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Abstract: Ensuring a stable and efficient transformer operation is a very crucial task nowadays,
especially with the integration of modern and sensitive electrical equipment and appliances down
the line. However, transformer maloperation still cannot be completely avoided, particularly with
the existence of inrush current that possess similar characteristics as the fault currents when a fault
occurred. Thus, this paper proposes an enhanced method for inrush current identification based
on a backpropagation (BP) network, optimized using genetic and simulated annealing algorithms.
The proposed method has the ability to find the global optimal solution while avoiding local optima,
with increased solution accuracy and low calculation complexity. Through extensive simulations,
it was found that the inrush and fault currents have differences in their harmonic contents, which
can be exploited for the identification of those currents using the proposed identification method.
The proposed genetic simulated annealing–BP (GSA-BP) algorithm make use of 200 current samples
to improve the detection accuracy of the inrush current from 80% to 97.5%. Comparative studies
performed against the existing identification methods show that the GSA-BP network has superior
efficiency and accuracy while being practical for real-life application to improve the transformer
protection system.

Keywords: inrush current; harmonic components; BP network; genetic algorithm; simulated anneal-
ing algorithm

1. Introduction

Differential protection is a widely used approach for power transformer protection,
the performance of which is constantly challenged by the inrush current [1]. Therefore,
precise differentiation between the inrush and fault currents for a split second is crucial for
the operation of a transformer [2,3].

Although conventional inrush current detectors, such as second harmonic criteria and
gap detectors, can block the influence of inrush current in most scenarios, a lack of precision
in common detection is inevitable [4–7]. These classifications have been integrated into
new methods to improve reliability. However, maloperation still occurs in certain scenarios,
such as energizing with a high initial flux [8–10]. The inrush current is twice or ten times
the normal rated current. Such unnecessary current spikes can damage equipment like
transformers. The inrush current can cause the circuit breaker to trip because it has a
similar amount of current as the fault current, causing the transformer protection device to
mistake the inrush current for a fault and cut the circuit. Therefore, reliable identification
of the inrush current is highly desired. The method proposed in this paper is to reduce or
even avoid these situations as much as possible. To enhance the reliability of differential
protection [11–13], researchers have developed several techniques over the past decades to
address the inrush problem. The well-known methods are as follows:

• The discontinuous angle principle [9]: discontinuous angle principle applied to quickly
recognize the inrush current and fault current. When the discontinuous angle of
current is greater than 65◦, it is determined that the transformer inrush current occurs.
The transformer protection may wrongly determine that short-circuit current is caused
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by a power component fault. Discontinuous angle principle aims to avoid tripping
when the inrush current occurs. If the wave width of the current is larger than 140◦

and the discontinuity angle is less than 65◦, this current will be identified as a fault
current and the relay should quickly switch off. Once the discontinuity angle is
greater than 65◦, the relay should be keep locked. However, reverse current will occur
when the current transformer saturates. It will make the discontinuous angle of the
inrush current disappear, which means the protection will wrongly operate. When the
internal fault occurs, saturated current transformer causes the discontinuous angle of
differential current to increase. The protection will lose efficacy. Moreover, accurately
measuring the discontinuity angle remains a difficult problem to overcome. When
an internal fault occurs, transient high harmonics distort the current waveform. The
waveform distortion does not cause discontinuous angle, but it affects the wave width
of the current. If the waveform distortion is so severe that the wave width is less than
140◦, it will cause a delay in protection or even a wrong judgment;

• Second harmonic braking [12,14]: inrush current contains much higher harmonic com-
ponents, especially the second harmonic components. According to this characteristic,
the second harmonic brake was proposed. Once the protective device detects the value
of the second harmonic in a differential current being less than the setting value, the
protective relay will be latched to prevent the maloperation.

The amplitude ratio of the second harmonic and fundamental harmonic is the second
harmonic braking ratio. In a practical application, the inrush current that has been already
ignored by differential protection in operating experience and no-load closing experiments
is selected. The lowest harmonic content of this inrush current can be a setting value.

By detecting the magnitude of the second harmonic content in the three-phase current,
it is judged whether it is an inrush current or not. The criterion of the inrush current is

Id2 > K2 Id1 (1)

This method is simple and practical, and there are many valuable experiences in the
actual operation, most of the transformer microcomputer protection adopts this principle.
However, in practical applications, the second harmonic discrimination principle still faces
many problems. The selection of the second harmonic braking ratio K2 is more difficult
and there is no uniform standard.

In the power system installed with static reactive power compensation devices or
other capacitive components, the fault current also has a large second harmonic content.
Identification speed and even the accuracy of the second harmonic braking can be affected.

When fault happens in the transformer before no-load closing, the fault current is in
the fault term after closing and the inrush current is in the non-fault term. Differential
protection must be on work in this situation, but second harmonic braking may classify
it as an inrush current and keep the protection locked, and the protection cannot operate
normally. In addition, second harmonic decay is very slow and this may cause a long action
time.

• Wavelet theory [15–17]: the original form of most signals is a time-domain signal,
which means the signal is always a function about time. The most useful information
is usually hidden in the frequency content of the signal. Waveform theory is used to
search such information. The wavelet transform is performed on the time-domain
signal, and the frequency spectrum of the signal will be obtained. It is applied in
power systems for predicting the efficiency of solar power and analyzing [18] the
weak signal under noise interference [19]. It can transform the waveforms of the
current, and makes the difference between the inrush current and fault current be
better reflected. The mutation part of the signal and the singular signal always contain
important information. Wavelet analysis possesses a local refinement on the current
signal, which can satisfy requirements both in the time and frequency domain. When a
transformer fault occurs, the current signal in the operating power system will present
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singularity. Waveform analysis is able to complete a detailed analysis of current signals
at different scales. The components of each scale correspond to different frequency
components in the current signal. The results of wavelet analysis reveal the distortion
points of the current signal. The signal can receive a different local maximum by
varying the waveform at different scales. By observing the trend of the maximum, the
purpose of identifying the type of current can be achieved.

The waveform transform results of the inrush current show distortion in every cycle
periodically. The result of the fault current shows a large distortion in a short time when
fault occurs; then, the waveform is flat and almost with no distortion. These are the most
obvious characteristics of inrush and fault currents in the waveform transform identification.
However, it requires long data windows and is susceptible to noise and unanticipated
disturbances.

• Multi-criteria decision-making: MCDM is a branch of operations research and it is
used to balance and evaluate multiple conflicting goals for obtaining a satisfactory
result. The most common application is the evaluation of costs and prices. This
method has been applied in power systems such as finding suitable places for solar
power plants [20]. It can also be used for transformer protection [12]. Compared
with the independent decision-making of the original protection of the transformer,
it can cover the blind spots of the protection, such as the restricted earth fault relay
being sensitive in low-level internal earth faults (the faults occurring within 20–30% of
the winding near the neutral point) causing the transformer protection relay to not
work and making the protection more reliable. However, part of the indicators that
are needed to be balanced are vague and cannot be quantified, such as the effects of
weather and the aging of materials. Additionally, there is no common measure or unit
of measure for goals, making them difficult to be compared.

A reliable classifier should have accuracy and efficiency. It is essential to maintain
a high computational efficiency in fresh scenarios, as it is continuously restrained by
various factors [21,22]. Feasibility is also one of the considerations. The genetic simulated
annealing–backpropagation (GSA-BP) network satisfies all these requirements.

In this paper, an enhanced method based on a GSA-BP model and waveform is
proposed to discriminate the inrush current from the fault current in transformers. First,
the waveforms of the inrush and fault currents were simulated in MATLAB/Simulink.
The classification model consists of a BP network and genetic algorithm (GA). Finally,
the fundamental wave and second to fifth harmonics of the inrush and fault currents
collected using fast Fourier transform (FFT) analysis were used as the input of the GSA-BP
network. Numerous training and verification simulations were performed on the GSA-BP
network. Furthermore, the performance of the GSA-BP network was compared with that
of the BP network. GSA-BP can solve the problem of low accuracy of existing transformer
protection methods, and also improves the recognition speed. The results from the simple
three-phase power circuit and IEEE 14 bus test system show that the recognition rate of
GSA-BP for current samples reached 97.5%. In addition, it only takes 0.186 s to recognize a
sample on average. Compared with the original BP network accuracy, the accuracy rate
has increased by 17.5%. Compared with the proposed optimized BP network, such as the
GA-BP recognition method, the accuracy and operating efficiency have increased by 9.5%
and 99.3%, respectively. The proposed GSA-BP model can successfully classify the inrush
and fault currents more quickly with promising accuracy.

The remainder of this paper is organized as follows:
Section 2: The common inrush current identification and existing problems.
Section 3: Simulation and application of the proposed GSA-BP network.
Section 4: Discussion and summary of performance of the GSA-BP method.
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2. Methodology
2.1. Introduction to BP Neural Network

A BP network is a multilayer neural network that can train the weights of nonlinear
differentiable functions.

The basic model of the neurons in the BP neural network is shown in Figure 1. The
inputs are connected to the next layer of neurons through the corresponding weights w,
and the final outputs can be expressed by the following formula:

a = f (wp + b) (2)

f is a function of inputs and outputs, w is the connection weight between neurons, and b is
the bias.
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Figure 1. Single neuron of a BP network.

The structure of the BP network is shown in Figure 2. The number of inputs is R, and
the hidden layer has only one layer with S neurons. Each neuron is a type of sigmoid.
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2.2. Learning Rules

The BP network algorithm is a supervised δ algorithm. Its principle is to set the
learning samples as inputs and corresponding outputs. The learning process compares the
actual outputs of the BP network with the expected outputs. The quadratic sum of their
errors are used to modify the weight of the neuron in reverse. Finally, the quadratic sum of
the error between the actual and desired outputs reaches a certain range. When the error is
large, its influence on the weight also increases.

The algorithm derivation process of the BP neural network is as follows: If P is the
input of the network, there are R input neurons, s1 is the number of hidden layer neurons,
and s2 is the number of output neurons. F1 is the hidden layer activation function, f2 is the
output layer activation function, A is the actual output, and T is the expected output.
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The forward propagation process of information is represented by Equations (3)–(5).
The output of the i-th neuron in the hidden layer is

a1i = f 1(
r

∑
j=1

w1ij pj + b1i)(i = 1, 2 . . . , s1) (3)

The output value of the kth neuron in the output layer is

a2k = f 2(
s1

∑
i=1

w2kia1i + b2k)(k = 1, 2, . . . , s2) (4)

The error of the network is expressed as follows:

E(W, B) =
1
2

s2

∑
k=1

(tk − a2k)
2 (5)

The process of neuron weight modification and error reverse transmission is as follows:
The weights from the i-th input to the k-th output are

∆ω2ki = −η
∂E

∂ω2ki
= −η

∂E
∂a2k

· ∂a2k
∂ω2ki

= η(tk − a2k) · f 2′ · a1i = η · δki · a1i

(6)

δki = (tk − a2k) · f 2′ = ek · f 2′ (7)

ek = tk − a2k (8)

From this, it can be derived

∆b2ki = −η
∂E

∂b2ki
= −η

∂E
∂a2k

· ∂a2k
∂b2ki

= η(tk − a2k) · f 2′ = η · δki

(9)

The process of using the gradient descent method to modify the weights of the hidden
layer neurons, for the weights from the i-th input to the k-th output, is as follows:

∆ω1ij = −η
∂E

∂ω1ij
= −η

∂E
∂a2k

· ∂a2k
∂a1i

· ∂a1i
∂ω1ij

= η
s2
∑

k=1
(tk − a2k) · f 2′ ·ω2ki · f 1′ · pj = η · δij · pj

(10)

δij = ei · f 1′, ei =
s1

∑
k=1

w2kiδki, δki = ek · f 2′, ek = tk − a2k (11)

Therefore,
∆b1i = ηδij (12)

2.3. Introduction to Genetic and Simulated Annealing Algorithms

A GA is a global search heuristic algorithm used to solve optimisation problems
in the field of artificial intelligence. It overcomes the limitations of conventional algo-
rithms, which can easily fall into local minima. GA is originally developed based on
evolutionary phenomena in biology, including heredity, mutation, natural selection, and
hybridization [23–25].

The GA is a search algorithm with an iterative process of ‘generate and test’. First,
solutions to the problem are encoded to function as suitable expressions for genetic opera-
tions. Subsequently, the fitness function is established based on the objective function of the
optimisation problem. When the fitness function is certain, natural selection determines the
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chromosomes that are suitable for survival based on the fitness value. Finally, the surviving
individuals form a population that can be reproduced (Figure 3).
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2.4. Design of the GSA-BP Algorithm
2.4.1. Coding

The BP network includes connection weights between input layer and implicit layer,
implicit layer threshold, connection weights between implicit layer and output layer,
and output layer threshold. When GSA-BP classifies currents, it is necessary to find out
the appropriate weights and thresholds that can guarantee the accuracy of the current
classification. GA has the most important role in figuring out this problem.

The first stop of the GA-optimizing neural network is to represent the weights and
thresholds as strings of real numbers. Each string is a chromosome. [26–29]

The parameter gene adopts real number encoding. The weight and threshold of the
network can be negative, and the learning rate must be positive. Therefore, parameter
genes should be divided into two parts: weight and rate genes. The coding length of the
weighted gene is equal to the total number of weights and thresholds in each layer of the
neural network. The coding length of the rate gene is 1. The coding length of the parameter
gene is the sum of the length of the weight and rate genes, and the total coding length of a
chromosome is the sum of the coding length of the connecting and parameter genes.

2.4.2. Decoding

Assuming that 1101 . . . 1 is the code of the connecting gene in a chromosome and the
length of the code is K, the structure of such a three-layer BP neural network is shown in
Figure 4. In the figure, in is the input layer neuron, hk is the hidden layer neuron, om is
the output layer neuron, Xn is the input sample, and Ym is the network output. During
decoding, the weights ωn,k and ωk,m from the input layer to the hidden layer and from
the urgent layer to the output layer, and the value θk of the hidden layer are shown in
Equations (13)–(15).

ωn,k = [ω1,1ω1,20ω1,4 . . . ω1,Kω2,1ω2,20ω2,4 . . . ω2,K . . . . . . ωN,1ωN,20ωN,4 . . . ωN,K] (13)
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ωk,m = [ω1,1ω1,2 . . . ω1,Mω2,1ω2,2 . . . ω2,M00 . . . 0ω4,1ω4,2 . . . ω4,M . . . . . . ωK,1ωK,2 . . . ωK,M] (14)

θk = [θ1θ20θ4 . . . θK] (15)
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The learning rate has no effect on the network structure. It does not participate in the
decoding.

The connection gene is binary-coded, and the number of nodes in the hidden layer
is the same as that in the code string. The network structure is clear after decoding. The
parameter genes are encoded in real numbers. The weights, thresholds, and learning rates
of the network are obtained without complicated decoding.

2.4.3. Fitness Function

In the GA, the fitness function value is used to measure the closeness of each individual
to the optimal solution in the optimisation calculation. The fitness function should generally
satisfy two requirements: it should not be negative and it should be as simple as possible
to reduce the complexity of the calculation [29–32].

The fitness function of the GA-BP algorithm is based on the total error of the neural
network; that is, the fitness function of each chromosome is

f = 1/(1 + E) (16)

E =
1
2

K

∑
k=1

M

∑
j=1

(
Tk

j −Yk
j

)2

(17)

where E is the total error in the neural network, Tk
j is the ideal output, Yk

j is the real output,
and K is the number of samples.

Higher fitness means that the individual is more suitable for the current environment.
From the perspective of current identification, the current samples left with high fitness will
be very close to the conditions that have been set, making it more accurate to distinguish
the current type.

2.4.4. Genetic Operator

Selection: The selection operation of the GSA-BP algorithm combines the optimal
individual preservation and fitness ratio. Optimal individual preservation is implemented
on the chromosomes in the current population. In this method, individuals with the highest
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adaptability do not participate in crossover and mutation and are directly replicated to
the next generation [33]. After optimal individual preservation, a fitness ratio is adopted
for the contemporary group. Assuming that the population size is n, the probability of
individual i being selected is

Psi = fi

/
n

∑
j=1

f J (18)

In this formula, fi represents the fitness function value of the first chromosome. In
this method, the probability of each chromosome being selected is Psi , which reflects the
proportion of an individual’s fitness to the total individual fitness.

The combination of optimal individual preservation and fitness ratio enables individ-
uals with high fitness to be selected directly for the next generation. Individuals with low
fitness also have chances. The diversity of individuals can ensure that their fitness is close
to the optimal solution and prevents the algorithm from falling into the local optimum.

Crossover: The one-point crossover is also called the simple crossover [34]. A crossover
point is randomly set among individuals. When crossover is performed, the partial struc-
tures of the two individuals before or after the point are exchanged to generate two new
individuals.

Arithmetic crossover generates a new individual from a linear combination of two
individuals. If an arithmetic crossover is performed between two individuals, x1 and x2,
then the two new individuals x′ and x′2 after the crossover are{

x′1 = αx1 + (1− α)x2
x′2 = αx2 + (1− α)x1

(19)

Among them, α is a real number of 0–1.
Mutation: The basic mutation randomly selects one or more loci in the individual

coding sequence and changes the gene in these loci based on a probability value.
Uneven mutation is a random perturbation of the original gene, and the result after the

perturbation becomes the new gene after mutation. The mutation operation is performed
on each locus with the same probability.

Crossover and mutation work simultaneously to ensure the diversity of individuals.
Assuming that there is only crossover, the new solution generated in the iterative process
can only come from the existing current samples in the initial generation. If the key feature
for constructing the optimal solution is missing in the initial population, the optimal
solution cannot be obtained only by crossover.

2.4.5. Annealing

The annealing algorithm is used to optimise and adjust the new individuals generated
by the GA, and the results are considered the individuals of the next generation group.
The annealing algorithm adds the optimal local solutions as new individuals to the GA
and uses them to adjust the search range. The cooling method adopted in this paper is
T = T0·0.98i. T0 is the initial temperature and i is the times of evolutions.

2.5. Operating Principles of GSA-BP Network

Currently, to select the appropriate population size N, crossover probability Pc, and
mutation probability Pm, many scholars have conducted research, but the settings of these
parameters have not yet been unified. The optimal parameter ranges recommended by
Schaffer are N = 20 ∼ 30, Pc = 0.75 ∼ 0.95, and Pm = 0.005 ∼ 0.01. The optimal parame-
ter ranges suggested by Xi Yugeng are N = 20 ∼ 200, Pc = 0.5 ∼ 1.0, and Pm = 0.0 ∼ 0.05.

Pc =

{
( fmax − f ′)/( fmax − fv), ( f ′ ≥ fv)

1.0, ( f ′ < fv)
(20)
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Pm =

{
0.5 ∗ ( fmax − f )/( fmax − fv), ( f ≥ fv)

( fv − f )/( fv − fmin), ( f < fv)
(21)

When the fitness values of individuals in the population tend to be optimal, Pc and
Pm increase, and when the population fitness values are relatively scattered, Pc and Pm
decrease. When Pc and Pm are low, individuals with a fitness value higher than the average
fitness value of the group can be protected into the next generation. When Pc and Pm are
high, individuals with a fitness value lower than the average fitness value of the group
will be eliminated. Therefore, the GA ensures convergence while maintaining population
diversity (notation table is in Appendix A).

The formula to determine the acceptance probability of changing from the current
solution X1 to the new solution X2 using the Metropolis criterion is [28]

P =

{
1, f (X1) ≥ f (X2)

exp[ f (X1)− f (X2)/Ti], f (X1) < f (X2)
(22)

The GSA-BP algorithm steps are shown in Figure 5:
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3.1. Simulation Model of Magnetizing Inrush Current

This section describes a simple power system with a dual-sided power supply and
dual-winding transformer. The model parameter settings and simulation circuit are pre-
sented in Figure 6.
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The power component models used to build the simulation circuit in this study were
selected from a power system module library. Table 1 provides a brief introduction of the
components used.

Table 1. Waveform information of inrush current.

Initial Phase Angle/◦ Residual Flux/pu Peak Value/mA

0 0.5 1347
0 0.64 1471
0 0.8 1629
45 0.5 1274
45 0.64 1443
45 0.8 1609
90 0.5 651
90 0.64 778
90 0.8 924

3.2. Simulation of No-Load Energized

Inrush current is the power surge at the input of a power supply. It occurs during a
short time period, when the input capacitors charge up after the input voltage is applied.
In order to obtain the inrush current sample, the simulated circuit is required to be built in
a no-load energized state. The frequency of the power source was 50 Hz and its voltage
was 35 kV. The wiring form of the transformer winding was Yd11. In order to analyse
the effect of the switch angle on the inrush current, the voltage switched at 0◦, 45◦, and
90◦ [4]. Meanwhile, three residual fluxes, 0.5, 0.64, and 0.8, were set in every switching
under different angles [35].

In Figure 7, the variety of the initial phase angle not only affects the peak value of the
current waveform, but also effects the form of the current waveform. Some information can
be obtained from the graph. It presents that residual flux change will cause the difference
of the peak value of the current. A small switching angle will lead to an intense inrush
current. Additionally, the large residual flux has the same effect on the inrush current.

3.3. Simulation of the Fault Current

In order to find the common points and differences between inrush and fault currents,
fault currents were simulated. This study on the fault current is based on three-phase
transformers and simulates three common faults that may occur on them [36].

Figures 7 and 8 present both fault and inrush currents being much larger than normal.
Table 2 details the data in Figure 8. The large magnitude of the current will cause a
differential protective system, which should operate rapidly when faults occur and should
not be interrupted by the inrush current. This is what they have in common and why a
reliable method is required to differentiate them. Figure 9 shows that the waveform of the
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inrush current is not a continuous waveform, and there are dead angles in every circle,
while the fault current is continuous and close to a sine wave.
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3.3. Simulation of the Fault Current  
In order to find the common points and differences between inrush and fault cur-

rents, fault currents were simulated. This study on the fault current is based on three-
phase transformers and simulates three common faults that may occur on them [36]. 

Figure 7. Inrush current under no-load energized with different initial phase angle and residual flux:
(a) 0◦, 0.5 pu; (b) 0◦, 0.8 pu; (c) 0◦, 0.64 pu; (d) 45◦, 0.5 pu; (e) 45◦, 0.8 pu; (f) 45◦, 0.64 pu; (g) 90◦,
0.5 pu; (h) 0◦, 0.8 pu; (i) 90◦, 0.64 pu.
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Table 2. Waveform information of fault current.

Fault Type Peak Value/mA

Short circuit between turns 4723
Single phase-to-ground fault 2919

Three-phase short circuit 5291Energies 2023, 16, x FOR PEER REVIEW 13 of 23 
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3.4. Harmonic Analysis

FFT analysis can convert a signal into individual spectral components, and thereby
provide frequency information about the signal. Therefore, it can be used for analysis of
current waveforms. In this section, FFT analysis was used to analyze every order of the
harmonic content of the inrush current and short current.

Total harmonic distortion (THD) is one way to gauge power supply quality. It indicates
how much of a harmonic component the voltage and current waveforms contain. In
Figure 10 and Table 3, the THD of fault current did not exceed 20%, while that of the inrush
current was above 40% and even reached 80%. The information demonstrates that there is a
large difference between the inrush current and fault current on the fundamental harmonic
and THD. In addition, the same phase angle and residual fluxes are used in the inrush
current samples, respectively. The data in Table 3 show that phase angle and residual flux
can affect the fundamental harmonic and THD of the inrush current.
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Figure 10. Harmonic analysis on current samples: (a) Inrush current under 0◦ phase angle and 0.5 pu
residual flux; (b) Inrush current under 45◦ phase angle and 0.5 pu residual flux; (c) Inrush current
under 45◦ phase angle and 0.8 pu residual flux; (d) Single phase-to-ground fault; (e) Three-phase
short circuit; (f) Short circuit between turns.
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Table 3. Analysis data of current samples.

Fundamental THD

Inrush current 1 384.7 44.11%
Inrush current 2 324.8 83.65%
Inrush current 3 661.2 50.60%
Fault current 1 1734 15.55%
Fault current 2 3083 14.88%
Fault current 3 2732 13.82%

3.5. Input of the Network

In the simulation of the current, various characteristics, such as dead angel in Figure 9,
can be used to distinguish between the inrush and internal fault currents. However,
extracting all features when modelling the network is not necessary. Too many eigenvalues
being input will cause a slow converge or even failure of converge. The input should have
features with strong regularity and high sensitivity to establish a network easily. Meanwhile,
the computational efficiency and timeliness of the features must also be considered.

Figure 10 and Table 3 have shown that numerous high-order harmonics are generated
when an inrush current occurs in a transformer, particularly the second harmonic. In
contrast, the proportion of high-order harmonics in the fault current is small. Therefore,
the percentage of harmonics can be selected as the input.

The proportion of high-order harmonics in the inrush current and fault current can be
obtained through FFT analysis. The FFT analysis is shown in Figure 11. The inrush current
contains a large number of high-order harmonics. However, the harmonic content above
the fifth order is exceedingly low and can be ignored. Therefore, only the DC component
and first to fifth harmonics were selected as inputs. The percentage of the first harmonic is
always 100%; therefore, this item does not have any effect on identification. Finally, the
input of the GA-BP network was determined as follows:

H = [H0, H2, H3, H4, H5] (23)
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Figure 11. The proportion of harmonics in current presented by FFT analysis.

H0 is the DC component, its range is 0 < H0 < 2, and H2–H5 are the second to fifth
harmonic components with a range of 0–1. The number of output neurons in a neural
network is related to its function of the neural network. To classify the inrush and fault
currents, the output contained one node. When the input sample was an inrush current,
the output was 1; otherwise, it was 0.

Different inrush currents could be obtained by changing the initial flux in the trans-
former and the initial phase of the power supply. Different fault currents could be obtained
by changing the parameters of the circuit elements. Thus, a total of 200 samples was
obtained. A portion of the sample is presented in Table 4.
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Table 4. Part of training samples.

Current Type H0 H2 H3 H4 H5 Output

No-load
energized

0◦ 0.654 0.349 0.136 0.211 0.06 1
30◦ 0.582 0.626 0.256 0.054 0.047 1
60◦ 0.54 0.789 0.511 0.243 0.061 1
90◦ 0.145 0.737 0.411 0.869 0.413 1

120◦ 0.533 0.795 0.538 0.281 0.085 1
150◦ 0.571 0.65 0.282 0.04 0.068 1
180◦ 0.656 0.345 0.137 0.208 0.055 1

Internal fault

Single-phase short
circuit 0.503 0.062 0.041 0.031 0.025 0

Two-phase short
circuit 0.328 0.037 0.026 0.019 0.015 0

Three-phase short
circuit 0.543 0.059 0.039 0.029 0.024 0

Turn-to-turn short
circuit 0.509 0.049 0.033 0.025 0.019 0

Bus 8 fault

Fault between A phase
and B phase 0.429 0.223 0.147 0.111 0.088 0

Fault between A phase
and C phase 0.254 0.181 0.119 0.089 0.071 0

Ground fault 0.387 0.223 0.147 0.110 0.088 0
Turn-to-turn short

circuit 0.038 0.116 0.083 0.042 0.034 0

Single-phase short
circuit 0.077 0.009 0.006 0.004 0.004 0

External fault Two-phase short
circuit 0.421 0.022 0.021 0.014 0.013 0

Three-phase short
circuit 0.221 0.023 0.016 0.012 0.009 0

Fault between A phase
and B phase 0.462 0.182 0.126 0.094 0.075 0

Inrush current
occurred in
Bus1 when

fault occurred
in Bus6

Fault between A phase
and C phase 0.197 0.147 0.096 0.071 0.057 0

Ground fault 0.354 0.188 0.123 0.092 0.073 0

The case studies used to validate the proposal is taken from the FFT analysis. The
input of network is [H0, H2, H3, H4, H5], which means 1st~5th order harmonic content of
current. Output 1 presents means that the current is regarded as an inrush current and
Output 0 is regarded as fault current.

In order to make the experimental results better reflect the performance of GSA-BP
in practical applications, 100 current samples were taken from IEEE 14 bus system case
(Figure 12) [37]. The simulating system represents an approximation of the American
Electric Power system. It can simulate the possible fault conditions in real situations.

3.6. Samples Classification through the BP and GSA-BP Networks

The samples obtained using the Simulink simulation functioned as the input for the
neural network. The maximum number of network cycles was 1000, and the target error
was 0.0001 [38]. The structure of the BP network and transfer function is listed in Table 5.
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Table 5. Structure and function of BP neural network.

BP Neural Network Parameters

Number of input layer nodes 5
Number of hidden layer nodes 11
Hidden layer transfer function Sigmoid function
Output layer transfer function Linear function

Expected error 0.00001
Training function Levenberg–Marquardt

The training results and test outputs are shown in Figure 13. The BP network reached
convergence at 110 epoches.
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The fitness curve and training results of GSA-BP are shown in Figures 14 and 15.
According to the results, the GSA-BP network converged at 20 epoches.
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The same test samples were input into the GSA-BP network. The outputs are shown
in Figure 15.

4. Comparative Study

The current simulation was executed using a simulating model in MATLAB 2017a.
The current simulation involved various possible fault currents, including internal faults
and no-load, energized on internal faults in different scenarios to bring it closer to reality.

Actually, the BP neural network has been applied in transformer fault diagnosis.
However, the accuracy and diagnosis speed of the basic BP network are not enough
because the optimal state of the mis-operation does not occur. It is necessary to combine
different algorithms to deal with the application of different scenarios. In this study, the
proposed algorithm was based on a BP network. A normal BP algorithm is not sufficient
for the current examination because the experimental results indicated that its recognition
ability is unreliable. GA and SA algorithms were used to optimise the BP network for a
more accurate and stable recognition.

The comparison of waveforms and the statistics of harmonics show a sharp difference
in the high harmonic content between inrush and fault currents. Therefore, the fundamen-
tal and 2nd–5th harmonics contents of current are used as characteristic values to input
network. Further, the current generated in the simulation under no-load energized trans-
former fault in a different situation, and the no-load energized when the transformer fault
occurred. All the samples, 200 in total, are classified by the optimized neural network and
original network. This section shows the recognition speed and accuracy of the network.
In addition, BP-related algorithms that have been proposed by other researcher are also
presented for comparison in order to highlight the advantages of the proposed algorithm.

After the simulation, the performances of the BP and GSA-BP networks can be clearly
observed. A comparison is presented in Table 6.
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Table 6. Comparison of BP and GSA-BP networks.

BP Network GA-BP Network GSA-BP Network

Number of epoches
required to reach

convergence
85 27 15

Current classification
accuracy 77.5% 92% 97.5%

Table 6 shows that the current classification models established by the BP networks
had identification accuracies of 80% for all samples. The accuracy of the GSA-BP network
identification model was 97.5%. All training samples and test samples are taken from
different parameters and scenarios, and the eigenvalues of each sample are different, so
GSA-BP does not have overfitting in the test. In order to better reflect the ability of GSA-BP
to respond to different situations, the regression curves under different conditions are listed
(Figure 16).
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Figure 16. Regression of test on different types of samples: (a) Inrush current; (b) Fault current;
(c) Inrush current and fault current happen at the same time.

GSA-BP maintains a high degree of fitting in the testing of different data sets, which
indicates that GSA-BP has a sufficiently stable performance in response to changes. In
terms of accuracy, GSA-BP has an overwhelming advantage. In terms of convergence speed,
GSA-BP also requires the least number of steps to reach convergence. The GSA-BP network
achieved excellent results regardless of the convergence speed or accuracy of identifying
the current. The simulation also showed that the algorithm can reduce the search range at
a faster rate. The algorithm also provides a high local search efficiency. The classification
model achieved an excellent performance improvement after the optimisation of these
capabilities.

While BP-related identification is compared with the GSA-BP network, the algorithm
proposed in the related articles is also listed in Table 7 for comparison on the accuracy and
recognition speed [39,40].

These are similar current identification methods that have been proposed, and the
table shows their accuracy in identifying an inrush current. Although they all have their
own strengths in different fields, compared to GSA-BP, they all have lower accuracy. While
ensuring high accuracy, GSA-BP takes only 0.186 s to identify a current sample on average.
Compared with BP-related recognition methods, such as BP-Adaboost PNN, the recognition
time is reduced by 34.5%. Additionally, the accuracy increased by 9.5%. It is unique to
achieve such a recognition speed at the same level of accuracy. A comparative analysis
indicated that the current classification based on BP and other proposed methods can
discriminate between the inrush and internal fault currents. However, the high training
speed and discrimination precision of GSA-BP are not available in other classification
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methods. The GSA-BP network has broad application prospects for the classification of
inrush currents.

Table 7. Comparison with different classification method proposed by related paper.

PNN BP-
Adaboost

BP-Adaboost
PNN GA-BP GSA-BP

Current
classification

accuracy
72% 81.5% 89.5% 87.5% 97.5%

Improvement
achieved by

GSA-BP network
25.5% 16% 8% 10% 0%

The average time
required to identify

a sample(s)
0.003 0.038 0.284 28.94 0.186

5. Conclusions

In this paper, a BP neural network was enhanced through optimisation based on
simulated annealing and genetic algorithm, which improves the learning efficiency and
global optimisation. GA has excellent global search capabilities, whereas the annealing
algorithm has the ability to avoid premature convergence of the genetic algorithm. They
significantly improve the structural performance and computing speed of the original
network. The inrush and fault currents are simulated with different initial phase angles
and remanence. Comparing the current waveforms shows that the initial phase angles
and remanence can influence the peak and harmonic distortion rate of the inrush current.
In addition, the current waveforms of the inrush current have intermittent angles, while
the waveforms of the fault current are relatively smooth. The harmonic contents of the
inrush and fault currents were used as the inputs to the neural network focusing on the
second to fifth harmonics. Both inrush and fault currents were generated to provide
experimental samples for the identification of neural networks. Compared with BP and
GA-BP networks, the GSA-BP network has a higher iteration speed and improved accuracy
with the recognition rate for all current samples is achieved at 97.5%. The application of
the method requires the adjustment to the number of layers and neurons to be used.
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List of Symbols and Abbreviations

BP Backpropagation
GA Genetic algorithm
FFT Fast Fourier transform
Id2 Second harmonic current in differential current
Id1 Fundamental current in differential current
K2 Second harmonic braking factor
MCDM Multi-criteria decision-making
a Output of neuron
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w Weights
p Input of neuron
b Deviation
t Expected output
η Learning rate
K Length of the code
in Input layer neuron
hk Hidden layer neuron
om Output layer neuron
Xn Input sample
Ym Network output
ω Weights
θ Threshold
E Total error in the neural network
Tk

j Ideal output
Yk

j Real output
K Number of samples
Psi Probability of each chromosome being selected
fi Fitness function value of the first chromosome
x Individual
N Population size
Pc Crossover probability
Pm: Mutation probability
fmax Maximum fitness value in the current population
fmin Minimum fitness value in the current population
fv Average fitness value of the current population

f ′
Fitness value of the chromosome with larger fitness between two
chromosomes participating in the crossover

Pc Crossover probability
Pm Mutation probability
fmax Maximum value of the fitness value in the current population
fmin Minimum value of the fitness value in the current population
fv Average fitness value of the current population

f ′
Fitness value of the chromosome with larger fitness between two
chromosomes participating in the crossover

Appendix A

Table A1. Introduction to electrical components.

Power Components Function Parameters

Three phase sourse Provide continuous and stable
sinusoidal AC voltage

Voltage, phase angle,
resistance, inductance, etc.

Three-phase sourse RLC load Simulate the parallel load
Load rated voltage, frequency,

active power, reactive
power, etc.

Three-phase VI measurement Detect the voltage and current
across the transformer None

Three-phase breaker Cut off the faulty circuit Cutting off initial time, circuit
breaker parameters, etc.

Three-phase transformer Simulate transformer
Iron core, winding connection
method, transformer capacity,

frequency, etc.

Three-phase Fault Simulate failure fault, fault resistance
parameters, etc.

Scope Show the results None



Energies 2023, 16, 2340 21 of 22

References
1. Kabbara, W.; Bensetti, M.; Phulpin, T.; Caillierez, A.; Loudot, S.; Sadarnac, D. A Control Strategy to Avoid Drop and Inrush

Currents during Transient Phases in a Multi-Transmitters DIPT System. Energies 2022, 15, 2911. [CrossRef]
2. Habyarimana, M.; Dorrell, D.G.; Musumpuka, R. Reduction of Starting Current in Large Induction Motors. Energies 2022, 15, 3848.

[CrossRef]
3. Abdusalam, O.; Ibrahim, A.; Anayi, F.; Packianather, M. New Hybrid Machine Learning Method for Detecting Faults in

Three-Phase Power Transformers. Energies 2022, 15, 3905. [CrossRef]
4. Gunda, S.K.; Dhanikonda, V.S.S.S.S. Discrimination of Transformer Inrush Currents and Internal Fault Currents Using Extended

Kalman Filter Algorithm (EKF). Energies 2021, 14, 6020. [CrossRef]
5. Marvasti, F.D.; Mirzaei, A. A Novel Method of Combined DC and Harmonic Overcurrent Protection for Rectifier Converters of

Monopolar HVDC Systems. IEEE Trans. Power Deliv. 2018, 33, 892–900. [CrossRef]
6. Lee, B.; Lee, J.; Won, S.; Lee, B.; Crossley, P.; Kang, Y. Saturation Detection-Based Blocking Scheme for Transformer Differential

Protection. Energies 2014, 7, 4571–4587. [CrossRef]
7. Cao, W.; Yin, X.; Zhang, Z.; Pan, Y.; Wang, Y.; Yin, X. Characteristic analysis of zero-mode inrush current of high-impedance

transformer. Int. J. Electr. Power Energy Syst. 2020, 117, 105716. [CrossRef]
8. Okilly, A.H.; Kim, N.; Baek, J. Inrush Current Control of High Power Density DC–DC Converter. Energies 2020, 13, 4301.

[CrossRef]
9. Dashti, H.; Davarpanah, M.; Sanaye-Pasand, M.; Lesani, H. Discriminating transformer large inrush currents from fault currents.

Int. J. Electr. Power Energy Syst. 2016, 75, 74–82. [CrossRef]
10. Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224.

[CrossRef]
11. Yazdani-Asrami, M.; Taghipour-Gorjikolaie, M.; Razavi, S.M.; Gholamian, S.A. A novel intelligent protection system for power

transformers considering possible electrical faults, inrush current, CT saturation and over-excitation. Int. J. Electr. Power Energy
Syst. 2015, 64, 1129–1140. [CrossRef]

12. Rahmati, A.; Sanaye-Pasand, M. Protection of power transformer using multi criteria decision-making. Int. J. Electr. Power Energy
Syst. 2015, 68, 294–303. [CrossRef]

13. Lee, B.; Park, J.-W.; Crossley, P.; Kang, Y. Induced Voltages Ratio-Based Algorithm for Fault Detection, and Faulted Phase and
Winding Identification of a Three-Winding Power Transformer. Energies 2014, 7, 6031–6049. [CrossRef]

14. Zhang, A.Q.; Ji, T.Y.; Li, M.S.; Wu, Q.H.; Zhang, L.L. An Identification Method Based on Mathematical Morphology for
Sympathetic Inrush. IEEE Trans. Power Deliv. 2018, 33, 12–21. [CrossRef]

15. Marques, J.P.; Lazaro, C.; Morais, A.P.; Cardoso, G. A reliable setting-free technique for power transformer protection based on
waveform transform. Electr. Power Syst. Res. 2018, 162, 161–168. [CrossRef]

16. Zhang, L.L.; Wu, Q.H.; Ji, T.Y.; Zhang, A.Q. Identification of inrush currents in power transformers based on higher-order statistics.
Electr. Power Syst. Res. 2017, 146, 161–169. [CrossRef]

17. Deng, Y.; Lin, S.; Fu, L.; Liao, K.; Liu, L.; He, Z.; Gao, S.; Liu, Y. New Criterion of Converter Transformer Differential Protection
Based on Wavelet Energy Entropy. IEEE Trans. Power Deliv. 2019, 34, 980–990. [CrossRef]

18. Almaghrabi, S.; Rana, M.; Hamilton, M.; Rahaman, M.S. Solar power time series forecasting utilising wavelet coefficients.
Neurocomputing 2022, 508, 182–207. [CrossRef]

19. Huang, J.; Ling, L.; Xiao, Q. Research on weak signal detection method for power system fault based on improved wavelet
threshold. Energy Rep. 2022, 8, 290–296. [CrossRef]

20. Narayanamoorthy, S.; Parthasarathy, T.N.; Pragathi, S.; Shanmugam, P.; Baleanu, D.; Ahmadian, A.; Kang, D. The novel
augmented Fermatean MCDM perspectives for identifying the optimal renewable energy power plant location. Sustain. Energy
Technol. Assess. 2022, 53, 102488. [CrossRef]

21. Valipour, M. Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms.
Meteorol. Appl. 2016, 23, 91–100. [CrossRef]

22. Dopazo, D.A.; Pelayo, V.M.; Fuster, G.G. An automatic methodology for the quality enhancement of requirements using genetic
algorithms. Inf. Softw. Technol. 2021, 140, 106696. [CrossRef]

23. Sang, B. Application of genetic algorithm and BP neural network in supply chain finance under information sharing. J. Comput.
Appl. Math. 2021, 384, 113170. [CrossRef]

24. Wang, L.; Bi, X. Risk assessment of knowledge fusion in an innovation ecosystem based on a GA-BP neural network. Cogn. Syst.
Res. 2021, 66, 201–210. [CrossRef]

25. Ajmal, M.S.; Iqbal, Z.; Khan, F.Z.; Ahmad, M.; Ahmad, I.; Gupta, B.B. Hybrid ant genetic algorithm for efficient task scheduling in
cloud data centers. Comput. Electr. Eng. 2021, 95, 107419. [CrossRef]

26. Aygun, H.; Turan, O. Application of genetic algorithm in exergy and sustainability: A case of aero-gas turbine engine at cruise
phase. Energy 2022, 238, 121644. [CrossRef]

27. Zou, M.; Xue, L.; Gai, H.; Dang, Z.; Wang, S.; Xu, P. Identification of the shear parameters for lunar regolith based on a GA-BP
neural network. J. Terramech. 2020, 89, 21–29. [CrossRef]

28. Esnaashari, M.; Damia, A.H. Automation of software test data generation using genetic algorithm and reinforcement learning.
Expert Syst. Appl. 2021, 183, 115446. [CrossRef]

http://doi.org/10.3390/en15082911
http://doi.org/10.3390/en15103848
http://doi.org/10.3390/en15113905
http://doi.org/10.3390/en14196020
http://doi.org/10.1109/TPWRD.2017.2745758
http://doi.org/10.3390/en7074571
http://doi.org/10.1016/j.ijepes.2019.105716
http://doi.org/10.3390/en13174301
http://doi.org/10.1016/j.ijepes.2015.08.025
http://doi.org/10.1016/j.jii.2021.100224
http://doi.org/10.1016/j.ijepes.2014.08.008
http://doi.org/10.1016/j.ijepes.2014.12.073
http://doi.org/10.3390/en7096031
http://doi.org/10.1109/TPWRD.2016.2590479
http://doi.org/10.1016/j.epsr.2018.05.002
http://doi.org/10.1016/j.epsr.2017.01.029
http://doi.org/10.1109/TPWRD.2019.2893431
http://doi.org/10.1016/j.neucom.2022.08.016
http://doi.org/10.1016/j.egyr.2022.10.294
http://doi.org/10.1016/j.seta.2022.102488
http://doi.org/10.1002/met.1533
http://doi.org/10.1016/j.infsof.2021.106696
http://doi.org/10.1016/j.cam.2020.113170
http://doi.org/10.1016/j.cogsys.2020.12.006
http://doi.org/10.1016/j.compeleceng.2021.107419
http://doi.org/10.1016/j.energy.2021.121644
http://doi.org/10.1016/j.jterra.2020.02.003
http://doi.org/10.1016/j.eswa.2021.115446


Energies 2023, 16, 2340 22 of 22

29. Wang, C.; Guo, C.; Zuo, X. Solving multi-depot electric vehicle scheduling problem by column generation and genetic algorithm.
Appl. Soft Comput. 2021, 112, 107774. [CrossRef]

30. Xiao, H.; Tian, Y. Prediction of mine coal layer spontaneous combustion danger based on genetic algorithm and BP neural
networks. Procedia Eng. 2011, 26, 139–146. [CrossRef]

31. Muñoz, A.; Rubio, F. Evaluating genetic algorithms through the approximability hierarchy. J. Comput. Sci. 2021, 53, 101388.
[CrossRef]

32. Shyla, M.K.; Kumar, K.B.S.; Das, R.K. Image steganography using genetic algorithm for cover image selection and embedding.
Soft Comput. Lett. 2021, 3, 100021. [CrossRef]

33. Yu, F.; Xu, X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural
network. Appl. Energy 2014, 134, 102–113. [CrossRef]

34. Nachaoui, M.; Afraites, L.; Laghrib, A. A Regularization by Denoising super-resolution method based on genetic algorithms.
Signal Process. Image Commun. 2021, 99, 116505. [CrossRef]

35. Oyanagi, R.; Noda, T.; Ichikawa, M. A Method for Estimating the Current-Flux Curve of a Single-Phase Transformer for
Electromagnetic Transient Simulations of Inrush Currents. Electr. Eng. Jpn. 2018, 204, 13–24. [CrossRef]

36. Jung, B.I.; Cho, Y.S.; Park, H.M.; Chung, D.C.; Choi, H.S. Comparison of the quench and fault current limiting characteristics of
the flux-coupling type SFCL with single and three-phase transformer. Phys. C Supercond. 2013, 484, 258–262. [CrossRef]

37. Illinois Center for a Smarter Electric Grid. IEEE 14-Bus System. August 1993. Available online: https://icseg.iti.illinois.edu/ieee-
14-bus-system/ (accessed on 18 January 2023).

38. Liang, W.; Wang, G.; Ning, X.; Zhang, J.; Li, Y.; Jiang, C.; Zhang, N. Application of BP neural network to the prediction of coal ash
melting characteristic temperature. Fuel 2020, 260, 116324. [CrossRef]

39. Bagheri, S.; Moravej, Z.; Gharehpetian, G.B. Classification and Discrimination Among Winding Mechanical Defects, Internal and
External Electrical Faults, and Inrush Current of Transformer. IEEE Trans. Ind. Inform. 2018, 14, 484–493. [CrossRef]

40. Yan, C.; Li, M.; Liu, W. Transformer Fault Diagnosis Based on BP-Adaboost and PNN Series Connection. Math. Probl. Eng. 2019,
2019, 1019845. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.asoc.2021.107774
http://doi.org/10.1016/j.proeng.2011.11.2151
http://doi.org/10.1016/j.jocs.2021.101388
http://doi.org/10.1016/j.socl.2021.100021
http://doi.org/10.1016/j.apenergy.2014.07.104
http://doi.org/10.1016/j.image.2021.116505
http://doi.org/10.1002/eej.23102
http://doi.org/10.1016/j.physc.2012.03.063
https://icseg.iti.illinois.edu/ieee-14-bus-system/
https://icseg.iti.illinois.edu/ieee-14-bus-system/
http://doi.org/10.1016/j.fuel.2019.116324
http://doi.org/10.1109/TII.2017.2720691
http://doi.org/10.1155/2019/1019845

	Introduction 
	Methodology 
	Introduction to BP Neural Network 
	Learning Rules 
	Introduction to Genetic and Simulated Annealing Algorithms 
	Design of the GSA-BP Algorithm 
	Coding 
	Decoding 
	Fitness Function 
	Genetic Operator 
	Annealing 

	Operating Principles of GSA-BP Network 

	Results and Discussion 
	Simulation Model of Magnetizing Inrush Current 
	Simulation of No-Load Energized 
	Simulation of the Fault Current 
	Harmonic Analysis 
	Input of the Network 
	Samples Classification through the BP and GSA-BP Networks 

	Comparative Study 
	Conclusions 
	Appendix A
	References

