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Abstract: Energy management for multi-home installation of solar PhotoVoltaics (solar PVs) com-
bined with Electric Vehicles’ (EVs) charging scheduling has a rich complexity due to the uncertainties
of solar PV generation and EV usage. Changing clients from multi-consumers to multi-prosumers
with real-time energy trading supervised by the aggregator is an efficient way to solve undesired
demand problems due to disorderly EV scheduling. Therefore, this paper proposes real-time multi-
home energy management with EV charging scheduling using multi-agent deep reinforcement
learning optimization. The aggregator and prosumers are developed as smart agents to interact with
each other to find the best decision. This paper aims to reduce the electricity expense of prosumers
through EV battery scheduling. The aggregator calculates the revenue from energy trading with
multi-prosumers by using a real-time pricing concept which can facilitate the proper behavior of
prosumers. Simulation results show that the proposed method can reduce mean power consumption
by 9.04% and 39.57% compared with consumption using the system without EV usage and the system
that applies the conventional energy price, respectively. Also, it can decrease the costs of the prosumer
by between 1.67% and 24.57%, and the aggregator can generate revenue by 0.065 USD per day, which
is higher than that generated when employing conventional energy prices.

Keywords: Electric Vehicle; energy storage; energy management; multi-agent optimization; reinforce-
ment learning; solar PhotoVoltaic

1. Introduction

Nowadays, Electric Vehicles (EVs) used instead of traditional vehicles are an efficient
way to solve air pollution and climate change issues in cities, especially carbon emissions.
The role of EVs is to act as a decarbonization actor which can increase the activity of ex-
changing power between EV owners and the power utility, i.e., EVs used at the home level
can charge or discharge to reduce the user’s electricity expense. Additionally, employing
the demand response strategy and developing energy meters are the main factors in in-
creasing interest in using Home Energy Management Systems (HEMSs) with EV charging
scheduling to manage energy properly [1]. Vehicle-to-Home (V2H) and Home-to-Vehicle
(H2V) relationships are also applied with the HEMS to schedule the charging and discharg-
ing of the EV, which causes a change in the role of consumers to prosumers [2]. The HEMS
is defined as an essential component for the prosumer to manage electrical energy within
the home. It is utilized to optimize the cost of energy consumption and to monitor real-time
energy usage for each home [3]. In addition, the HEMS can manage the energy generated
for selling to the grid at certain times. This situation can improve the load profile of the
power utility and decrease the payments of EV owners [4]. However, the uncertainty of EV
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usage is a significant challenge for applying V2H and H2V modes with the HEMS because
their behavior is difficult to predict, as it is influenced by their EV types, departure times,
and arrival times. Therefore, several researchers have tried to find methods for avoiding the
uncertainty of EV usage. For example, in reference [5], the departure and arrival times of EV
usage were fixed to avoid the complexity of the HEMS optimization. Also, an initial State
of Charge (SoC) and EV types were specified in reference [6]. In addition, in reference [7],
the departure and arrival times of EVs were randomized to create various scenarios for EV
charging scheduling tasks in a smart grid. Nevertheless, EV types were not varied in the
work. Thus, if the HEMS is developed to have an excellent capability for dealing with these
uncertainties, it can provide the framework to control the energy storage devices efficiently
and comprehensively.

Along with EV usage, Distributed Energy Resources (DERs) are promoted to generate
and store electricity in the smart grid, especially solar PhotoVoltaic (solar PV) and Battery
Energy Storage Systems (BESSs) [8]. Because the cost of solar PVs is continuously decreas-
ing, and EV usage is promoted to deal with the carbon emission issue, many countries
support solar PV generation and EV usage [9]. Additionally, EVs are defined as the BESS
when applying V2H and H2V modes. The BESS is utilized with the HEMS to store surplus
power and supply desired power, which the EV can use instead of the BESS. However, the
utilization of both solar PVs and EVs in many homes leads to major issues due to their
uncertainties. This situation may negatively impact the distribution system, i.e., reliability
problems [10], transformer overloading due to EVs charged simultaneously [11,12], and
voltage violations due to output power fluctuations from solar PV generation [13]. To
mitigate the aforementioned problems, the aggregator is assigned to control the power con-
sumption of a small/median number of prosumers because the electricity utility manages
the energy inadequately for a large number of prosumers [8]. There are many research
works that apply the aggregator to achieve this aim. For example, in reference [14], the au-
thors presented a bi-level energy management framework consisting of the aggregator and
HEMS levels. The HEMS level aimed to minimize electricity expenses through appliance
scheduling, while the aggregator level sought to reduce the load deviation of all consumers
and the associated cost. In reference [15], the authors considered optimizing household
appliance scheduling with solar PV systems installed in each home to reduce expenses. In
contrast, the BESS and power trading between households were controlled by the aggre-
gator to optimize the electricity expenses of all houses. Additionally, in reference [16], the
authors proposed a three-level optimization solution, including HEMS, aggregator, and
Volt/VAR Optimization (VVO) levels. The HEMS level controlled home appliances and
the BESS under solar PV generation, prosumer’s preferred appliance scheduling, and their
comfort level to reduce electricity expenses. Moreover, the aggregator level minimized the
power loss in a low-voltage system and the power deviation of all homes while reducing the
power loss and deviation of all aggregators considered in the VVO level. In reference [17],
the authors proposed co-optimization levels for both the HEMS, which considered EV
usage, and the aggregator, which considered the transformer’s loss of life that supplied
power to all homes. However, the aggregator in the mentioned research works did not
consider making a profit from supervising multi-home systems, which is an essential factor
for providing revenue to the aggregator. Additionally, the integration of solar PV systems
and EV usage was not taken into account in the above works.

According to the review in reference [8], there were several objectives and constraints
in HEMS optimization considered. For example, electricity costs and consumption were
minimized, the comfort level of consumers was maximized due to the use of thermal and
electrical appliances, and peak demand reduction was usually considered in the optimiza-
tion. Moreover, operating conditions of appliances such as solar PVs, BESSs, and EVs were
commonly determined as the constraints of HEMS optimization. At the aggregator level,
reducing prosumer costs, power loss, voltage violation, and power consumption of all
prosumers were defined as the objective functions in the optimization. At the same time,
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the aggregator profit was maximized in the task. Additionally, the aggregator constraints
were the current limit, voltage limit, and power balance condition for energy trading.

Along with the objective functions and constraints, there are various algorithms for
designing the AEMS and HEMS. For the mathematical programming algorithm, the re-
search work in reference [18] proposed multi-home energy management optimization
using Mixed-Integer Linear Programming (MILP). Additionally, the authors presented the
control of both active and reactive powers combined with the Home Energy Management
(HEM) task using the linear formulation. In reference [19], the authors presented HEM
with dynamic pricing by applying the Mixed Integer Non-Linear Program (MINLP). More-
over, the power and comfort constraints of both electrical and thermal appliances were
considered to provide the optimal solution in the work. Reference [20] proposed thermal
and electrical energy management in HEM using Mixed-Integer Quadratic Programming
(MIQP). Although mathematical programming is popular and provides a low computation
time, the HEM problem formulation is required to transform to a linear/nonlinear equa-
tion, which leads to a decrease in the solution accuracy. Hence, several researchers applied
metaheuristic algorithms to solve the HEM problem instead of that method. Reference [21]
used the Genetic Algorithm (GA) to improve the performance of the HEMS with different
power cost scenarios and novel smart home modeling, which caused the obtained solution
to be secure in many scenarios. In the research work [22], the researchers demonstrated a
solution to the problem of appliance scheduling and EV charging scheduling in a home
using the Particle Swarm Optimization (PSO) algorithm. Reference [23] proposed the
optimal scheduling for appliances in the home to reduce the electricity cost using the Grey
Wolf Optimization (GWO) algorithm. However, the solution provided by the metaheuristic
algorithms is not verified as the global optimum [24]. To guarantee the global optimum,
the solution obtained by the method has to be calculated many times, causing a higher
computation time.

Reinforcement Learning (RL) is a model-free approach which has been employed
to solve energy management problems in many works, especially Deep RL. Deep RL is
one of the RL types that uses Deep Neural Networks (DNNs) as the model for learning
agent behavior through interaction. Deep RL is employed in many optimization tasks;
for example, it was utilized to coordinate different sources of electricity generation to
manage energy in a microgrid [25]. Furthermore, it was deployed to manage energy in
real-time scheduling and to deal with the uncertainties of renewable energy sources in
a microgrid [26]. In reference [27], the authors applied Deep RL to increase the comfort
level brought by thermal appliances in the home while the total energy consumption
was minimized. In addition, Deep RL was also utilized to discover the proper action for
controlling the BESS to reduce energy consumption costs in the home [28]. Deep RL has
been proven to be a robust optimization algorithm with an exceptional ability to solve
complex dynamic systems [29]. This is because deep learning, which can provide solutions
for high-dimensional and complex problems [30], is combined with reinforcement learning.
This increases the likelihood of discovering the global solution to high-dimensional and
complex problems when using Deep RL. Additionally, in reference [31], it was shown that
deploying Deep RL can provide a solution for energy management close to the solution
obtained by the Genetic Algorithm (GA), which is one of the meta-heuristic algorithms. To
this end, Deep RL was verified as the suitable optimization tool for managing home and
microgrid energies in this work, which is a high-complexity problem.

To improve the performance of the HEMS and to promote multi-home energy manage-
ment optimization with solar PV generation and EV usage, in this paper, Deep Deterministic
Policy Gradient (DDPG), which is one of the Deep RL types and the best tool for deal-
ing with problems consisting of continuous variables, is applied to manage energy in
the multi-home system and to optimally schedule EV charging using a real-time energy
trading concept. Furthermore, the uncertainties of power consumption behavior, solar PV
generation, and EV usage are taken into account in this work. The multi-home energy
management optimization problem is mapped to the multi-agent optimization problem
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based on the Markov Decision Process (MDP). There are four homes and a single aggregator
in this work. Each home has an EV, general appliances defined as a home baseload, a solar
PV rooftop setup, and a HEMS. The HEMS is employed to schedule charging/discharging
of the EV to reduce electricity expenses and to send/receive the data to/from the aggre-
gator. In contrast, the aggregator has a central BESS and an AEMS. The AEMS proposes
the optimal selling/buying energy prices and properly controls the BESS to store surplus
power from all prosumers. The main contributions of this paper are summarized as follows.

• This paper presents a multi-home energy management optimization solution with
optimal EV charging and discharging scheduling to enhance the load profile of a group
of prosumers under the supervision of an aggregator. The study also incorporates an
energy trading strategy based on Real-Time Pricing (RTP), as the four prosumers and
the aggregator are considered profit-making entities, which has not been addressed in
previous research. The strategy promotes appropriate behavior among prosumers for
consuming and injecting power from and to the grid.

• This paper proposes a multi-agent optimization solution using the DDPG algorithm to
tackle the multi-home energy management problem with EV charging and discharging
scheduling, taking into account the uncertainties in power consumption, solar PV
generation, and EV usage among all prosumers. The proposed method trains well-
adaptable agents capable of efficiently finding optimal solutions in uncertain situations.
Furthermore, the agents require less discovery time for the optimal solution compared
to existing methods, particularly metaheuristic methods [32]. Additionally, this paper
considers the EV battery as the BESS for each prosumer, which presents a significant
challenge in dealing with the uncertainty of EV usage, especially departure and arrival
times, which has not been explored in previous research.

The remainder of this paper is organized as follows. The proposed energy management
framework is presented in Section 2. Then, the problem formulation is defined in Section 3,
and the proposed method is demonstrated in Section 4. Section 5 illustrates the simulation
results and discussions of this work. Finally, the conclusion is described in the last section.

2. Proposed Energy Management Framework

The proposed multi-agent optimization using the DDPG algorithm addresses the
complex energy management problem in a distribution system with multiple prosumers
and an aggregator, considering the uncertainties in power consumption, solar PV gener-
ation, and EV usage. The multi-level Energy Management System (EMS) consisting of
home, aggregator, and distribution levels can ensure mutual benefits for the prosumers,
aggregator, and utility [8], but the use of V2H and H2V modes for EV scheduling increases
the complexity of the problem. The proposed method groups prosumers at the home level
and employs the aggregator in managing their energy to avoid disorder in energy trading
and undesired events in the distribution system.

One of the many problems of concern is the improvement of the load profile of all
prosumers, which is also addressed in this work. The behavior of prosumers is changed
through the use of Real-Time Pricing (RTP) to incentivize them to sell and buy energy
during the appropriate periods. The selling/buying energy prices are estimated by the
aggregator and proposed to all prosumers. Thus, this work proposes a multi-home energy
management system with optimal EV charging scheduling. The proposed framework can
be seen in Figure 1.

In Figure 1, a model is demonstrated with four homes and a single aggregator to show
the operation of the proposed method. Each home has a solar PV rooftop setup to minimize
power received from the grid. A single EV that can switch between V2H and H2V modes is
also included along with the home’s base load and solar PV generation. The HEMS controls
the EV charging and discharging to provide optimal scheduling, and the AEMS considers
RTP to change the behavior of all prosumers in the optimization problem. Solar PVs only
generate power during the day, and the EV battery is used for energy management within
the home, leading to surplus power being injected into the grid when the EV leaves. To
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mitigate this, the aggregator controls a central BESS using the AEMS to store surplus power
generated during the day and to supply power to improve consumption schedules for
all prosumers.
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Figure 1. The proposed energy management framework.

3. Problem Formulation

To provide optimal EV charging scheduling and manage the energy of a multi-home
system with improved power consumption, an EMS is developed at both the home and
aggregator levels. The Deep Deterministic Policy Gradient (DDPG) algorithm is utilized to
solve the energy management problem at each level. The interaction between the aggregator
and the four prosumers is crucial to find the optimal decisions for all parties, and this
interaction is achieved through multi-agent optimization using the DDPG algorithm within
a Markov Decision Process (MDP) framework. The objective functions used in the MDP
formulation of the energy management task at the home and aggregator levels are described
in the first subsection, while the constraints, such as the operating limitations of the central
BESS, EV battery, power balance, and power consumption, are presented in the second
subsection. The last subsection details how the objective functions and constraints are
transformed into a multi-agent problem using the MDP formulation.

3.1. Objective Functions

The objective functions considered at both the home and aggregator levels consist of
revenue or cost for selling or buying energy and the degradation costs of the battery. These
can be expressed as follows.

3.1.1. Revenue/Cost for Selling/Buying Energy

Since real-time energy trading is applied in this work, the selling/buying energy
objective function can reflect the electricity expense reduction due to the HEMS working.
Furthermore, the objective function is also used to verify the efficiency of generated RTP
from the AEMS that can generate a high or low revenue for the aggregator. The equations
of the objective function calculation for each prosumer and aggregator can be represented
as follows.

CAG
G,t =

{
cTOU,t · PAG

t ; PAG
t > 0

cFIT,t · PAG
t ; PAG

t ≤ 0
, (1)

CAG
PS,t =

{
csell,t · PPS

total,t ; PPS
total,t ≤ 0

cbuy,t · PPS
total,t ; PPS

total,t > 0
, (2)
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CPS
AG,i,t =

{
csell,t · PPS

i,t ; PPS
i,t > 0

cbuy,t · PPS
i,t ; PPS

i,t ≤ 0
, (3)

where PAG
t is the received/injected power (kW) from/into the grid of the aggregator

at time t. PPS
total,t represents the total load of all prosumers at time t. PPS

i,t denotes the
received/injected power (kW) from/into the grid of the prosumer i at time t. If PAG

t or
PPS

i,t is more than 0, the aggregator or prosumer is receiving the power, which incurs the
buying energy cost. Otherwise (PAG

t or PPS
i,t is less than or equal to 0), the power will be

injected into the grid, which generates the selling energy revenue. Moreover, if PPS
total,t is less

than or equal 0, the aggregator will supply the power to all prosumers, which generates
the selling energy revenue. Otherwise, the power will be received from all prosumers,
which incurs the buying energy cost. Then, CAG

G,t and CAG
PS,t denote the revenue/cost for

selling/buying energy (USD) at time t of the aggregator with the grid and all prosumers,
respectively. CPS

AG,i,t is the revenue/cost for selling/buying energy (USD) of the prosumer
i with the aggregator at time t. Then, cTOU,t and cFIT,t represent the Time-of-Use (TOU)
and Feed-in-Tarif (FIT) rates (USD/kWh) of the grid at time t, respectively. Then, csell,t and
cbuy,t denote the selling and buying rates (USD/kWh) at time t, respectively, which are
proposed by the aggregator to all prosumers.

3.1.2. Battery Degradation Cost

Five batteries are utilized to store/supply energy in this work, consisting of a central
BESS controlled by the aggregator and four EV batteries supervised by four prosumers.
Nevertheless, if these batteries are mismanaged and heavily used, it will accelerate the aging
of the batteries, leading to an increase in degradation costs. Thus, this cost is considered
one of the objective functions in the work, as it effectively reflects battery usage behavior.
The cost can be formulated using the following equations [33,34].

CAG
B,t = CPS

B,i,t =

{
0 ; PB,t ≥ 0
CB(SoCt)− CB(SoCt−1) ; PB,t < 0

, (4)

CB(SoCt) =
CB,cap

NB,cycle(SoCt)
, (5)

NB,cycle(SoCt) = 694(1− SoCt)
−0.795, (6)

where CAG
B,t and CPS

B,i,t are the battery degradation costs (USD) of a central BESS of the
aggregator and EV battery of the prosumer i at time t, respectively. Then, PB,t denotes the
charging/discharging power (kW) of the battery at time t. If PB,t is greater than or equal to
0, the battery will charge, and the cost will equal 0. Otherwise, the battery will discharge,
and the cost will be calculated by using the second condition in Equation (4). SoCt is the
state of charge of the battery at time t. Then, CB(SoCt) denotes the cost (USD) at the state of
charge SoCt. CB,cap represents the capital cost of the battery (USD), while the number of the
life cycle of the battery at state of charge SoCt is denoted NB,cycle(SoCt). Since a lithium-ion
Battery is defined as the battery type for all batteries, NB,cycle(SoCt) is evaluated by using
Equation (6) [34].

3.2. Constraints

This work considers three constraints, including the operating limits of all batteries,
power balance, and power consumption for all prosumers and the aggregator. The oper-
ating limits of the batteries are discussed in the first sub-subsection, the power balance
equations are formulated in the second sub-subsection, and the power consumption is
defined in the last sub-subsection.
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3.2.1. Operating Limits of the Battery

Energy storage devices, particularly batteries, must operate within their limitations
in order to extend their lifespan. The main factors that reflect the operating limits of the
battery are its state of charge and charging/discharging power, which can be expressed
as follows.

SoCt = SoCt−1 +
Et

Ecap
, Et =

{
PB,t · ηch ; PB,t ≥ 0
PB,t/ηdis ; PB,t < 0

, (7)

SoCmin ≤ SoCt ≤ SoCmax, |PB,t| ≤ PB,rated, (8)

where Et and Ecap are the charging/discharging energy (kWh) at time t and energy capacity
(kWh), respectively. Then, ηch and ηdis denote the charging and discharging efficiencies,
respectively. SoCmin and SoCmax represent the minimum and maximum states of charges.
The current state of charge (SoCt) must not exceed SoCmax and must not be lower than
SoCmin. Then, PB,rated is the charging/discharging power rating (kW) of the battery. The
absolute of current power (PB,t) must not exceed PB,rated.

From the above constraints, the chargeable/dischargeable power of the battery needs
to be evaluated to protect against the violating situation when dispatching the battery. The
power can be calculated as the following equations.

Pable,t =

{
min(Prem,t, PB,rated) ; Charging
max(−Prem,t,−PB,rated) ; Discharging

, (9)

Prem,t =

{
(SoCmax − SoCt) · Ecap · η−1

ch ; Charging
(SoCt − SoCmin) · Ecap · ηdis ; Discharging

, (10)

where Pable,t is the chargeable/dischargeable power (kW) of the battery at time t, whereas
Prem,t denotes the charging or discharging power (kW) when the current state of charge
increases to SoCmax or decreases to SoCmin at time t. Then, Prem,t is compared with PB,rated
to estimate the Pable,t using the two conditions in Equation (9). Thus, Equations (9) and (10)
are applied to estimate the chargeable/dischargeable power of the battery in this work.

3.2.2. Power Balance

Power balance is essential in the energy management task. The EMS must be able to
schedule distributed generators and energy storage devices to balance the power within
the system. Only real power balance is considered in this work at both the home level and
aggregator level, which can be shown as follows.

PPS
i,t = PPS

L,i,t − PPS
PV,i,t + PPS

ev,i,t, (11)

PAG
t = PAG

B,t +
4

∑
i=1

PPS
i,t , (12)

where PPS
L,i,t and PPS

PV,i,t are the home baseload (kW) and the output power of solar PV (kW)
of the prosumer i at time t, respectively. PAG

B,t and PPS
ev,i,t denote the charging/discharging

powers (kW) of the central BESS of the aggregator and the EV battery of the prosumer i at
time t, respectively. In Equations (11) and (12), PPS

i,t and PAG
t can be both positive (received

power) and negative (injected power) values depending on the behaviors of home baseload,
solar PV generation, and battery scheduling at that time.

3.2.3. Power Consumption of All Prosumers

In this work, the power consumption of the four prosumers is a crucial factor that
should be improved by the aggregator due to increased EV usage within the home level.
Hence, this factor is taken into account in the optimization task of the aggregator. Desired
variables for estimating the factor can be represented as the following equations.
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Pav =

23
∑

t=0
PPS

total,t

24
, (13)

DPC =

{
Pav,ev − Pav,noev ; Pav,ev > Pav,noev

0 ; Otherwise
, (14)

where PPS
total,t is defined as the total load (kW) of the four prosumers at time t. Moreover, it is

used to evaluate the average load (Pav) in Equation (13). Then, the mismatching (DPC) of the
power consumption between the average load without the EV usage (Pav,noev) and the one
with the EV usage (Pav,ev) is evaluated according to Equation (14) and is defined as one of
the constraints in this work. If Pav,ev is more than Pav,noev, DPC will equal to Pav,ev − Pav,noev.
This indicates that the scheduling solution for EVs does not result in a reduction of power
consumption for all prosumers. Otherwise (Pav,ev ≤ Pav,noev), the solution used to schedule
the EVs can decrease the power consumption of all prosumers, leading to DPC being equal
to 0.

3.3. Multi-Agent Problem Transformation

The objective functions and constraints are mapped to the variables of the Deep
Deterministic Policy Gradient (DDPG) algorithm. The DDPG algorithm, used to solve the
Markov Decision Process (MDP) problem at both the home and aggregator levels, utilizes
four variables: Current State, Continuous Action, Reward, and Next State. The DDPG
attempts to find the best continuous action from the current state by maximizing the reward.
Further details on the formulation of the DDPG variables can be found in [31]. In this
subsection, the variables at the home level are discussed in the first sub-subsection, and the
ones at the aggregator level are presented in the last sub-subsection.

3.3.1. DDPG Variables at the Home Level

The objective functions and constraints used in the home level optimization are
mapped into the DDPG variables as follows.

SPS
i,t =

[
PPS

pv,i,t, PPS
ev,i,t, SoCPS

ev,i,t, csell,t, cbuy,t, t
]
, (15)

RPS
i,t =

−(C
PS
AG,i,t + γ1CPS

B,i,t) ; t ∈ [tar, tdp)

−(CPS
AG,i,t + γ1CPS

B,i,t + β1

∣∣∣SoCPS
ev,i,t − SoCmax

∣∣∣2) ; t = tdp
, (16)

APS
i,t =

[
rPS

ev,i,t

]
, (17)

PPS
ev,i,t = PPS

able,i,t · r
PS
ev,i,t, (18)

where SPS
i,t is the current state of the prosumer i at time t. APS

i,t and RPS
i,t are the continuous

action and reward of the prosumer i at time t, respectively. γ1 is the scaling factor of the
EV battery degradation cost. Currently, the cost of batteries remains high, which results in
higher degradation costs when discharging, as indicated by Equation (4). Incorporating
the degradation cost without scaling into the reward may not effectively control the EV
battery discharging behavior. Therefore, it is necessary to use the scaling factor. Moreover,
β1 denotes the scaling factor for the mismatch between the state of charge of the EV of the
prosumer at departure time and the maximum state of charge (SoCmax), also known as
the SoC penalty scaling factor. The scaling factor is necessary to adjust the SoC penalty to
reasonable bounds, ensuring it does not exceed the value of the objective function. This
ensures that the SoC penalty is proportional to the objective function. This allows for
a balance between the objective and the SoC penalty in the optimization process. Then,
SoCPS

ev,i,t denotes the state of charge of the EV of the prosumer i at time t. tar is the arrival
time of the EV, while its departure time is determined as tdp. Moreover, PPS

ev,i,t is the power



Energies 2023, 16, 2357 9 of 25

of the EV of the prosumer i at time t, whereas the chargeable/dischargeable power of the
EV of the prosumer i at time t is denoted as PPS

able,i,t. Then, rPS
ev,i,t is the value that has a

boundary of [−1, 1] and is used to evaluate the PPS
ev,i,t using Equation (18).

3.3.2. DDPG Variables at the Aggregator Level

The objective functions and constraints used in the aggregator-level optimization are
mapped into the DDPG variables as follows.

SAG
t =

[
PAG

B,t , SoCAG
B,t , PPS

1,t , PPS
2,t , PPS

3,t , PPS
4,t , csell,t, cbuy,t, t

]
, (19)

RAG
t =


−
(

CAG
G,t + CAG

PS,t + γ2CAG
B,t

)
; t 6= tdp

−
(

CAG
G,t + CAG

PS,t + γ2CAG
B,t + β2

∣∣∣SoCAG
B,t − SoCmax

∣∣∣2 + α · DPC

)
; t = tdp

, (20)

AAG
t =

[
csell,t, cbuy,t, rAG

B,t

]
, (21)

PAG
B,t = rAG

B,t · PPS
total,t, (22)

where SAG
t is the current state of the aggregator at time t. AAG

t and RAG
t are the continuous

action and reward of the aggregator at time t, respectively. Then, SoCAG
B,t denotes the state

of charge of the aggregator’s BESS at time t. γ2 and β2 denote the scaling factors of the
BESS degradation cost and the SoC penalty, respectively. Then, DPC is the mismatch in the
power consumption between the average load without the EV usage and the one with the
EV usage, which is evaluated by using Equation (14) and is called the Power Consumption
(PC) penalty. α is the scaling factor of DPC. From Equation (14), the PC penalty is limited
by its boundary, which may not be equal to the value of the objective function. By using the
scaling factor, the penalty value can be made closer to the value of the objective functions.
Hence, the scaling factor is necessary. Then, we consider the first two variables that are
defined as consisting of selling price (csell,t) and buying price (cbuy,t) which are proposed to
all prosumers. Additionally, the third variable is rAG

B,t , which has a boundary of [0, 1] and is
applied with the total load of all prosumers (PPS

total,t) in Equation (22) to estimate the power
of the BESS of the aggregator (PAG

B,t ) at time t.
These variables in both level optimizations can be described using the DDPG frame-

work, as shown in Figure 2.
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4. Proposed Method

Real-time multi-home optimization is more complicated when considering EV charg-
ing scheduling and solar PV generation uncertainties. Understanding how to create stochas-
tic models of random variables, which are used to model the uncertain behaviors of solar
PV generation and EV usage, can help address the problem of uncertainty. Additionally, the
use of robust optimization algorithms is an effective solution for multi-home optimization.
The Deep Deterministic Policy Gradient (DDPG) is a robust algorithm that is well-suited
for handling the complexity of multi-home optimization through real-time multi-agent
optimization. The first subsection covers the construction of stochastic models for random
variables. The second subsection describes the training process for multi-agent optimiza-
tion to find well-trained models for all agents. Finally, the testing procedure is outlined in
the last subsection.

4.1. Stochastic Model Construction

Commonly, stochastic models are modeled using the Probability Density Function
(PDF). There are three stochastic models that are used to describe the uncertainty of multi-
home optimization in this work, consisting of the models of EV usage, home baseload, and
solar PV generation. Therefore, the stochastic model of EV usage behavior is presented
in the first sub-subsection. Then, the stochastic models of solar PV generation and home
baseload are described in the last sub-subsection.

4.1.1. The Stochastic Model of EV Usage

Currently, many EV types are used at the home level. To be able to learn the behaviors
of several EV types comprehensively, the EV type of each prosumer is randomly labeled
using the usage proportion. Furthermore, the departure and arrival times of each EV are
essential for determining charging/discharging EV scheduling. The departure and arrival
times are usually modeled as a normal PDF [6] which can be formulated as follows.

fn(t) =
1√

2π · σn
exp

(
−(t− µn)

2

2σ2
n

)
, (23)

where fn(t) is a normal PDF, whereas t denotes the time variable (h), i.e., the departure time
or the arrival time. Then, µn and σn are the mean and standard deviation of a normal PDF.

Moreover, the daily driven distance of each EV is an important factor in estimating the
initial state of charge at the arrival time. The distance can be generated using a lognormal
PDF [35] which can be written as the following equation.

fl(d) =
1√

2π · σl · d
exp

(
−(ln d− µl)

2

2σ2
l

)
, (24)

where fl(d) is a lognormal PDF while d denotes the daily driven distance (km). Then, µl
and σl are the mean and standard deviation of a lognormal PDF.

From the above description, the EV type, the departure time, the arrival time, and the
daily driven distance have been randomized; hereafter, the above variables are defined as
the general data of the EV of the prosumer i. Then, the initial state of charge is estimated by
using the following equation [36].

SoCi,arrival = SoCi,depart −
εi · di
Ei,cap

, (25)

where εi and Ei,cap are the consumption rate (kWh/km) and energy capacity (kWh) of the
EV of the prosumer i, respectively. The above two variables are based on the EV type. di is
the daily driven distance (kW) of the EV of the prosumer i. Then, SoCi,arrival and SoCi,depart
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denote the state of charge at the arrival time and at the departure time of the EV of the
prosumer i, respectively.

4.1.2. Solar PV Generation and Home Baseload

Ambient temperature and solar radiation are important factors for evaluating the
output power of a solar PV system. However, these variables have a natural uncertainty.
Knowing how to generate the stochastic models of those variables will enable estimation of
the range of the output power of the solar PV system. Along with the solar PV generation
uncertainty, the consumption behavior at the home level is defined as an uncertain variable
in multi-home optimization.

To mitigate those uncertainties, the above variables need to be used to generate
stochastic models to evaluate their behavior comprehensively. Ambient temperature and
home baseload are usually modeled using a normal PDF [37–39] according to Equation (23).
Regarding solar radiation, it is modeled using a beta PDF [40,41], which can be formulated
as follows.

f (r) =
Γ(α + β)

Γ(α) + Γ(β)
rα−1(1− r)β, (26)

where f (r) is a beta PDF while r denotes the solar radiation (W/m2). Γ is the gamma
function, whereas α is the exponent of the random variable. Then, β is the control variable.

Furthermore, the stochastic model of the output power of the solar PV system can be
written as the following equations [9].

Ppv,t = ηover · Ppv,r · Rt[αP(Tcell,t − Tcell,STC) + 1], (27)

Tcell,t = Tambi,t + Rt(Tcell,NO − 20), (28)

Rt =


1 rt > rstd

rt/rstd rc ≤ rt ≤ rstd

r2
t /(rcrstd) rt < rc

, (29)

where Ppv,t and Ppv,r are the output power (kW) at time t and the power rating (kW) of
the solar PV system, respectively. ηover is the overall efficiency of the solar PV system.
Then, αP is the power temperature efficiency (W/◦C), whereas Tcell,STC denotes the cell
temperature (◦C) under the standard test conditions (STC). The cell temperature (◦C) at
time t is represented as Tcell,t and it can be evaluated using Equation (28). Tcell,NO is the cell
temperature under the nominal operation (◦C), whereas the ambient temperature (◦C) at
time t is represented as Tambi,t. Then, Rt is the value associated with solar radiation which
can be calculated using Equation (29) according to three conditions. Then, rt denotes the
solar radiation (W/m2) at time t while the solar radiation (W/m2) under STC is represented
as rstd, which is commonly determined as 1000 W/m2. Also, rc is a certain radiation point,
which is usually defined as 150 W/m2.

4.2. Training Procedure

The training procedure is crucial in finding well-trained models for all agents. It allows
the agents to learn through interactions with their environment and generates multiple
solutions for optimizing the multi-home scenario.

Two tasks must be handled within the multi-home optimization, consisting of dealing
with overall uncertainties and applying the DDPG algorithm to solve the multi-agent
problem. Because the uncertainties of EV usage, solar PV generation, and home baseload are
considered in this work, the variables associated with those uncertainties are randomized
to create learning scenarios along with multi-agent optimization. The DDPG algorithm
under the MDP concept is employed to find global solutions in this work. These tasks are
simultaneously operated to be able to learn several situations, leading to providing global
solutions for multi-agent optimization under all uncertainties. Therefore, the training
procedure can be shown, as in Figure 3.
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Figure 3. The training procedure for multi-agent optimization.

In Figure 3, the DDPG parameters of each agent are set in the first step. Then, eval-
uation of the time interval for EV scheduling and the net power of each home is begun.
The arrival and departure times are sampled from their PDFs to estimate the time interval
for charging/discharging EV scheduling. After that, the type of EVs and the daily driven
distance are randomized from their PDFs to calculate the initial state of charge. Then, the
output power of the solar PV system is evaluated using sampled ambient temperature
and sampled solar radiation. Next, each home baseload is sampled to estimate the power
consumption at that time. The above evaluating process is applied to four homes, which
are defined as four prosumers in this work.

The aggregator agent then selects an action, which includes determining the selling
price, buying price, and the variable used to manage the central BESS, to improve its
reward. These selling and buying prices are then proposed to the four prosumer agents
simultaneously. Afterwards, the prosumer agents begin to respond to the prices. If the
current time falls within the EV scheduling interval (i.e., between the arrival and departure
times), the prosumer agent is able to adjust the charging/discharging of the EV battery to
enhance their reward. However, if the EV has already left the home, the prosumer agent
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cannot control the EV battery. Finally, the objective functions and penalties of all agents are
calculated and mapped onto their rewards.

Hereafter, the experience storage and updating of neural networks at that time are
started. Each agent stores the DDPG variable, defined as the experience; namely, the current
state, action, reward, and next state, into the buffer memory. The acquisition of various
experiences relies on two processes, exploitation and exploration. In the training procedure
according to the DDPG concept [31], there are four main networks that are embedded in
each agent, namely actor and target actor networks, and critic and target critic networks.
The role of the actor is to map from the current state to the best action using the current
policy. In contrast, the target actor is employed to predict the action at the next state. Also,
the role of the critic is to map from the state-action pair to the value of action taken into the
environment, which is called the Q-value. In contrast, the target critic is applied to predict
the Q-value of the next state-action pair. Hence, the actor predicts the current action using
the best policy discovered at that time, which is called the exploitation process. However,
various experiences will occur when applying the exploration process to the training, since
the action is usually a continuous value. Hence, continuous noise is a proper factor which
is added to the action for exploration. Then, the new action occurs and is guaranteed
using the Q-value predicted by the critic. Both exploitation and exploration are operated
simultaneously to achieve the aim of the training.

The continuous noise (λt) added to the action (At) can be described using the following
equations [31].

λt = N(µn, σn), σn = e−ϕ·t (30)

At = At + λt, (31)

where N(µn, σn) is a normal distribution, which has the mean and standard deviation as
µn and σn, respectively. µn is commonly set as 0, whereas σn is usually decreased according
to increasing episodes for training using decay rate (ϕ).

From the previous process, it is experience generation which is stored in the buffer
memory. Hereafter, the updating of the four networks is started. In Figure 3, the experiences,
or
{

Sj, Aj, Rj, Sj+1
}

, are sampled according to desired batch size N. Then, the sampled
experiences are used to update the actor and critic. The critic is updated by minimizing the
Mean Squared Error (MSE) between the Q-value obtained by the calculation and the one
predicted by the critic. The MSE can be calculated using the following equations.

MSE =
1
N

N

∑
j=1

(
Qcal,j −Qpred,j

)2
, (32)

Qcal,j = Rj + γQpred,j+1, (33)

Qpred,j = C
(

Sj, Aj
∣∣θcrit

)
, Qpred,j+1 = C∗

(
Sj+1, Aj+1

∣∣θ∗crit
)
, (34)

Aj = A
(

Sj+1
∣∣θact

)
, Aj+1 = A∗

(
Sj+1

∣∣θ∗act
)
, (35)

where Qcal,j and Qpred,j are the Q-values at state Sj and action Aj from the calculation
using Equation (33) and the prediction using the critic (C) in Equation (34), respectively.
Qpred,j+1 denotes the Q-value at the next state Sj+1 and next action Aj+1, predicted by
the target critic (C∗) in Equation (34). The Aj and Aj+1 are evaluated using Sj and Sj+1,
which are fed into the actor (A) and target actor (A∗), respectively, in Equation (35). γ is the
discount factor. Then, θcrit and θ∗crit are the weights of the critic and target critic, respectively.
In contrast, θact and θ∗act are the weights of the actor and target actor, respectively. Each{

Sj, Aj, Rj, Sj+1
}

sampled from the buffer memory is used to estimate the Qcal,j and Qpred,j.
Therefore, Qcal,j and Qpred,j are calculated according to the number of batch size N and
they are used to estimate the MSE using Equation (32). Subsequently, the weight of the
critic (θcrit) is updated by an Adam optimizer using the calculated MSE under the desired
learning rate. The above process will occur every time step t of each episode occurs.
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Furthermore, the weight of the actor is updated along with the updating of the weight
of the critic. In Figure 3, the sampled policy gradient is employed to achieve the above aim.
The policy gradient is used to apply the chain rule for finding the proper-changing direction
of the action, which can provide the maximum Q-value [42]. The sampled experiences
in the previous process are used in the policy gradient, which can be described using the
following equation [42].

∇θact J ≈ 1
N

N

∑
j=1
∇aC(S, a|θcrit )

∣∣∣S=Sj ,a=A(Sj)
∇θact A(S|θact )

∣∣∣S=Sj , (36)

where ∇θact J is the result that can provide the proper-changing direction of the action.
From the chain rule concept and Equation (36), there are two parts that are applied to the
gradient, consisting of the critic network with respect to the action predicted by the actor
(∇aC), and the actor network with respect to the actor parameters (∇θact A). Two parts will
operate at the same time to provide the ∇θact J properly; more detail about how to prove
the policy gradient and its performance can be found in [43].

Moreover, two target networks need to be updated, which is considered the last step
for updating the networks within each agent, as observed in Figure 3. These networks
cannot consistently apply a strong update along with the actor and critic update. They are
used to protect the divergence situation for the learning of the actor and critic, which has
more detail for target network usage in [42]. Thus, the soft update concept is utilized to
update them by transferring the weights of the actor and critic onto the target actor and
target critic, respectively, using a soft factor (τ � 1), which can be shown as follows.

θ∗crit ← τ · θcrit + (1− τ) · θ∗crit
θ∗act ← τ · θact + (1− τ) · θ∗act

, (37)

The above processes are replaced with 24 h in each episode. Next, 24 rewards of the
agent m at episode k are summed as a single return (Rk,m). The number of agents is defined
as M. The average return of all agents at episode k is defined as ARAk. Then, the variable
defined as the condition for well-trained models’ saving is the mean of 50 previous ARAs
at episode k (MARAk). The ARAk and MARAk are estimated using the following equations.

ARAk =

M
∑

m=1
Rk,m

M
, (38)

MARAk =

k
∑

p=k−50
ARAp

50
, (39)

In Figure 3, if MARAk is more than the MARAk−1, well-trained models of all agents
will be saved. Otherwise, saving all models does not operate. Finally, if the current episode
equals the maximum episode, the training procedure will end. Otherwise, it is still operated,
and the current episode is updated as the next episode.

4.3. Testing Procedure

In this subsection, the well-trained model of each agent is loaded into the agent to
control the environment properly. Also, the optimal overall cost of each agent is estimated
in the procedure. The testing procedure is shown in Figure 4.

In Figure 4, firstly, the well-trained models saved from the training procedure are
loaded into all agents. Then, necessary variables are randomized to estimate important
information about EV usage, solar PV generation, and home baseload, just as in the training
procedure. This process is applied to four homes. Subsequently, the aggregator agent will
select the optimal buying and selling prices and the proper variable for controlling the
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BESS. Then, all prosumers will take the proper variable for controlling their EV batteries
if the current time is between the arrival and departure times. Next, the overall objective
functions of all agents are evaluated. This process is repeated until 24 h have passed. The
objectives of all agents are then saved every 24 h in each testing episode. If the testing
episode equals the maximum episode, the testing procedure will stop. Otherwise, the
episode is updated, and the testing procedure is repeated in the next episode.
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5. Simulation Results and Discussions
5.1. Assumption and Case Studies

Four prosumers are grouped together for energy trading with a single aggregator. Each
prosumer has a single EV, solar PV rooftop setup, and home baseload. The peak demands of
the four prosumers are determined as 3 kW, 4 kW, 5 kW, and 6 kW, respectively. The output
power rating of solar PV rooftop setups is determined to be 5 kW. The charging/discharging
power rating at the home level is 5 kW, the same as the output power rating of a solar PV
rooftop setup. Additionally, charging/discharging efficiency is determined to be 0.95 in
this work. The prosumer aims to control the EV battery when the EV is at home to reduce
their electricity expenses. On the other hand, the aggregator proposes buying and selling
prices for energy to all prosumers to address the inconsistent EV scheduling and improve
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the power consumption of all prosumers. Additionally, the aggregator controls the central
BESS to manage the surplus or desired power of all prosumers and to regulate the power
being injected or absorbed into/from the grid system.

To demonstrate the performance of the proposed method, real data is used in this work.
For the EV behavior at the home level, according to reference [6], the departure time is
randomized from a normal PDF with a mean equal to 7.0 and a standard deviation equal to
1.5. Also, the arrival time is sampled from a normal PDF with its mean equal to 18.0 and its
standard deviation equal to 3.0. Moreover, 3.20 and 0.88 are determined to be the mean and
the standard deviation of a lognormal PDF [35], respectively, used for sampling the daily
driven distance. Furthermore, three EV models are randomly labeled, including the Chevy
Volt, Nissan Leaf, and Tesla Model 3. Their specifications, consisting of battery capacity,
charging/discharging power rating, and consumption rate, are determined according to
the reference [6]. Also, the capital cost of the lithium-ion battery is determined to be USD
135/kWh according to [44]. Moreover, the energy capacity and power rating of the central
BESS are 60 kWh and 15 kW, respectively.

For real data used for evaluating the power of solar PV systems and home baseloads,
the hourly ambient temperature and hourly solar radiation in summer (March–June) over
three years (2015–2017) according to reference [32] are used to generate the stochastic
model of the solar PV power. Also, the hourly home baseload in the residential system in
summer over three years (2017–2020) according to reference [32] is applied to estimate the
consumption behavior of each prosumer. Time-of-Use (TOU) and Feed-in Tariff (FIT) rates
in reference [5] determined by the utility are utilized in this work, which can be shown in
Table 1.

Table 1. The hourly TOU and FIT rates [5].

Energy Rate
Period

Peak (9.00–22.00) Off-Peak (22.00–9.00)

Time-of-Use (TOU) 0.1855 USD/kWh 0.0843 USD/kWh

Feed-in-Tariff (FIT) 0.0574 USD/kWh

Moreover, the parameters of the aggregator and prosumer agents are shown in Table 2,
whereas the parameters for the training and testing procedure are presented in Table 3. To
acquire the simulation results, the Spyder program based on the Python language is applied
to create the energy trading experiment between the aggregator and four prosumers. The
generated situations are run on a personal computer. The computer specification includes
Core (TM) i7-8700, Intel(R), 16.0 GB RAM, and CPU 3.20 GHz.

Table 2. The parameters of the aggregator and prosumer agents.

Agent Networks

Parameters

Learning
Rate

Activate Function
(Hidden, Output)

Number of Hidden Layers
(Number of Neurons)

Aggregator
Actor 0.001

ReLU, Sigmoid

2 (512, 512)
Critic 0.01

Prosumer
Actor 0.001

ReLU, Tanh
Critic 0.01

Two case studies are presented in this work. The first case study involves energy
trading between a single aggregator and four prosumers with EV charging scheduling using
Time-of-Use (TOU) and Feed-in Tariff (FIT) rates. The second case study involves energy
trading using Real-Time Pricing (RTP). The specifics of both case studies are described as
follows.



Energies 2023, 16, 2357 17 of 25

• Case I: TOU & FIT energy trading; the aggregator proposes the selling energy price
using the TOU rate to four prosumers. In contrast, the FIT rate, determined as the
buying energy price, is offered to four prosumers every 24 h. Additionally, the
aggregator and prosumers can only control their battery to maximize their rewards
through multi-agent optimization using the DDPG algorithm.

• Case II: RTP energy trading (proposed method); the aggregator proposes the selling
energy price and buying energy price using the RTP concept to four prosumers for
24 h. The aggregator can control both selling/buying prices and its BESS, whereas the
four prosumers try to control their EV batteries to maximize their rewards. Addition-
ally, multi-agent optimization using the DDPG algorithm is employed to acquire the
optimal decisions of both the aggregator and prosumer.

Table 3. The parameters of the training and testing procedure.

Procedure

Parameters

Episode Decay
Rate

Discount
Factor

Soft Update
Factor

Batch
Size

Battery Scaling
Factor (γ1,γ2)

SoC Penalty Scaling
Factor (β1,β2)

PC Penalty
Scaling Factor (α)

Training 1500 0.0005 0.9 0.005 512 0.2 0.002 1

Testing 1000 - - - - - - -

5.2. Comparison Results

From the previous subsection, two case studies are defined to represent the perfor-
mance of the proposed method. Thereafter, the simulation results provided by the two case
studies are compared in this subsection.

5.2.1. Training Results

The training procedure is adapted to ensure the compliance definition of each case.
The ARA and MARA defined in the training procedure are used to represent the training
behaviors of all agents in each case. The ARA and MARA of Case I and Case II are shown
in Figures 5 and 6, respectively.
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As seen in Figures 5 and 6, the results indicate that the ARA value experiences signifi-
cant fluctuations in comparison to the MARA trend. It is therefore necessary to switch from
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the ARA to the MARA in order to avoid frequent model saving in the training procedure.
During the early episodes, the noise effect added to the actions to encourage exploration
by the agent is quite high, leading to an inability to save the model. In this work, the
decay rate is set at 0.0005. According to Equations (30) and (31), the noise effect decreases
exponentially when the training episode reaches 800 episodes. Hence, if the episode is
greater than or equal to 800, the calculation of the MARA begins.
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For Case I, the MARA is highest at about the 950th episode, as shown in Figure 5.
Hence, the well-trained models of all agents are saved in this episode. In contrast, the
MARA is highest at about the 900th episode in Case II, along with saving the well-trained
models of all agents, as shown in Figure 6. However, consideration of the value of the
MARA reveals that the highest MARA obtained by Case II is more than the highest MARA
obtained by Case I. The above situation indicates a preliminary conclusion that applying
real-time energy trading has a good capability for achieving the aim of this work.

5.2.2. Energy Pricing Results

The well-trained models obtained from the training procedure are saved for later use
in testing. These models are loaded into all agents for the testing phase, which takes into
account the uncertainties of EV usage, solar PV generation, and home baseloads. To ensure
reliable results, the testing procedure is repeated 1000 times and the desired results are
averaged for representation, rather than using a single episode’s results. Thus, the hourly
mean energy prices of Case I are presented in Figure 7, while the hourly mean energy prices
of Case II are shown in Figure 8.

As seen in Figure 7, the energy prices in Case I are determined using TOU and FIT
rates from the utility. The selling price has a step-like characteristic, while the buying price
is constant. Thus, the selling price has a greater impact on prosumer behavior compared to
the buying price. In Case II, energy prices are determined through multi-agent optimization
during the training procedure, wherein the aggregator interacts with the four prosumers
using RTP to provide optimal prices for improving the power consumption of all prosumers.
The energy prices for Case II can be seen in Figure 8, and both the selling and buying prices
have similar characteristics, but with different scaling. The comparison results between
Case I and Case II will be described in Sections 5.2.3 and 5.2.4.
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5.2.3. Power State Results

The power state is one of the essential factors that can reflect advantages or disadvan-
tages when applying the two case studies above. The hourly mean of the net power of the
aggregator is as shown in Figure 9.

During the time interval of 7.00 A.M. to 2.00 P.M., there is substantial surplus power,
represented by negative blue power, generated from the solar photovoltaic systems installed
in individual homes. To utilize this surplus energy, the aggregator will activate the central
battery energy storage system (BESS). By employing the RTP method, the aggregator will
effectively store a greater amount of surplus power from all prosumers, as evidenced by the
reduced net power observed in Figure 9. During the intervals of 15.00–20.00, the net power
is close to zero in both Case I and Case II, compared to the net power without EVs. This
is because EVs usually arrive during this interval. Hence, each prosumer tries to control
their EV battery to reduce electricity expenses. In this interval, Case I has a high selling
price offered by the aggregator, defined as the buying price for the prosumer, as shown
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in Figure 7. Meanwhile, the buying price in Case II has an increasing trend, defined as
the selling price for the prosumer in Figure 8. This attracts the attention of prosumers to
control their EV batteries for discharging, leading to reduced net power in both cases.

Energies 2023, 16, x FOR PEER REVIEW  22  of  27 
 

 

helps to alleviate this problem, as can be seen from the net power at this interval in Figure 

9.  

 

Figure 9. The hourly mean of the net power of the aggregator. 

For the intervals of 0.00–6.00, the net power in both Case I and Case II is higher than 

the power without EVs. This indicates that most EVs are charging during this interval to 

prepare for their departure. However, the net power when applying Case II is lower than 

the net power when using Case  I. These comparison results demonstrate  that RTP can 

effectively prevent unwanted demand and schedule the charging/discharging of EVs ef‐

ficiently. The mean of the net power without EVs and the net powers from Case I and II 

during the power consumption interval can be seen in Table 4 for verification. 

Table 4. The mean of the net power consumption for the without EV case, Case I, and Case II. 

Case Study 
The Mean of the Positive Net 

Power (kW) 

Decrease (%) Compared with the 

Power without EV 

Decrease (%) Compared with the 

Power from Case I 

Without EV  6.152  ‐  33.56 

Case I  9.260  −50.52  ‐ 

Case II  
(proposed) 

5.596  9.04  39.57 

As can be seen in Table 4, the mean of the net power consumption applying RTP in 

Case II is less than the mean obtained by the condition without EV and Case I. Addition‐

ally, the proposed method using RTP can decrease the mean by 9.04% compared with the 

mean without EV. In contrast, employing Case I using the TOU & FIT cannot reduce the 

mean compared with the mean without EV, as can be noticed from the negative decreased 

percentage. Therefore, implementing the RTP approach is more effective than the TOU & 

FIT and results in a decrease in overall demand compared to a system without EV usage. 

Moreover, the mean of the net power consumption when applying RTP in Case II 

can be reduced by 39.57% compared to the mean obtained using TOU & FIT. Also, not 

utilizing EVs within the home can result  in a better mean compared to employing EVs 

with TOU & FIT, as seen from the positive decrease percentage of 33.56% in the condition 

without EVs. As a result, the proposed method represented by RTP can more effectively 

reduce total demand compared to deploying TOU & FIT. 

Figure 9. The hourly mean of the net power of the aggregator.

For the intervals from 21.00 to 23.00, there is a noticeable increase in the net power,
especially in Case I. The rapid decrease in the TOU rate from peak to off-peak times leads
to the prosumer switching the EV operation from V2H to H2V modes when TOU & FIT
is applied. This results in an undesired demand at the 23rd hour. However, the use of
RTP helps to alleviate this problem, as can be seen from the net power at this interval in
Figure 9.

For the intervals of 0.00–6.00, the net power in both Case I and Case II is higher than
the power without EVs. This indicates that most EVs are charging during this interval
to prepare for their departure. However, the net power when applying Case II is lower
than the net power when using Case I. These comparison results demonstrate that RTP
can effectively prevent unwanted demand and schedule the charging/discharging of EVs
efficiently. The mean of the net power without EVs and the net powers from Case I and II
during the power consumption interval can be seen in Table 4 for verification.

Table 4. The mean of the net power consumption for the without EV case, Case I, and Case II.

Case Study The Mean of the Positive Net
Power (kW)

Decrease (%) Compared with
the Power without EV

Decrease (%) Compared with
the Power from Case I

Without EV 6.152 - 33.56

Case I 9.260 −50.52 -

Case II
(proposed) 5.596 9.04 39.57

As can be seen in Table 4, the mean of the net power consumption applying RTP in
Case II is less than the mean obtained by the condition without EV and Case I. Additionally,
the proposed method using RTP can decrease the mean by 9.04% compared with the
mean without EV. In contrast, employing Case I using the TOU & FIT cannot reduce the
mean compared with the mean without EV, as can be noticed from the negative decreased
percentage. Therefore, implementing the RTP approach is more effective than the TOU &
FIT and results in a decrease in overall demand compared to a system without EV usage.
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Moreover, the mean of the net power consumption when applying RTP in Case II can
be reduced by 39.57% compared to the mean obtained using TOU & FIT. Also, not utilizing
EVs within the home can result in a better mean compared to employing EVs with TOU
& FIT, as seen from the positive decrease percentage of 33.56% in the condition without
EVs. As a result, the proposed method represented by RTP can more effectively reduce
total demand compared to deploying TOU & FIT.

5.2.4. Objective Evaluation Results

From the previous sub-subsection, the net power results are shown to verify the
power reduction of the proposed methods. Hereafter, the overall revenue/cost of the
aggregator and prosumers are presented in this sub-subsection. The results are based on
1000 simulation episodes and represented with 95% confidence levels. The overall objective
values of the aggregator can be found in Figure 10.
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There are three objectives considered in the aggregator, including revenue/cost from
energy trading with the grid and prosumers, and BESS degradation cost. If the objective
value is positive, it is considered as a cost, and if it is negative, it is considered as revenue.
The results in Figure 10 show that the cost of energy trading with the grid when applying
the TOU & FIT is similar to the cost when using RTP. However, the cost of BESS degradation
when applying RTP is higher than the cost obtained through the TOU & FIT, indicating
that the BESS is discharged more frequently when using RTP.

Moreover, applying RTP can increase the revenue from energy trading with prosumers,
as depicted in Figure 10, leading to a net close to 0. On the other hand, the net will become
a cost when using TOU & FIT. As a result, the net mean obtained by using RTP can be
reduced further. To provide a clearer understanding, the mean and standard deviation of
each objective function of the aggregator, and the net cost of all prosumers, can be seen in
Tables 5 and 6, respectively.

The proposed method, as shown in Table 5, has a mean net of USD −0.065 per day,
which is a revenue. In contrast, using TOU & FIT results in a net cost trend with a value
of USD 1.564 per day. This demonstrates that the proposed method can increase revenue-
making opportunities for the prosumer supervision.

Furthermore, as shown in Table 6, energy trading using the RTP can generate a
change in the net cost reduction of all prosumers of between 1.67% to 24.57% com-
pared with TOU & FIT. Thereby, the above result can guarantee the performance of the
proposed method.
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Table 5. The mean and standard deviation of each objective function of the aggregator.

Case Study

Revenue/Cost (USD/Day)

Energy Trading
with the Grid BESS Degradation Energy Trading

with Prosumers Net

Mean Std Mean Std Mean Std Mean Std

Case I 7.610 1.409 2.699 1.375 −8.745 1.535 1.564 1.192
Case II

(proposed) 7.160 1.537 4.886 1.863 −12.111 2.262 −0.065 1.770

Table 6. The mean and standard deviation of the net cost of each prosumer.

Case Study

Net Cost (USD/day)

Prosumer1 Prosumer2 Prosumer3 Prosumer4

Mean Std Mean Std Mean Std Mean Std

Case I 3.458 1.209 4.732 0.975 6.565 1.168 7.390 1.706
Case II (proposed) 3.098 0.915 4.653 1.145 6.325 1.554 5.574 1.313

Decreased (%) 10.41% - 1.67% - 3.66% - 24.57% -

5.3. Discussions

The challenge of managing energy in a multi-home environment with optimal EV
charging scheduling is substantial, especially when considering real-time optimization with
multiple uncertain variables. The proposed solution is to deploy a multi-agent optimization
using the DDPG algorithm. As seen in Table 4 and Figure 9, the proposed method leads
to improved behavior among all prosumers compared to the condition without EV usage
and using TOU & FIT, as evidenced by the decreased mean net power of 9.04% and
39.57%, respectively.

Furthermore, the distribution of the aggregator’s objective values, with a 95% confi-
dence level, as shown in Figure 10, indicates that the aggregator’s net cost/revenue can
have both positive and negative values, which reflect costs and revenues, respectively. The
TOU & FIT results in a higher occurrence of net costs. On the other hand, the proposed
method has a higher occurrence of net revenue.

To confirm that the proposed method can increase the aggregator’s revenue opportu-
nity for prosumer supervision, the mean aggregator’s net revenue is verified to be 0.065
USD per day as shown in Table 5. Moreover, the proposed RTP leads to a reduced net cost
for each prosumer compared to TOU & FIT by 1.67% to 24.57%, as shown in Table 6. These
results verify the performance of the proposed method, which proves its suitability in solv-
ing the energy management problem for multi-homes under high uncertainty. Therefore,
applying the proposed method can improve the load profile of four prosumers. This causes
a decreased opportunity for heavy load occurrence, directly benefiting the utility. Along
with load profile improvement, the RTP estimated by the proposed method can increase
revenue for supervising the prosumer of the aggregator. Also, the proposed RTP can reduce
the net cost of prosumers. However, deploying the RTP concept with multi-home energy
management tasks requires real-time coordination to determine RTP, which depends on
prosumer behaviors in each area. This leads to a higher computational time. In contrast,
applying the TOU & FIT, which the utility has already set, consumes less computational
time because the aggregator and prosumers control their batteries to reduce costs without
pricing coordination. However, the above results show that employing RTP can achieve all
aims of this work better than applying the TOU & FIT.

6. Conclusions

The complexity of managing energy in multi-homes with scheduled EV charging/
discharging presents a significant challenge in designing an energy management system
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and finding an optimization tool. This is particularly true for homes that face uncertainties
related to solar PV system and EV usage. The goal is to enhance the ability of the home to
inject/receive power to/from the grid, control the EV battery for charging/discharging
scheduling, and interact with the aggregator for information exchange to reduce electricity
expenses. The prosumer is defined as the entity that does so. The aggregator, on the other
hand, can propose real-time pricing for buying/selling to all prosumers and control a
central BESS to achieve its objective. The scenario is modeled with four prosumers and a
single aggregator. The peak demands of the four prosumers are set as 3 kW, 4 kW, 5 kW,
and 6 kW, respectively. Each home is equipped with a single solar PV system, EV, and home
baseload. The revenue/cost from energy trading with the grid and prosumers and BESS
degradation cost are set as the aggregator’s objective functions. Meanwhile, each prosumer
has two objective functions: the revenue/cost from energy trading with the aggregator and
the degradation cost of the EV battery.

The aggregator and prosumer are modeled as agents using the deep reinforcement
optimization concept. A multi-agent optimization using the DDPG algorithm is employed
to create the interaction between the aggregator and prosumer and find the best decision for
each agent, which is the proposed method. Simulation results indicate that the proposed
method can reduce power consumption by 9.04% and 39.57% compared to multi-homes
without energy trading and EV usage, and those using time-of-use along with feed-in-tariff,
respectively. The proposed method also increases the aggregator’s revenue opportunity by
0.065 USD per day and decreases the prosumer’s net cost by 1.67% to 24.57% compared to
using time-of-use and feed-in-tariff.

Therefore, the proposed method, verified by the above results, is a suitable strategy
for energy management in multi-homes with EV charging/discharging scheduling under
the uncertainties of solar PV generation and EV usage. Opting for the best optimization
tool and strategy can address irregular EV usage scheduling and handle the uncertainties
of solar PV generation and EV usage. Multi-agent optimization using the DDPG algorithm
with real-time energy trading is one of the best methods to achieve this goal and can be
applied to solve energy management issues for many prosumers, ultimately improving the
load profile at the distribution system level.
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