by using the fact that frequency
content would change in the case of open conductor faults and performed the training of
an artificial neural network model with the wavelet-transformed voltage and current. By
comparing the time and accuracy of the input data, the study derived the final model.

2. Problems of Open Conductor Fault

There can be three overall situations that can continue after an open conductor fault.

1. The open conductor fault continues while the disconnected overhead line does not
contact the surface or other nearby lines.

2. The open overhead line contacts the surface and overcurrent flows.
3. The open overhead line contacts the surface or other nearby lines, but the fault current

is relatively low.

In the first scenario, the open overhead line does not contact the nearby lines, which
can happen when the jumper line is broken. A jumper line is installed along with insulators
to insulate overhead lines and supporting structures such as steel towers. Since the length of
the jumper line is short, it is more likely that it will not contact the steel tower or the surface
in the case of its breaking, which leads to the situation where there is no overcurrent [38].
The second scenario is the fault that can be detected by conventional methods owing to
a sufficient overcurrent. In the final scenario, the overhead line comes into contact with
the surface or nearby lines, but the fault current is relatively low. Such a fault is called HIF,
which often occurs when the open line contacts the surface, boughs, or twigs. In this paper,
an open conductor fault detection method was proposed to operate a circuit breaker using
not the ground fault signal but the open conductor signal when an overhead line is broken
and falls to the ground. The conventional impedance-based detection methods can cause
the following problems:

• Under-reach, over-reach.
• Undetectable fault.
• Fire due to arcs.

Impedance-based detection methods determine the location of the fault via the ratio
of the fault current to the fault voltage in the case of a fault. Assuming that the ground
resistance is the same, the line impedance is the only factor, and thus a fault can be
determined using the principle that the fault current decreases as much as the length of
the line. However, ground resistance can be affected by the weather or season and cannot
be the same all the time. In addition, it may differ by the properties of the ground, which
may result in under-reach or over-reach that misjudges the fault region. Due to such issues,
distance relays are currently used in overlaps to monitor faults [39].

In addition, the HIF that occurs in the case of high ground impedance is problematic.
Generally, the fault current is three to six times higher than the rated current, but if the
ground impedance is huge, the fault current becomes lower than can be detected as a fault,
resulting in a failure to detect the fault. This is often caused by the open overhead line
making contact with the ground. If a line-to-ground fault occurs without a broken line,
the parallel connection between the ground impedance and the load impedance results in
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relatively low impedance and a large fault current, which can be sufficient for detecting a
fault. However, if overhead lines are disconnected and make contact with the ground, only
the ground impedance exists, causing more frequent HIFs [5,10–14].

The final problem is fire caused by arcs. In the case of open conductor lines, arc
discharge occurs due to the potential difference between the conductor and air. At this
moment, the arc temperature soars over 10,000 ◦C, which is very dangerous even for a
short amount of time. Arcs can affect inflammable materials with a low flashing point, such
as surrounding trees or deciduous leaves, leading to fire [5–7].

3. Proposed Scheme for the Prevention of Wildfire

As a solution to the problems in the conventional methods discussed above, such as
fire owing to arcs, this study proposes an AI-based open conductor fault detection method
that can perform the circuit breaking operation before the open conductor line contacts
the ground.

At the moment of the breaking, the fault current is small, and a relatively low circuit
breaking performance is required, and if the measurement is made at the right time, the
capacity of the required circuit breaker is small so that the difficulty level of the circuit
breaking performance is even lower.

3.1. Falling Conductor Model

Figure 1 is a flowchart of the proposed method. Since the proposed method requires
time-series data, common measuring devices such as current transformers (CTs) and
potential transformers (PTs) cannot be used. Additionally, the time data of the signal are
required, and thus we must collect input data using a PMU. The measured time-series data
of the three-phase voltage and current signals are wavelet-transformed. Existing studies for
diagnosing line-to-ground and line-to-line faults used the maximum, average, and variance
values from the transformed data as inputs. However, since the fault current converges
to 0 in an open conductor fault, learning results are poor when a representative feature
value such as a maximum is used. Therefore, the wavelet-transformed signals are flattened
and input to the fault diagnosis algorithm. The AI-based algorithm diagnosis the open
conductor fault and sends a cut-off signal to the circuit breaker. The circuit breaker receives
the blocking signal and performs a blocking operation. In the flowchart of Figure 1, the
time required from start to end must be strictly observed because the fault blocking must
be completed before the line is disconnected and contacts the ground.

The above problems result in the need for a high-speed open conductor fault detection
method that is not affected by ground impedance. To develop an algorithm that completes
the circuit break process before the broken lines contact the ground, the calculation of
the speed at which lines fall to the ground and open conductor signal analysis should be
conducted. To remove faulty zones, a protective relay should detect a fault and a circuit
breaker should isolate the fault area in the system. The total fault removal time consists of
the relay time (fault detection), the circuit breaking time, and the communication time [40].
Thus, the total duration of this whole process and the falling time should be compared.

Figure 2 is an overhead line fault location overview. The length between the towers
is the span, and the height is the length between the ground and the line. As is shown
in Figure 2, factors that can affect the time of line falling include the span, height, and
sag of the line [41]. The falling times that occurred at the fault points A, B, and C in
Figure 2 correspond to the values provided in Table 1. Various standards are used in the
cables for overhead lines from the distribution to the transmission lines. According to such
standards, the weights of lines differ, and the height of the transmission towers and the
ground clearance of the transmission lines also differ by voltage level, country, and region.
In the USA, generally, NESC 232D [42] is used to determine the ground clearance of lines,
but in California where there are many mountains, the height and ground clearance of lines
are more strictly regulated than in other states. As such, the time of line falling differs by
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such factors that it is necessary to designate the environment and line to which this method
is applied.

Figure 1. Flowchart of the proposed method.
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Figure 2. Overhead line fault location overview.

Table 1. Transmission line falling time.

Voltage
Level (kV) Height (m) Span (m) Ground Clearance

(m) <Tree Type> Wire Type (mm2) Falling Time
(s) <A>

Falling Time
(s) <B>

Falling Time
(s) <C>

154 35 400
21 <Pitch Pine>
24 <Karamatsu>
19 <Other trees>

ACSR 330
0.3504
0.3970
0.3192

0.2813, 0.5278
0.3203, 0.5933
0.2557, 0.4830

0.2425
0.2751
0.2198

345 50 450
24 <Pitch Pine>
26 <Karamatsu>
22 <Other trees>

ACSR 480
0.3888
0.4195
0.3585

0.3081, 0.6120
0.3334, 0.6560
0.2841, 0.5664

0.2639
0.2856
0.2429

765 100 550
28 <Pitch Pine>
31 <Karamatsu>
27 <Other trees>

ACSR 480
0.4566
0.5013
0.4408

0.3476, 0.8427
0.3822, 0.9228
0.3344, 0.8162

0.2917
0.3214
0.2810

This study considered the time of line falling in the case of transmission in mountain-
ous regions in South Korea. The calculation of the timing of the falling of transmission
lines that pass through mountainous regions in South Korea is shown in Table 1. South
Korea is an urban country where most of the population is concentrated in the capital area,
and most energy produced in each region is sent to Seoul. As 65% of the national land is
mountainous, most transmission lines run over trees. In addition, even when lines run over
mountains or trees, those trees are not removed; therefore, the ground clearance differs
by the type of tree over which those lines pass. The height is determined by the voltage
level and region, and additional height is added to it according to the type of tree so as to
determine the ground clearance based on the final design height. In the case of Pitch Pine,
17.9 m is added, 20.6 m is added for Karamatsu, and 16.2 m is added for other trees.

If transmission towers are managed by a private company, those towers are installed
based on economic efficiency, but in South Korea, one public company manages all trans-
mission towers; thus, the ground clearance of transmission towers is set high based on the
consideration of various factors, such as strict electric standards, topographic characteristics
due to the many mountains, preparation for future power demands, and others, rather than
economic concerns. The height of 345 kV transmission towers in South Korea is between 50
and 100 m, and that of 765 kV towers is approximately 90–120 m.

The span between towers can change due to various conditions, such as the altitude
difference in the mountains. This study set the span by referring to the Design Standard
of Tower for Overhead Transmission Line (DS-1111) in KEPCO. The transmission voltage
levels in South Korea are 154, 345, and 765 kV, and the spans are 400, 450, and 550 m (500 m
per line), respectively.

The wire type is ACSR (aluminum conductor steel-reinforced), which is mainly used
for power transmission, and it is assumed that 500 and 765 kV use multiple conductors
and multiple line transmissions.

The fall of transmission lines exhibits an equation of motion similar to that of a
pendulum since one end of the line is connected to a tower. In this study, the falling time
was calculated by assuming that the falling transmission line is that of a pendulum with its
initial speed at 0 [43,44].

The time of falling in Table 1 was calculated from three spots, A, B, and C in Figure 2,
as the location at which the break occurred. The shortest falling time was 0.2198 s; thus, the
fault detection, communication, and circuit break operation should be completed within
this duration.
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The falling of overhead lines is more likely to be the result of external factors such
as birds, trees, or typhoons than the degradation of lines. Such factors can affect the line
falling time. However, this paper disregarded such environmental factors and line elasticity
when calculating the falling time.

3.2. Analysis of Open Conductor Fault

To verify the need for open conductor fault detection and develop open conductor
fault detection technology, it is necessary to analyze the characteristics unique to open
conduction faults, such as the voltage and current signals that change in the case of an
open conduct fault [39]. Similar to the verification of the voltage and current changes via
the change in impedance through the solution of a differential equation of a circuit, the
voltage and current in the case of an open conductor fault can be calculated via the pre-fault
voltage and impedance (Zbus) matrices in the electrical power system [41].

I′′f =
Vf

Zkk
(1)

Shown above is the equation of sub-transient current I′′f in the case of a fault in a bus
based on the pre-fault voltage Vf and Thévenin’s impedance Zkk, the diagonal element of
Zbus. I′′f is distributed to the whole system in the reference node before it flows from the
fault point. In this process, the voltage of the whole bus system changes.

Vj = Vf − Zjk I′′f = Vf −
Zjk

Zkk
Vf (2)

The principle of superposition is added to the voltage before the fault.

I′′ij =
Vi −Vj

Zb
= −I′′f

(Zik − Zjk

Zb

)
= −

Vf

Zb

(Zik − Zjk

Zkk

)
(3)

In the case of an imbalance fault, such as an open conductor in phase A, it can be
calculated by using the sequence network based on the symmetrical components proposed
by C. L. Fortescue [45]. For an open conductor in phase A, Ia = 0, and thus the following
equation can be derived:

I(0)a + I(1)a + I(2)a = 0 (4)

Since phases B and C are not in the open conductor status, the voltage drops are:

Vpp′ ,b = 0, Vpp′ ,c = 0 (5)V(0)
a

V(1)
a

V(2)
a

 =
1
3

1 1 1
1 a a2

1 a2 a

Vpp′ ,a
0
0

 =
1
3

Vpp′ ,a
Vpp′ ,a
Vpp′ ,a

 (6)

V(0)
a + V(1)

a + V(2)
a =

Vpp′ ,a

3
(7)

The open conductor in the phase A results in the same voltage drop results in each
sequence network. As the voltage drop in the symmetrical components is identical, and
the incoming and outgoing current at the fourth point in the equation are the same, like
Kirchhoff’s circuit laws, the sum of each current is 0, and the sequence networks can be
linked in parallel. Thus, current I(1)a is:

I(1)a = Imn
Z(1)

pp′

Z(1)
pp′ +

Z(2)
pp′Z

(0)
pp′

Z(2)
pp′+Z(0)

pp′

= Imn

Z(1)
pp′

(
Z(2)

pp′ + Z(0)
pp′

)
Z(0)

pp′Z
(1)
pp′ + Z(1)

pp′Z
(2)
pp′ + Z(2)

pp′Z
(0)
pp′

(8)
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The voltage drops of symmetrical components V(0)
a , V(1)

a , and V(2)
a are:

V(0)
a = V(1)

a = V(2)
a = I(1)a

Z(2)
pp′Z

(0)
pp′

Z(2)
pp′ + Z(0)

pp′

= Imn
Z(0)

pp′Z
(1)
pp′Z

(2)
pp′

Z(0)
pp′Z

(1)
pp′ + Z(1)

pp′Z
(2)
pp′ + Z(2)

pp′Z
(0)
pp′

(9)

The value on the right side of the above equation is determined by the impedance
parameter of the sequence networks and the pre-fault current in phase A. The above
symmetric components are converted into a, b, and c phases, and the voltage and current
are calculated. The size of the impedance at the measuring instrument location at the
time of open fault is determined by the change in current caused by the load drop. If the
dropped load is small, it may be difficult to detect. In addition, since different results are
obtained in a system in which distributed power sources are scattered, it can be said that
methods for detecting open conductor faults through threshold values are less versatile.

3.3. Proposed Fault Detection Scheme

Figure 3 is an overview of the proposed method. The voltage and current time-series
data of the overhead line are collected through the PMU, and these signals are wavelet-
transformed to extract features and input to the AI-based open conductor classifier to
detect faults.

Figure 3. Conceptual diagram of the proposed method.

3.3.1. Deep Neural Network

An artificial neural network is a machine learning model that simulates the information
processing of neurons based on the operation principle of the network of nerve cells in
the brain. In the past, it was considered impossible to create a meaningful neural network,
but with the development of activation functions, such as a restricted Boltzmann machine
(RBM), rectified linear unit (ReLU), or GPUs that allow for parallel arithmetic, various
studies involving deep learning are now being conducted.

f

(
b +

n

∑
i=1

xiwi

)
(10)

b = bias
x = input to neuron
w = weights
n = the number of inputs from the incoming layer

Figure 4 shows the training process of the proposed method. The three-phase time-
series voltage–current signal is used as the input of the deep neural network (DNN) after
wavelet transformation and flattening. An artificial neural network consists of the input,
hidden, and output layers, and a DNN has two or more hidden layers. Having received
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the input data, neurons produce outputs and send them to the next neuron, and this input
and output process of the neurons can be expressed using Equation (10).

Figure 4. DNN training process of the proposed method.

The activation function, f, in Equation (10) converts the output value so that it is
suitable for the artificial neural network and usually uses the ReLU function, which helps
to solve the overfitting and gradient vanishing (exploding) problems, which are issues with
existing artificial neural networks. Overfitting is the decrease in the model’s prediction
accuracy for new data owing to the given training data, and the gradient vanishing (explod-
ing) problem indicates a problem with artificial neural networks, whereas its weight slope
converges to 0 or infinite as the training continues. The ReLU function alleviates these two
problems by outputting 0 for below 0 and the existing value for 0 or higher. In addition,
the differential calculation becomes simpler, and the training speed increases. The deep
learning process can be divided into four stages:

1. Data acquisition.
2. Data preprocessing.
3. Modeling.
4. Model evaluation.

Data acquisition is the stage where data to be used for learning are collected from
sensors and measurement devices. In this study, said data are the time-series data of voltage
and current at each phase throughout the fault simulation. Data preprocessing is the stage
where the collected data are preprocessed so that they are suitable for learning. Through
the aforementioned wavelet transformation, the time-series data of voltage and current
are converted to the data in the frequency domain and normalized between 0 and 1. Later,
modeling uses the back propagation algorithm to tune the weights of the DNN based on
the error rate obtained in the previous epoch.

LCE = −
n

∑
i=1

ti log(pi) (11)

Mean squared error (MSE) and cross-entropy error (CEE) are two loss functions that
are widely used. MSE is sensitive to outliers by squaring the error, and errors less than 1
become smaller. Additionally, because squaring causes negative error values to become
positive, it is difficult to determine whether they are underestimates or overestimates. In
this study, CEE was used for the loss function, and with n number of classes, CEE is defined
as shown in Equation (11). P is the output of the neural network, and T is the correct
answer label. Additionally, in T, only the element of the index corresponding to the correct
answer is 1, and the rest are 0 (one-hot encoding). Thus, Equation (11) actually calculates
the natural logarithm of the estimate (Y when T is 1) when the answer is correct. Since
T is 0 for all other answers, it does not affect the result even if it is operated with log. In
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other words, the cross-entropy error determines the total value of the output when the
answer is correct. The learning is performed in the direction where the difference between
the estimated value in the learning process and the measured value is minimized. A loss
function can be considered an index that expresses the performance of a neural network,
and the higher the value from the loss function, the poorer the performance of the neural
network. Therefore, a deep learning model aims to minimize the value of the loss function
based on the CEE. Finally, the output model should be evaluated with new data that were
not used for the training of said model to verify whether the learning was conducted well
or whether there was overfitting. In the case of poor performance, problems should be
identified in the previous stages and learning should be performed again after corrections.

3.3.2. Data Acquisition with PMU

PMU, which was developed due to the need for a synchronized measurement device
after the major blackout in the USA in 1996, is often used to monitor the power transmission
system over a wide area using the synchronization measurement function.

Table 2 shows the difference between RTU and PMU systems. The existing remote
terminal unit (RTU) is installed with the line switchgear, which monitors the distribution
line voltage and current in the normal stage via a distribution automation system (DAS) and
transmits remote-control commands. In addition, it helps the fault detection and estimation
of the location of the fault by detecting the fault current and voltage and transmitting
the fault detection signal to the center in the case of a fault. However, the variability
and intermittent characteristics of new renewable energy sources and power electronics
devices require a change in the current periodic RMS-based monitoring method and the
dependency on the central operation system’s decision.

Table 2. Difference between RTU-based and PMU-based systems.

Type RTU PMU

Data measurement
cycle (s) 2~10 1/10~1/60

Communication type TCP UDP

Observability Normal Dynamic/excessive

A PMU measures the magnitude, phase, and frequency of the voltage and current
based on the universal time coordinates (UTC) received from the GPS. Each PMU grants a
time tag independently through the GPS signal and the PMU’s internal clock, which allows
for the comparison at the same points at the time of each signal.

The most important one in the AI-based fault detection is that the measurement cycle
should be short and accurate in order to block the circuit before the open conductor line
makes contact with the ground. RMS-based monitoring by an RTU system cannot generate
the input data required for open conductor fault detection.

3.3.3. Feature Extraction with Wavelet Transformation

Wavelet transformation is a method that converts the time domain to the frequency
domain and constructs time information as a group of specific signals. These specific signals
are called wavelets, and by expanding or contracting wavelets, it expresses the original
waveform [26,27]. There have been attempts to use a frequency conversion method to detect
ground faults or line-to-line short circuits more accurately and rapidly in a system [28–30].
However, the discrete Fourier transform (DFT) or short-time Fourier transform (STFT)
used in the above studies could not deal with non-stationary characteristics. However,
wavelet transformation uses a finite-duration basis function and is useful for transient
signal analysis [31].

Wavelet transformation emerged to compensate for the shortcomings of the Fourier
transformation. The output from the Fourier transformation does not have time information,
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and thus, it is difficult to express the frequency that changes over time. STFT can solve
this issue as it cuts the signal into small time units, performs a Fourier transformation,
and feeds the result back to create one spectrogram. However, STFT has shortcomings.
While it allows for a more accurate time zone in which a certain frequency is located as
the time unit of the signal becomes smaller, if the cycle of the specific signal is longer than
the time unit, it cannot sufficiently analyze the signal. Additionally, as the time unit of the
signal becomes longer, the accurate time zone of the signal cannot be known. Owing to
this tradeoff relationship between time and frequency, STFT is limited in not being able to
improve both the frequency resolution and time unit at the same time.

Wavelet transform overcomes the above limitation by taking the time and frequency
resolution separately through the scaling and shifting of the wavelet function. This is
because the wavelet function used in the wavelet transformation is localized in time. As
such, it can contain time information, and as shown in Figure 5a, different scales can be
applied to specific time zones. A in Figure 5a requires temporal resolution so that the
frequency resolution is lowered, while the opposite is the case for B. Figure 5b is the open
conductor fault voltage signal measured in MATLAB. In Figure 5b, the upper graph is a
time-series signal of voltage, and the lower figure expresses the wavelet-transformed signal
as a scalogram. Figure 5a is a conceptual representation of the lower part of Figure 5b.
The time-series signal of the voltage shows the addition of a harmonic signal after a fault
has occurred. During the next three cycles, the harmonic signal gradually disappears.
If the Fourier transform is used, it is difficult to express the transient phenomenon of
the voltage signal because the time is unknown in the signal. However, the lower part
of Figure 5b shows that the harmonic signal is fading. Since both time resolution and
frequency resolution are high, it can be confirmed that the information of the signal is
accurately expressed. There are various types of wavelet functions, and they should satisfy
only the following two mathematical conditions so that they are useful to create a new type
of function.

Figure 5. Wavelet transform. (a) Wavelet transform concept diagram. (b) Open conductor fault
voltage measured in a MATLAB simulation.

1. Finite energy:

E =
∫ ∞

−∞
|ψ(t)|2dt < ∞ (12)

E =
∫ ∞

−∞
|ψ(t)|2dt = E =

∫ ∞

−∞
|ψ(t)|2d f (13)

2. Zero mean:
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∫ ∞

−∞
ψ(t)dt = 0 (14)

Finite energy means that a wavelet function is localized in time and frequency. This
also signifies that a wavelet function can be integrated, and that the inner product of the
wavelet and the signal exists at all times. Zero mean signifies that when the average of the
wavelet is 0 and the frequency is 0, it is 0. This is the condition required for the integrable
wavelet reverse calculation [32,33].

WT(a, b) =
1

|a|
1
2

∫ ∞

−∞
x(t)ψ

(
t− b

a

)
dt (15)

The wavelet function uses convolution to perform the calculation over the whole
signal. The wavelet is expressed in Equation (15), where a and b show a scale factor and
shift factor, respectively. A scale factor is a parameter that determines the size of a wavelet,
and the smaller it is, the higher the frequency of the small wavelet produced. A shift factor
is a factor for delaying the start of the wavelet, which shows that b is the center of the
wavelet function. To match the wavelet to the characteristics from the signal, it is necessary
to transform the wavelet. The order of the wavelet transformation is as follows:

1. Compare the wavelet at a small scale while transforming it from the start to the end
of the signal. The degree of similarity between the signal and the wavelet is stored as
the C coefficient.

2. Once the comparisons are completed to the end of the signal, the scale of the wavelet
is expanded, and the process in step 1 is repeated.

3. The process is repeated up to the set scale.

From Equations (12)–(14), it can be determined that the basic wavelet function can have
various types and is a finite function, where its integral is 0 and its amplitude converges to
0. As there are various types of basic wavelet functions, the result can differ by function
even with an identical signal, and thus a suitable function should be selected. This study
used a Gabor function as its basis. A complex Gabor function is expressed as a complex
exponential, which can be expressed as the product of a Gaussian kernel and a complex
sinusoid. This is shown in Equations (16) and (17):

g(x) =
1√
2πσ

e−
x2

2σ2 (cos(2πω0x) + isin(2πω0x)) (16)

g(x) =
1√
2πσ

e−
x2

2σ2 e−(2πω0x) (17)

Here, ω0 is the center frequency, which is defined as the frequency where the filter
produces the largest response, and σ is defined as the spread of the Gaussian window. If
the real part of Equation (18) is Gabor sine and the imaginary part is Gabor cosine, the
function can be expressed as follows:

g(x) = ge(x) + igo(x) (18)

ge(x) =
1√
2πσ

e−
x2

2σ2 cos(2πω0x) (19)

go(x) =
1√
2πσ

e−
x2

2σ2 sin(2πω0x) (20)

EPRI research verified that n times the harmonic content of the fundamental frequency
is measured at the neutral point in the case of an open conductor fault [15–19]. This means
that the signal at fault is a trigonometrical function, such as the fundamental frequency.
Therefore, this study used a Gabor function with finite-time wavelet functions, which is
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similar to the trigonometrical function. Since the mother wavelet is finite, it is advantageous
for expressing transient conditions such as line faults.

4. Implementation of Proposed Scheme for the Prevention of Wildfires

While it is ideal to use fault data in the actual system, they are difficult to obtain.
When machine learning is performed with a small number of failure data, there is a risk
of overfitting with signals that include noise. Therefore, in this study, data were acquired
through simulation. Figure 6 is a simulation of an AC power system fault situation using
MATLAB Simulink.

Figure 6. MATLAB open conductor fault simulation.

Figure 6 shows an open conductor fault simulation in MATLAB. The simulation was
conducted using a three-phase electric power source, 100 km of overhead line, and the RLC
load, the parameters of which are shown in Table 3. There are four fault locations that we
can identify by dividing the 100 km line into five zones so that there is a 20 km difference
between the locations, and the fault type was a single-phase open conductor fault on a, b,
and c. Additionally, the phase was changed by 10◦ per fault so as to conduct a total of 432
fault simulations, as shown in Equation (21). The sample time of the simulation was 50 µs,
and we measured the voltage and current from the sending end. Non-fault simulations
were performed 36 times, totaling 468 simulations.

Fault point(4)× Fault type(3)× Phase(36) = Fault simulation times432 (21)

Table 3. Simulation parameters.

Parameter Val

Three-phase source

Phase–phase voltage (kV)
Frequency (Hz)

Source resistance (Ohms)
Source impedance (H)

15.4
60

0.8929
0.0165

Three-phase
series load

Nominal phase–phase voltage (kV)
Nominal frequency (Hz)

Active power (MW)
Inductance reactive power (MVar)

Capacitive reactive power (Var)

15.4
60
30
3

100

Distributed
parameter line

Line length (km)
Resistance per unit length (Ohms/km)
Inductance per unit length (mH/km)
Capacitance per unit length (nF/km)

100
0.01273
0.3864
0.9337
4.1264
12.74
7.751
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As is shown in Table 1, as a result of calculating the falling speed of the overhead line,
the circuit breaker operation must be completed within 0.2198 s, i.e., 0.2 s after the open
conductor fault was simulated, to collect time-series data before ground contact.

4.1. Open Conductor Fault Signal Analysis

In this study, both the fault detection time and accuracy are important. However,
with a rapid fault detection time, the accuracy drops as there are insufficient input data;
conversely, sufficient detection accuracy would require many data, and they are therefore
in a tradeoff relationship. Thus, model training should be conducted by comparing the
accuracy and time of the model based on the input data. However, before that, if the fault
signal is analyzed and the number of cycles of meaningful data is confirmed by checking
the trend of the fault signal for each class, it is possible to develop an efficient fault diagnosis
algorithm because the required data limit is set.

Figure 7 shows the current comparison by fault location when phase A is open. The
horizontal axis represents the number of samples, and the vertical axis represents the
sample size. In Equations (1)–(9), the fault current due to open was regarded as zero.
However, considering the line impedance between the measuring point and the fault point,
the actual fault current is not zero because there is a load that corresponds to the line.
Therefore, after the fault current decreases to zero due to a load drop, there is a difference
in the magnitude and frequency of the fault current depending on the line impedance. In
Figure 7, the blue signal (A 80 km Ia) has a higher current peak and a smaller frequency
than the yellow signal (A 20 km Ia). For a blue signal with a longer line, more current
flows because it is considered more loaded. In addition, when the electrical and mechanical
forces are unequal, the frequency changes. When the load drops, the frequency tends to
rise due to oversupply. Therefore, the yellow signal has a high frequency. Since the line
impedance is maintained until the line touches the ground and impedance is added, the
fault current data can be considered meaningful in all time domains.

Figure 7. Fault current of phase A by distance.

Figure 8 shows the three-phase voltage by distance in the case of an A-phase open
fault. Since a single-phase fault is an unsymmetrical fault, the voltage imbalance can be
confirmed, as in Figure 9a,b. This means that fault/normal diagnosis is possible through
voltage imbalance, but it is not helpful for fault location classification. There is almost no
change in the overall size of the voltage waveform, which is the effect of the simulation
on the three-phase constant voltage source. In practice, the bus voltage in the system is
constantly controlled and will show the same pattern as in the simulation. According to
Ohm’s law, V = IZ, if the impedance is constant, the current is proportional to the voltage.
As described above, because the impedance is constant before the line contacts the ground,
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the harmonic component of the voltage is proportional to the frequency of the current in
the case of an open fault. Therefore, the shorter and closer the line, the higher the frequency
of the voltage harmonics.

Figure 8. Fault voltages by distance: (a) 20 km and (b) 80 km.

Figure 9. Phase A fault signal scalogram: (a) 20 km fault current, (b) 20 km fault voltage, (c) 80 km
fault current, and (d) 80 km fault voltage.

Figure 9 shows the time and frequency domains of fault voltage and current. It
takes 0.004 s for the fault current to converge to 0, and then a high-frequency signal is
generated that corresponds to the line length (impedance). This affects the voltage signal,
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and harmonic components proportional to the current frequency are added to the voltage
signal. Figure 9a,b show the current and voltage at 20 km, and Figure 9c,d show them
at 80 km. It can be seen that the scalograms of (a) and (b) are similar. Additionally, the
tendencies of the frequency components of (c) and (d) are the same.

As a result of analyzing the disconnection fault signal, it is shown that the harmonic
signal is commonly detected from the 1

4 cycle (about 0.004 s), and after that it gradually
disappears. Thus, it is determined that the input data at or over 1

4 cycle would be the
minimum condition.

Additionally, from Figure 9, it is determined that the trends become similar after three
cycles as there is no new frequency component, except the amount of the harmonic wave
content, confirming that the value of input data after three cycles is insignificant.

4.2. Input Data

As is shown in Figure 4, a three-phase voltage current is used as the input. Voltage
and current time-series signals are expressed in the frequency domain. Additionally, it is
flattened. Figure 10 is a mesh plot showing the time-series data of the phase A current in
simulations performed 468 times.

Figure 10. Phase A current by fault type.

Figure 11 shows flattened data, and these data include features of frequency compo-
nents. A–D in Figures 10 and 11 are normal, phase A fault, phase B fault, and phase C
fault data, respectively. A is simulation numbers 1~36, B is 37~180, C is 181~324, and D
is 325~468. It is confirmed that each of the four classes has a different trend. However,
diagnosing faults through the thresholds of each frequency is a difficult task. Therefore,
artificial neural networks are applicable because they are specialized for solving classifica-
tion problems.
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Figure 11. Input data-flattened frequency components by fault type.

4.3. Open Conductor Fault Location Classification Model

The training of the open conductor fault location identification model was performed
so that the model could determine five classes: the class from the normal data, and four
classes from the simulation data where the fault occurred at 20, 40, 60, and 80 km, respec-
tively. Using 36 normal data and 432 fault data, the study trained the model with a total of
468 simulation data. A total of 70% of the data were used as training data, 15% as test data,
and the remaining 15% as validation data.

Figures 12 and 13 are models trained with 1/4 cycles and 1/2 cycles as input data,
respectively. It is confirmed that the model using the 1/4 cycle as an input did not learn
properly due to insufficient input data. Figure 13 is the confusion matrix of the model
using 1/2 cycles. The accuracy can be considered as high as 94.4%, but it is difficult to use
because it can cause dangerous results when a fault is classified as normal.

Figure 12. Confusion matrix of fault location classification model with 1/4 cycle data input.
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Figure 13. Confusion matrix of fault location classification model with 1/2 cycle data input.

Figure 14 shows the accuracy of the failure location classification model for each input
cycle. In the disconnection fault signal analyzed above, if only the 1/4 cycle, which is the
minimum data requirement, is used, the accuracy is very low. This is because learning was
performed using only the transient signal converging to 0, not the high-frequency signal.
Since it shows 100% accuracy after 1 cycle, it is most efficient to use 1 cycle as the input
data to trip the circuit breaker before the line touches the ground.

Figure 14. Model accuracy for open conductor fault location classification by input cycle.

Figure 15 is the CEE of the fault location classification algorithm according to the input
cycle. The accuracy increases as the input data period increases. In the 1/4 cycle, the CEE
of the test has a high value of 0.3404, but that of the 1/2 cycle is 0.0665 and of 1 cycle is
0.00000032098, which is close to zero.
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Figure 15. Fault location CEE by input cycle.

4.4. Open Conductor Fault Type Classification Model

An open conductor fault type classification model was also trained with the same
dataset. The training rate also progressed to 70%, 15%, and 15%, and there were four classes.
Figures 16 and 17 are the confusion matrices of the models that learned with 1/4 and 1/2
cycles as inputs, respectively.

Figure 16. Confusion matrix of fault type classification model with 1/4 cycle data input.
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Figure 17. Confusion matrix of fault type classification model with 1/2 cycle data input.

In Figure 16, the fault type classification model shows higher accuracy than the fault
location classification model. In Equations (1)–(9), it is assumed that the current of the
faulty phase is zero. In addition, through open conductor fault analysis, it was confirmed
that the current in the fault phase has a value close to zero. Therefore, since the fault phase
converges to 0 after the 1/4 cycle, the classification difficulty is relatively low, and the
accuracy is high.

Figure 17 shows 98.9% accuracy as a result of the failure type classification model
using the 1/2 cycle. This also shows higher accuracy. In Figure 18, since the accuracy is
100% after one cycle of input data, it is easy to use one cycle of data. Using the 1/2 cycle as
an input can also be considered, but 98.9% in a real-time monitoring system is not as high
as expected. Even if the accuracy is 99.9%, the probability of obtaining the correct answer
1000 times in a row is 36.77%. Therefore, the optimal input for the open conductor fault
classification model is one cycle.

Figure 18. Model accuracy for open conductor fault type classification by input cycle.
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Figure 19 shows the CEE of the fault type classification algorithm according to the
input cycle. Similar to the fault location classification algorithm, the accuracy also increases
as the input data cycle increases. With the 1/4 cycle, the CEE of the test is 0.2224; however,
the CEE of the 1/2 cycle and 1 cycle are 0.0072 and 0.00000033744, respectively.

Figure 19. Fault type CEE.

4.5. Detection Time of Open Conductor Fault Classification Model

The total duration required for the circuit break can be calculated by summing the
input data time (voltage, current, n cycle), the feature extraction (frequency conversion)
time, the time for the classification of DNN, the communication time, and the circuit breaker
operation (arc extinction) time. The time taken by the algorithm is processor-dependent,
but if feature extraction takes 40–55 ms, the DNN’s run time is 20–25 ms. Since the PMU can
transmit data 30 times per second, the communication time is 34 ms and the circuit breaker
operation time is 34~50 ms, so the total required time is calculated as shown in Table 4.
The time it takes for feature extraction and DNN operation was based on a computer with
an Intel(R) Core (TM) i7-10700 CPU @ 2.90 GHz processor. Since the CPU’s GFLOPS is
461, faster open conductor fault detection is possible if a high-level FPGA is applied in the
field. Xilinx Virtex-7 980XT FPGA offers 987 GFLOPS and can guarantee a sufficient circuit
break time.

Table 4. Comparison of open conductor fault detection algorithm by number of input data cycles.

Input Data Cycle 1/4 Cycle 1/2 Cycle 1 Cycle

Request of input data 4.16 ms 8.34 ms 16.67 ms

Feature extraction
(wavelet transform) 40~55 ms

Communication 34 ms

Determination by DNN 20~25 ms

Circuit breaker arc extinction time 34~50 ms (2~3 cycle)

Total required time 132.16~168.16 ms 136.34~172.34 ms 144.67~180.67 ms

Accuracy (type) 72.4% 98.9% 100%

Accuracy (location) 27.6% 94.4% 100%
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5. Conclusions

Since overhead lines are exposed to the outdoors, faults may occur in deteriorated
locations owing to weather conditions. There is a risk of fire for a short period owing to arcs
caused by open conductor lines, and conventional fault detection methods can determine
faults only after the line makes contact with the ground or tower arms. Therefore, in
this study, an AI-based open conductor fault detection method for overhead lines was
constructed that performs a circuit break before the overhead line makes contact with the
ground in order to prevent fires. By simulating open conductor faults with MATLAB,
432 fault data were collected. The open conductor fault signal was analyzed in the time
and frequency domains, and the minimum cycle requirements for the fault classification
algorithm were derived. Additionally, the fall time of a 154 kV line was calculated while
considering the span, height, and sag. We calculated the falling time of an open overhead
line. In order to complete the fault detection, communication, and operation of the circuit
breaker within this time, the study compared the accuracy with different numbers of input
data cycles for fault diagnosis. While a short cycle may lead to a short fault detection time,
the lack of input data leads to poor accuracy. After training the model while considering
the accuracy and speed of the detection, the optimal input cycle was derived by comparing
the models with each other. By calculating the fall time of a 154 kV line as the movement
of a pendulum, it was shown that the circuit breaker needs to trip within 219.8 ms. When
adding the input data time, feature extraction time, communication time, DNN operation
time, and the circuit breaker’s arc extinction time together, the total time to circuit breaking
was 136.34–180.67 ms, and therefore, it appears that the proposed model can prevent fires
owing to line arcs. The data used for learning and verification in this study were simulation
data. Since it is more accurate to use real data for verification, additional research is needed
to verify the algorithm in the future. In addition, fault diagnosis algorithms, including the
one developed in this study, are aimed at real-time fault diagnosis. Even if an algorithm that
diagnoses once per second has an accuracy of 99.9%, the probability of achieving correct
diagnoses for 1000 consecutive seconds is only 36.7%. This necessitates further research.
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