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Abstract: Short-term hydrothermal scheduling problem plays an important role in maintaining a
high degree of economy and reliability in power system operational planning. Since electric power
generation from fossil fired plants forms a major part of hydrothermal generation mix, therefore their
emission contributions cannot be neglected. Hence, multi-objective short term hydrothermal schedul-
ing is formulated as a bi-objective optimization problem by considering (a) minimizing economical
power generation cost, (b) minimizing environmental emission pollution, and (c) simultaneously
minimizing both the conflicting objective functions. This paper presents a non-dominated sorting
disruption-based oppositional gravitational search algorithm (NSDOGSA) to solve multi-objective
short-term hydrothermal scheduling (MSHTS) problems and reveals that (i) the short-term hydrother-
mal scheduling problem is extended to a multi-objective short-term hydrothermal scheduling problem
by considering economical production cost (EPC) and environmental pollution (EEP) simultaneously
while satisfying various diverse constraints; (ii) by introducing the concept of non-dominated sorting
(NS) in gravitational search algorithm (GSA), it can optimize two considered objectives such as EPC
and EEP simultaneously and can also obtain a group of conflicting solutions in one trial simulation;
(iii) in NSDOGSA, the objective function in terms fitness for mass calculation has been represented by
its rank instead of its EPC & EEP values by using the NS approach; (iv) an elite external archive set is
defined to keep the NS solutions with the idea of spread indicator; (v) the optimal schedule value is
extracted by using fuzzy decision approach; (vi) a consistent handling strategy has been adopted to
handle effectively the system constraints; (vii) finally, the NSDOGSA approach is verified on two test
systems with valve point loading effects and transmission loss, and (viii) computational discussion
show that the NSDOGSA gives improved optimal results in comparison to other existing methods,
which qualifies that the NSDOGSA is an effective and competitive optimization approach for solving
complex MSHTS problems.

Keywords: non-dominated sorting; gravitational search algorithm; economical/environmental
hydrothermal scheduling; fuzzy decision-making; opposition-based learning; disruption operator
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1. Introduction

In modern power systems, the efficient dispatch of available power resources for
satisfying the increased load has become an important aspect of economic operation of
the power system. In this respect, hydro energy sources are considered to be promising
alternative energy sources integrated with thermal plants to provide a clean, smooth,
environment-friendly energy operation and also meet other requirements such as flood
control and irrigation. Usually, the operation of a hydrothermal integrated system is more
complex than the scheduling of an all-thermal generation system as the hydroelectric plants
are coupled both electrically and hydraulically. Therefore, the optimum scheduling of
hydrothermal generation plants is of utmost importance in the current scenario due to its
economical aspect linked with the power system operation.

In the process of power system operation and planning, hydrothermal scheduling
(HTS) is of a vital role to maintain a high degree of economy and reliability. The storage
capacity of the reservoir is the deciding factor in whether long-term or short-term schedul-
ing is desired for the operation planning of a hydrothermal power system. In long-term
scheduling, the discharge rates at hydro stations and generation of thermal stations are
determined on monthly intervals for an optimization period of several years so that the
economical production cost of thermal generation is minimum. Such type of problem
is a stochastic one because the load demand and inflows at various reservoirs over the
period are not known exactly. On the other hand, the short-term scheduling problem is
concerned with an available water allocation over a shorter period such as an hourly period
that minimizes the overall thermal generation cost. The inclusion of time delays for water
travel time between cascaded reservoirs is usually not necessary for the long-term problem;
however, it is mandatory to consider them for short-term hydrothermal scheduling (SHTS)
problems. SHTS issues are divided into fixed-head and variable-head problems. The SHTS
issue may be divided into two categories based on the head of the reservoir: fixed head
and variable head. Fixed head reservoirs have a big capacity, but variable head reservoirs
have a restricted quantity of water. Reservoir head is almost constant for high-capacity
reservoirs in SHTS problems due to low fluctuation of inflows. Even so, because of the
considerable effect of inflows, head variation cannot be overlooked in small scale reservoirs.
The hydro generation is assumed to be a function of water discharge quantities in fixed
head SHTS formulation. The variable head scheduling issue, on the other hand, is con-
cerned with the nonlinear function of hydropower in terms of reservoir storage and water
discharge. Moreover, reservoir volume restrictions like as maximum and minimum limits
are generally taken into account in variable head formulation. Variable head plant models
also incorporate flow balance equations that influence reservoir dynamics. Therefore, the
problem of SHTS scheduling generation with adjustable head hydro plants is relatively a
more complicated problem and requires special attention. In addition to the low operating
cost of power generation, emission pollution must be lowered for eco-friendly power
generation. Both these factors, i.e., cost and emission pollution are conflicting in nature.
Therefore, the SHTS problem is reframed to the multi-objective short-term hydrothermal
scheduling (MSHTS) subject to satisfy all constraints.

Many investigators have suggested different multi-objective procedures to solve
the MSHTS problem over the past decades such as a simulated annealing-based goal-
attainment approach [1], a fuzzy satisfying method based on evolutionary programming [2],
differential evolution [3,4], particle swarm optimization [5], quantum-behaved particle
swarm optimization [6,7], a quadratic approximation-based differential evolution with
valuable trade-off [8], predator–prey optimization [9,10], self-organizing hierarchical par-
ticle swarm optimization technique with time-varying acceleration coefficients [11], hy-
brid chemical reaction optimization [12], surrogate differential evolution [13], cuckoo
bird-inspired meta-heuristic algorithm [14], etc. These entire methods convert the multi-
objective optimization problem into a single objective problem by using weights, price
penalty factors, or trade-offs. Although these approaches can obtain compromise solutions
for the MSHTS problem, some drawbacks of these are (i) there is only one solution produced
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at each simulation run and the whole optimization process has to be repeated when the
weights are changed; (ii) these methods may fail in yielding a uniformly distributed non-
dominated front when objective functions are non-convex. To overwhelm these difficulties,
recently, trade-off approaches have been established such as multi-objective differential
evolution algorithm [15–17], multi-objective cultural algorithm based on particle swarm op-
timization [18], hybrid multi-objective cultural algorithm [19], multi-objective artificial bee
colony [20], normal boundary intersection method [21], multi-objective quantum-behaved
particle swarm optimization [22], parallel multi-objective differential evolution [23], etc.
However, these methods are having one other disadvantage premature convergence, more
execution time weakly obtained non-dominated solutions, and greater effort is required
from decision-makers to find compromise solutions.

Over past few years, the competency of gravitational search algorithm has been proved
for solving single- and multi-objective problems [24–44]. This research article presents
a non-dominated sorting disruption-based oppositional gravitational search algorithm
(NSDOGSA) for solving single/multi-objective hydrothermal scheduling problems and
differs from existing literature based on following points:

• Initially, an initialization process is escalated over complete search space using the
concept of oppositional-based learning.

• Then, an integrated non-dominated sorting procedure deals with conflicting objective
functions and attains a set of non-dominated solutions in a single run.

• The NS solutions are then stored in a limited length external archive, and a spread in-
dicator metric is incorporated to update the archive. Once more, a disruption operator
is used to update each agent’s position in order to prevent premature convergence.

• A fuzzy decision approach is also utilized to select better option from agent set. In
addition, an effective constraint handling technique for dealing with load balancing
limitations and end reservoir storage volumes in a hydrothermal scheduling problem
is described.

• Finally, NSDOGGSA is carried out on two MSHTS test systems and results are com-
pared with other existing techniques. Thus, the proposed approach attains feasible
solutions effectively in terms of compromise solutions with less computational time
for solving SHTS/MSHTS problems.

The structure of the paper is arranged as follows: Section 2 presents the problem state-
ment of MSHTS mathematical formulations. Section 3 provides the proposed NSDOGSA
methodology for solving MSHTS benchmark problems. Section 4 explains the computa-
tional discussion on MSHTS problems trailed by conclusions & future work in Section 5.

2. Problem Statement

Multi-objective short-term hydrothermal scheduling problem has been formulated
to minimize both the power generation cost and emission pollution concurrently, simul-
taneously apart from fulfilling equality and inequality constraints. The mathematical
expressions of objective functions and constraints are mentioned below:

2.1. Objective Functions

Traditionally, thermal plants consume fuel for electricity generation, which invites a
cost per unit of power generated. Further, the total generation costs for power plants include
fuel, labor, and maintenance costs. Unlike capital costs, which are “fixed” (do not vary with
the level of output), a plant’s total power generation cost depends on how much electricity
in that plant produces. In practice, whenever the steam admission valve of the thermal unit
starts to open, the economical production cost increases sharply. This phenomenon is called
a valve point loading effect which can be represented by the non-smooth generation cost
function. The valve point loading effects can be modeled by adding a sinusoidal function
to the generation cost function. Consequently, the economical production cost function of
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thermal power plants with the consideration of valve point loading effects can be described
as a quadratic function along with a sinusoidal function, which is represented as follows [2]:

minimize EPC =
T

∑
t=1

Ng

∑
i=1

nt
(

ai + biPt
i + ci

(
Pt

i
)2

+
∣∣∣di × sin

{
ei ×

(
Pmin

i − Pt
i

)}∣∣∣) (1)

where EPC represents cost of economic power generation, Ng indicate thermal plants, T
indicates scheduled periods, Pt

i indicates ith thermal generation at tth a scheduled period,
Pmin

i indicates minimum generation limit of ith plant, and ai, bi, ci, di, ei are ith thermal plant
cost coefficients [33].

Moreover, the majority of air pollution is caused by thermal generating units, which
are mostly composed of nitrogen oxides NOx, sulphur oxides SO2, and carbon dioxide CO2,
resulting in environmental degradation due to the high concentration of pollutants that
they create. The emission pollution functions for a thermal plant can be directly related to
the environmental production cost function via the emission pollution rate per megajoule
(1 Btu = 1055.06 J), that acts as a constant factor for a given type or grade of fuel, yielding
quadratic NOx, SO2, and CO2 emission pollution functions in terms of active power
generation. Thermal power stations emit the most pollutants into the atmosphere when
compared to hydropower plants. As a result, the total environmental emission pollution
(EEP) is the mixture of a quadratic and an exponential function, as shown below. [2]:

minimize EEP =
T

∑
t=1

Ng

∑
i=1

nt
(

αi + βiPt
i + γi

(
Pt

i
)2

+ ηi × exp
(
δi × Pt

i
))

(2)

where αi, βi, γi, ηi, δi indicates coefficients ith thermal unit.

2.2. Constraints

The MSHTS is constrained by several hydraulic and thermal factors, such as a load
balance constraint, generation boundaries, water discharge boundaries, variable reservoir
boundaries, the cascading of the hydraulic system with time delays effect, and starting
and ending water storage volumes. All of these constraints have detailed mathematical
expressions, which are discussed in [33].

3. Proposed Methodology for Solving Multi-Objective Short-Term Hydrothermal Scheduling

The gravitational search algorithm (GSA) is receiving more attention and applies
to any single objective optimization problem regardless of the linearity, nonlinearity, or
non-convexity of its objective function and constraints. However, the GSA has lack of
global optimality, as it can often get stuck in local optima. It also tends to be computa-
tionally expensive and sensitive to parameter selection. To overcome this inadequacy,
the authors have demonstrated different conceptual methods such as oppositional GSA
(OGSA), disruption-based GSA (DGSA), and disruption in OGSA (DOGSA) to enhance
the performance of GSA convergence for solving single objective SHTS problems [25,26].
However, GSA can be used for multi-objective optimization by assigning each agent a
different objective function and allowing them to interact with each other. The agents’
masses can be used as a measure of the importance of their respective objective functions,
and the goal of the optimization would be to find the set of solutions that provides the best
trade-off between the conflicting objectives. As a result, attempts were made in the current
work towards the creation of a multiobjective approach by considering the fitness value
for mass calculation of each particle defined by its nondomination rank rather than the
objective function value. The non-dominated sorting procedure yields the non-domination
rank. The different steps and mathematical expressions of the proposed technique are
mentioned in the subsequent sections.
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3.1. Population Initialization

In the initialization process of the proposed methodology, the decision variables
called as agents are representing the water discharge rates of the hydro plants and power
generations of thermal plants at each time interval. Hence, every initial individual is
obtained by creating all the decision variables randomly in feasible range with the hydro
and thermal power generation outputs, which represents the agents of the population.

Additionally, opposite number may be described as the mirror position of agent
from the centre of the search area. Tizhoosh invented opposition-based learning, which
is mentioned in [26], opposition-based learning is a novel concept in computer-based
techniques, which considers the present agent along with its opposite agent to achieve a
better optimal solution. It has been proved in the literature that an opposite candidate
solution has a better chance to be closer to the global optimum solution than a random
agent solution. Therefore, the random population of agents and opposition-based agents
Xi & OXi are designated as follows: Xi =

[
x1

i , . . . , xd
i , . . . , xD

i

]
OXi =

[
ox1

i , . . . , oxd
i , . . . , oxD

i

]
d = 1, 2, . . . , D , i = 1, 2, . . . , N;

(3)

where Xi&OXi indicates ith random and opposite agents, xd
i , oxd

i = xd
L + xd

U − xd
i ∈[

xd
L, xd

U

]
are ith a random and opposite location at dth dimension, D indicates the overall

defined space, and xd
L, xd

U are lower and upper bounds. In MSHTS problems, over the
scheduled time horizon, the water discharge and thermal generation are regarded as
separate quantities. {

qt
j = qmin

j + rand×
(

qmax
j − qmin

j

)
Pt

i = Pmin
i + rand×

(
Pmax

i − Pmin
i
)

t = 1, 2, . . . , T
i = 1, 2, . . . , Ng + Nh;

j = Ng + 1, Ng + 2, . . . , Ng + Nh;

(4)

Hence, an initialization structure of MSHTS problem is represented as:

Xi =

[
q1

1, q2
1, . . . , qT

1 , . . . . . . , q1
Nh, q2

Nh, . . . qT
Nh,

P1
1 , P2

1 , . . . , PT
1 , . . . . . . , P1

Ng, P2
Ng, . . . , PT

Ng

]
(5)

A collective population {X, OX} is established by randomly generated agents along
with opposite position. After the initialization process, the constraint handling strategies
are adopted from [26,29] to satisfy the system balance and end storage volume restrictions
for MSHTS issues.

3.2. Update External Archive and Calculate Fitness and Mass

The population comprising of the initial and opposite populations {X, OX} is formed
and categorized into various non-domination layers using the NS procedure as presented
in [32] and the current population is ranked on the fitness value. The agent of a lesser rank
is selected and the agents having more crowding distance remain in the current population.
This iteration process of the proposed NSDOGSA is carried out for N several agents. The
elite external archive is updated using the Pareto dominance concept [32] and the length of
the external archive is controlled using the spread indicator metric [27]. Further, the NS
rank obtained by the non-dominated sorting operation is used to determine the fitness for
mass calculation. Figure 1 displays the link between all of the agents’ fitness and rank.
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Fitness value is calculated based on NS rank and their corresponding agent’s masses
are determined given as below [26]:

Mi(k) =
mi(k)

N
∑

j=1
mj(k)

mi(k) =
f iti(k)−worst(k)
best(k)−worst(k)

(6)

where Mi(k) , f iti(k), worst(k) = max
i∈{1,2,...,N}

f iti(k) & best(k) = min
i∈{1,2,...,N}

f iti(k) signifies

the normalized mass, fitness value, worst fitness and best of ith agent at kth iteration.

3.3. Update the Agent’s Acceleration, Velocity, and Position

The agent’s acceleration in every repetition is computed as:

ad
i (k) = ∑

j∈gbest,j 6=i
randj × G(k)×

(
Mi(k)

Rij(k)+ ∈

)
×
(

xd
j (k)− xd

i (k)
)

(7)

where, the constant of gravitational is G(k) = G0 × e(
−αk

K ) at kth iteration, the gravitational
constant is represented as G0, α is specified constant, K represents maximum iterations,
∈ = 2.2204× 10−16 is constant, Rij(k) = ‖Xi(k)− Xj(k)‖ indicates a Euclidean distance
between two agents ith and jth at kth genearion, and gbest is the best fitness value. The
agent’s velocity and the position for the (k + 1)th generation are calculated as below:{

vd
i (k + 1) = rand× vd

i (k) + ad
i (k)

xd
i (k + 1) = xd

i (k) + vd
i (k + 1)

(8)

where randi indicates a random number between intervals [0–1], vd
i (k), vd

i (k + 1) & xd
i (k),

xd
i (k + 1) represent the velocity and position [33].
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3.4. Moving Agents with Disruption Operator

The disruption operator is employed in the oppositional gravitational search algo-
rithm (DOGSA) to avoid the algorithm from becoming locked in local optima and to
improve local search [25]. The following criterion must be satisfied for disruption of
the solutions: 

Rij
Ribest

< C

C = C0

(
1− k

K

) (9)

The position of the solution satisfying the disruption criterion is updated as follows:
OXi(k + 1) = D× Xi(k + 1)

D =

 Rij × rand
(
−0.25Rij, 0.25Rij

)
i f Ribest ≥ 1

Rij + ρ× rand
(
−0.25Rij, 0.25Rij

)
otherwise

(10)

where Rij is Euclidean distance between agents i and j, C0 is constant, C is threshold value,
rand

(
−0.25 Rij, 0.25 Rij

)
indicates a random number among the intervals

[
−0.25Rij, 0.25Rij

]
and ρ = 10−16 is constant value.

Thereafter, the NS method in addition to the elite agent’s preservation is used for
solving the multi-objective problems and fuzzy decision strategy implemented to obtain an
optimal compromised result [32,33].

3.5. NSDOGSA Procedure for MSHTS Problem

The computational framework of the proposed NSDOGSA method for solving the
MSHTS problem is shown in Figure 2 and described as follows:

Step 1: Enter the data from the hydrothermal test system and define the NSDOGSA’s
settings. Create an opposition-based population by randomly initializing the
water discharges and thermal power generation outputs for each agent in
the population.

Step 2: Constraint handling procedure is performed to satisfy end reservoir volumes and
system load balance constraints.

Step 3: Apply the NS strategy and update an external archive group.
Step 4: Update the agent’s acceleration, velocity, and position.
Step 5: Moving agent’s updating using disruption operator.
Step 6: When prescribed iteration number is reached, stop the operation and store the

trade-off solutions in an external archive; otherwise, go to Step 2.
Step 7: Identify the non-dominated solution from the trade-off solutions by using a fuzzy

decision strategy.
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4. Discussion and Simulation Studies

NSDOGSA technique as well as other versions have been successfully used to address
MSHTS issues on MATLAB 8.5 platform and prepared in PC (core i7-3rd Gen, 2.67 GHz,
8GB RAM). The suggested NSDOGSA approach is demonstrated on two MSHTS problems.
The first one consists of 4 hydro and 3 thermal plants without considering transmission
losses and another with the same system by including transmission losses. In order to
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study the feasibility and robust analysis of NSDOGSA, there are two standard test systems
with different complex properties adopted from [22]. The complete hydraulic network and
the complete hydrothermal information given in Appendix A. EPC and EEP functions are
optimized separately by using DOGSA to enlighten the conflicting relation between these
objective functions for MSHTS problems.

4.1. Test System-I

The parameters of the suggested approach have been obtained after fifty simulation
runs. After fifty simulation runs, the parameters for NSDOGSA are given below: N = 100,
K = 2000, Al = 20, Pelite = 0.5, G0 = 150, α = 15, and C0 = 150. Additionally, the competency
of the suggested methods are compared with the existing methods such as non-dominated
sorting genetic algorithm (NSGA-II) in [19] multi-objective particle swarm optimization
(MOPSO) in [22]. The size of the population, utmost generations, crossover and mutation
probability of NSGA-II are 100, 2000, 0.45, and 0.2, respectively. MOPSO’s chosen parame-
ters are as follows: swarm size = 100, maximum iterations = 2000, cognitive parameter = 4,
social parameter = 3, and weight factor upper and lower values are 0.7 and 0.1, respectively.

The computational outcomes found by NSDOGSA for individual EPC, EEP, and
MSHTS are mentioned in Table 1 and outperformed with other techniques such as SAGA [1],
Fuzzy EP [2], MDE [3], DE [4], PSO [5], IQPSO [6], QPSO [7], QPSO-DM [7], QADEVT [8],
PSO [9], PPO [9], PSO [10], PPO [10], PSO with PPS [10], PPO with PPS [10], SOHPSO-
TVAC [11], HCRO-DE [12], CBIA [13], NPdynejDE [14], MODE-ACM [15], MODE [16],
LM-MODE [16], CM-MODE [16], TM-MODE [16], MODE [17], CB-MOHDE [17], MOCA-
PSO [18], NSGA-II [19], HMOCA [19], MOABC [20], NBIM [21], MODE-ACM [22], NSGA-
II [22], MOQPSO [22], MODE [23], PMODE [23], NSPSO [28], NSPSO-CM [28], NSGSA [28],
NSGSA-CM [28], GSA [29], IGSA [29], and IMOGSA [30].

Table 1. Performance evaluation of different methods for MSHTS of Test system-I.

Method
Minimum EPC ($) Minimum EEP (lb) MSHTS

EPC ($) EEP (lb) Time (s) EPC ($) EEP (lb) Time (s) EPC ($) EEP (lb) Time (s)

SAGA [1] 45,305.00 33,851.00 - 49,330.00 16,554.00 - 45,956.00 17,447.00 -

Fuzzy EP [2] 45,063.04 48,797.00 - 59,228.00 16,554.00 - 47,906.00 26,234.00 4582.0

MDE [3] 42,611.00 33,323.00 125.00 48,714.00 15,730.00 - 43,198.00 20,385.00 -

DE [4] 43,500.00 21,092.00 72.95 51,449.00 18,257.00 72.73 44,914.00 19,615.00 74.96

PSO [5] 42,474.00 28,132.00 123.52 48,263.00 16,928.00 124.66 43,280.00 17,899.00 132.45

IQPSO [6] 42,359.00 31,298.00 - 45,271.00 17,767.00 - 44,259.00 18,229.00 -

QPSO [7] 42,545.00 31,205.00 - 46,288.00 17,735.00 - 44,122.00 18,102.00 -

QPSO-DM [7] 41,909.00 30,724.00 - 45,392.00 17,659.00 - 43,507.00 18,183.00 -

QADEVT [8] 41,762.00 30,710.00 - 45,971.00 16,654.00 - 42,939.00 17,918.00 -

PSO [9] 43,076.00 25,384.00 77.31 48,570.00 16,199.00 75.21 45,906.00 18,621.00 79.21

PPO [9] 42,042.00 27,961.00 30.71 48,913.00 15,728.00 30.62 44,111.00 17,473.00 31.62

PSO [10] 43,251.00 24,042.00 40.35 46,046.00 16,720.00 41.43 44,330.00 19,589.00 44.52

PPO [10] 42,170.00 26,177.00 29.31 49,072.00 15,805.00 29.40 43,146.00 17,009.00 29.31

PSO with PPS [10] 42,056.00 27,532.00 31.56 48,006.00 15,801.00 31.83 43,005.00 17,054.00 32.31

PPO with PPS [10] 41,530.00 28,757.00 28.32 48,920.00 15,716.00 29.12 42,836.00 17,254.00 29.19

SOHPSO-TVAC [11] 41,983.00 24,482.00 112.00 44,432.00 16,803.00 112.56 43,045.00 17,003.00 120.00

HCRO-DE [12] 42,398.51 24,087.36 - 48,446.94 16,142.73 - 42,801.55 17,622.99 -

CBIA [13] 41,223.00 - 94.00 - 16,303.00 96.00 42,990.00 17,311.00 98.00
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Table 1. Cont.

Method
Minimum EPC ($) Minimum EEP (lb) MSHTS

EPC ($) EEP (lb) Time (s) EPC ($) EEP (lb) Time (s) EPC ($) EEP (lb) Time (s)

NPdynejDE [14] 40,859.84 22,767.78 26.24 49,717.22 16,495.62 26.25 41,697.23 17,981.40 26.27

MODE-ACM [15] 42,417.00 16,706.00 - 44,962.00 16,242.00 - 43,289.00 16,382.00 27.03

MODE [16] 42,198.00 17,711.00 - 45,157.00 16,241.00 - 43,250.00 16,803.00 -

LM-MODE [16] 41,872.00 17,726.00 - 45,049.00 16,221.00 - 43,277.00 16,684.00 27.00

CM-MODE [16] 42,309.00 17,697.00 - 45,084.00 16,248.00 - 43,279.00 16,603.00 27.40

TM-MODE [16] 42,051.00 17,861.00 - 45,040.00 16,091.00 - 43,377.00 16,517.00 27.20

MODE [17] - - - - - - 43,694.00 16,524.00 -

CB-MOHDE [17] - - - - - - 43,122.00 16,503.00 24.40

MOCA-PSO [18] 42,009.00 16,842.00 - 47,085.00 15,858.00 - 43,873.00 16,222.00 -

NSGA-II [19] 42,126.00 16,763.00 - 46,744.00 15,914.00 - 43,606.00 16,270.00 -

HMOCA [19] 41,805.00 16,841.00 - 48,191.00 15,746.00 - 43,593.00 16,204.00 -

MOABC [20] - - - - - - 43,972.57 16,132.29 -

NBIM [21] 41,549.99 17,076.52 1.92 48,921.93 15,666.61 1.61 43,501.89 16,146.54 40.95

MODE-ACM [22] 42,417.00 16,706.00 - 44,962.00 16,242.00 - 43,289.00 16,382.00 -

NSGA-II [22] 42,126.00 16,763.00 - 46,744.00 15,914.00 - 43,606.00 16,270.00 -

MOQPSO [22] 41,981.00 16,868.00 - 48,803.00 15,710.00 - 44,149.00 16,123.00 -

MODE [23] 42,474.00 17,175.00 - 47,644.00 15,939.00 - 44,091.00 16,297.00 -

PMODE [23] 41,901.00 16,966.00 - 48,147.00 15,790.00 - 44,060.00 16,177.00 67.90

NSPSO [28] 43,625.00 - - - 16,371.00 - 44,638.00 16,694.00 -

NSPSO-CM [28] 42,977.00 - - - 16,245.00 - 44,248.00 16,651.00 -

NSGSA [28] 43,707.00 - - - 16,136.00 - 44,519.00 16,574.00 -

NSGSA-CM [28] 42,841.00 16,789.00 - 46,335.00 16,092.00 - 43,207.00 16,564.00 -

GSA [29] - - - - - - 44,857.43 18,091.98 -

IGSA [29] - - - - - - 43,299.89 17,868.74 -

IMOGSA [30] - - - - - - 44,245.63 16,149.17 -

NSGA-II - - - - - - 43,684.00 17,048.00 169.00

MOPSO - - - - - - 43,281.00 17,123.00 97.00

GSA 42,032.35 24,852.78 32.29 50,318.67 16,523.80 28.61 - - -

OGSA 41,844.69 24,108.97 18.12 49,667.05 16,482.66 20.37 - - -

DGSA 41,751.15 23,717.71 31.99 49,998.83 16,403.20 31.49 - - -

DOGSA 40,865.79 23,456.90 14.59 48,384.75 15,984.44 17.54 - - -

NSGSA - - - - - - 44,084.68 17,125.60 64.23

NSOGSA - - - - - - 43,928.05 17,107.98 68.37

NSDGSA - - - - - - 43,400.08 16,993.80 67.39

NSDOGSA - - - - - - 42,853.70 16,899.86 70.49

Tables 2 and 3 show the rate of water discharges hourly and hydrothermal gen-
eration production values for the individual minimization of EPC and EEP using the
DOGSA technique. Figure 3 depicts the graphical characteristics of EPC and EEP using the
DOGSA method.
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Table 2. EPC minimization schedule results with DOGSA of Test System-I.

Hour
Water Discharges of Hydro (104 m3) Generation of Hydropower (MW) Generation of Thermal

Power (MW)

Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

1 8.57 7.20 29.35 7.77 78.57 57.11 0.00 154.90 103.78 126.12 229.52

2 8.47 7.94 29.53 10.50 78.40 62.14 0.00 181.35 102.68 125.94 229.49

3 8.76 7.47 29.20 12.57 80.28 59.29 0.00 192.93 101.84 125.90 139.76

4 7.31 6.72 18.45 8.02 70.94 55.37 29.28 133.68 96.28 124.70 139.75

5 7.16 7.29 17.40 9.54 69.81 60.40 32.82 141.46 102.48 123.27 139.76

6 7.29 7.96 16.91 10.30 70.34 64.99 35.41 171.56 102.46 125.75 229.49

7 10.43 6.89 13.78 13.12 87.69 57.67 42.79 219.82 102.67 209.83 229.53

8 7.38 6.55 16.54 11.16 70.15 54.87 38.56 215.38 102.50 209.27 319.27

9 8.18 8.61 15.11 16.06 75.83 67.93 41.93 268.73 102.74 213.57 319.27

10 10.5 7.88 15.14 13.94 88.38 63.32 43.49 251.43 104.35 209.80 319.23

11 7.54 9.18 15.24 17.10 72.39 71.32 43.36 281.12 102.67 209.85 319.29

12 7.69 8.28 16.12 13.40 74.59 66.27 41.61 245.91 102.57 210.03 409.02

13 8.06 9.74 15.74 17.27 77.55 73.90 44.35 282.22 103.25 209.46 319.27

14 7.92 10.02 14.35 18.04 77.29 74.14 48.02 285.62 105.59 209.81 229.53

15 8.14 7.30 15.81 18.00 79.59 58.48 47.41 282.35 102.84 209.82 229.51

16 7.27 9.14 14.91 12.77 73.92 70.18 50.16 235.41 102.31 208.76 319.26

17 7.70 7.44 15.86 12.15 77.38 59.71 49.98 232.02 102.27 209.36 319.28

18 9.39 9.74 13.27 16.21 88.49 72.23 54.26 273.10 102.84 209.80 319.28

19 6.37 6.51 14.80 15.80 67.13 51.12 53.9 268.02 102.58 207.97 319.28

20 8.53 11.93 14.36 18.42 83.11 79.28 55.17 287.63 105.48 209.81 229.52

21 7.56 8.35 13.66 15.96 76.10 60.30 56.51 265.91 101.83 209.59 139.76

22 9.15 10.62 14.23 17.80 86.43 71.91 57.19 279.62 100.06 125.04 139.75

23 9.54 8.67 15.67 18.09 88.38 61.36 56.16 276.87 102.65 124.82 139.76

24 6.08 10.59 18.39 14.67 64.32 70.14 50.96 247.27 102.67 124.88 139.76

EPC ($) 40,865.79 EEP (lb) 23,456.90
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Figure 3. Performance characteristics of EPC and EEP with DOGSA for MSHTS of Test System-I.
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Table 3. EEP minimization schedule results with DOGSA of Test system-I.

Hour
Water Discharges of Hydro (104 m3) Generation of Hydropower (MW) Generation of Thermal

Power (MW)

Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

1 9.23 6.03 29.8 6.87 82.21 49.24 0.00 143.47 143.06 193.17 138.85

2 8.24 6.57 29.22 8.16 76.85 54.11 0.00 155.71 158.16 197.80 137.36

3 7.92 6.14 29.89 6.40 75.07 51.95 0.00 128.2 133.77 178.59 132.42

4 6.43 6.00 16.58 6.45 64.64 52.54 35.67 124.18 124.71 148.33 99.93

5 6.11 6.83 17.83 7.73 62.29 59.95 31.42 133.45 128.8 133.64 120.45

6 8.77 6.08 18.50 8.89 80.37 55.28 28.68 169.25 123.76 200.90 141.75

7 9.05 6.07 12.95 13.25 81.32 55.71 41.25 235.26 174.51 212.25 149.70

8 8.19 7.29 17.39 14.70 76.09 64.04 32.92 264.07 174.63 230.53 167.71

9 9.25 8.14 17.38 18.34 82.31 69.19 33.05 295.14 174.49 251.01 184.81

10 8.79 7.10 16.22 17.83 80.07 62.58 36.05 291.06 174.26 254.16 181.82

11 9.87 8.87 14.55 13.75 86.42 74.29 39.33 256.9 174.83 267.46 200.77

12 10.22 10.52 16.81 17.56 88.75 82.76 35.24 288.92 174.44 266.33 213.57

13 10.08 10.29 16.74 17.15 88.06 80.26 36.35 285.7 174.46 249.93 195.24

14 8.85 8.33 15.11 15.49 81.90 68.68 42.03 272.37 174.74 227.84 162.44

15 8.71 8.23 17.79 15.03 81.93 68.47 37.58 268.94 174.94 217.88 160.26

16 8.02 9.03 15.80 16.92 78.13 73.44 45.34 284.39 174.6 245.09 159.02

17 8.06 9.04 16.07 16.92 78.75 72.91 46.62 284.24 174.82 241.70 150.96

18 9.68 10.31 15.41 18.76 88.62 78.06 48.92 297.4 174.88 249.90 182.23

19 7.78 10.68 15.34 18.65 76.71 77.02 49.95 293.02 174.77 242.45 156.08

20 7.73 10.06 13.88 18.63 76.27 71.86 52.61 292.05 174.56 224.16 158.50

21 5.91 8.90 13.49 18.18 62.14 64.73 54.45 286.14 173.47 160.86 108.21

22 7.08 10.40 12.48 18.73 71.49 72.06 56.18 287.61 143.13 133.91 95.61

23 6.02 11.36 13.69 15.76 63.31 75.04 57.80 262.62 128.46 164.51 98.25

24 5.00 9.72 13.87 20.00 54.72 65.67 58.41 291.26 124.83 123.75 81.36

EPC ($) 48,384.75 EEP (lb) 15,984.44

In MSHTS, the proposed NSDOGSA approach is optimized for both the EPC and
EEP simultaneously, and obtained non-dominated solutions are shown in Table 4. The
selection of feasible solutions among trade-off solutions is obtained with the help of a fuzzy
decision-making approach. Figure 4 and Table 5 show the complete MSHTS schedule for
the selected feasible solution.

Table 4. Non-dominated solutions for MSHTS of Test System-I achieved using various methods.

Scheme Index
NSDOGSA NSDGSA NSOGSA NSGSA

EPC ($) EEP (lb) EPC ($) EEP (lb) EPC ($) EEP (lb) EPC ($) EEP (lb)

1 42,757.12 16,952.40 43,232.16 17,069.73 43,923.55 17,127.19 43,981.68 17,163.86

2 42,759.40 16,947.06 43,236.95 17,065.58 43,923.75 17,125.28 43,983.92 17,161.99

3 42,772.48 16,940.42 43,245.13 17,062.87 43,928.05 17,107.98 43,994.53 17,157.44

4 42,781.36 16,934.94 43,246.66 17,059.15 43,930.54 17,107.04 44,017.77 17,155.2

5 42,788.52 16,931.99 43,263.44 17,053.18 43,943.3 17,102.65 44,031.34 17,148.20
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Table 4. Cont.

Scheme Index
NSDOGSA NSDGSA NSOGSA NSGSA

EPC ($) EEP (lb) EPC ($) EEP (lb) EPC ($) EEP (lb) EPC ($) EEP (lb)

6 42,794.50 16,930.20 43,270.04 17,049.55 43,943.53 17,100.96 44,033.99 17,142.63

7 42,800.10 16,926.27 43,275.30 17,046.75 43,945.66 17,099.67 44,052.06 17,134.13

8 42,806.36 16,923.62 43,282.97 17,045.66 43,947.87 17,099.33 44,075.11 17,131.71

9 42,810.19 16,921.27 43,288.77 17,040.76 43,950.71 17,097.66 44,084.68 17,125.60

10 42,823.55 16,914.99 43,290.53 17,040.07 43,951.46 17,096.93 44,139.67 17,116.22

11 42,826.71 16,909.40 43,298.41 17,035.64 43,953.51 17,096.85 44,171.75 17,112.51

12 42,853.70 16,899.86 43,321.00 17,025.12 43,960.36 17,094.56 44,187.41 17,110.25

13 42,913.92 16,881.42 43,400.08 16,993.80 43,963.36 17,094.43 44,203.95 17,108.70

14 42,919.34 16,879.90 43,516.27 16,955.06 43,966.55 17,093.03 44,234.28 17,103.18

15 42,925.84 16,877.80 43,530.27 16,953.23 43,969.06 17,092.92 44,252.79 17,100.96

16 42,936.49 16,875.81 43,555.32 16,950.78 43,974.31 17,090.93 44,280.84 17,097.77

17 43,000.56 16,860.49 43,561.82 16,947.97 43,977.86 17,090.3 44,293.20 17,095.67

18 43,022.16 16,856.33 43,570.16 16,943.07 43,980.24 17,089.61 44,317.36 17,093.68

19 43,032.77 16,854.48 43,581.51 16,939.80 43,984.07 17,088.03 44,317.86 17,092.71

20 43,042.87 16,852.86 43,593.79 16,936.27 43,987.24 17,087.68 44,369.93 17,087.18

Bold font values indicate the best optimal MSHTS solution using a fuzzy decision strategy.
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Figure 4. Storage volume of reservoir with NSDOGSA for MSHTS of Test System-I.

Table 5. Schedule results for the MSHTS of Test System-I should be compromised with NSDOGSA.

Hour
Water Discharges of Hydro (104 m3) Generation of Hydropower (MW) Generation of Thermal

Power (MW)

Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

1 8.31 6.81 29.4 8.34 77.02 54.55 0.00 161.81 108.41 207.26 140.95

2 8.25 6.44 29.82 9.29 77.17 52.75 0.00 167.58 131.38 210.99 140.13

3 7.69 7.04 29.95 6.12 73.79 57.68 0.00 122.05 101.59 205.37 139.52

4 7.11 6.52 15.29 6.16 69.95 55.31 38.43 118.13 103.20 125.20 139.79

5 6.25 6.51 17.08 8.22 63.45 56.65 34.41 137.00 112.14 126.61 139.74
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Table 5. Cont.

Hour
Water Discharges of Hydro (104 m3) Generation of Hydropower (MW) Generation of Thermal

Power (MW)

Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

6 8.33 6.84 16.65 9.05 77.88 59.67 35.73 168.38 107.73 210.90 139.72

7 10.05 7.33 13.64 12.58 86.60 63.00 42.41 226.32 173.72 216.61 141.33

8 7.75 6.55 15.9 11.50 73.26 57.11 39.24 230.26 174.59 209.8 225.74

9 8.63 7.54 16.58 18.38 78.99 63.84 37.85 295.6 174.35 209.91 229.45

10 8.98 9.03 15.56 15.51 81.41 72.81 40.93 272.02 174.26 209.81 228.77

11 9.33 7.93 15.45 13.96 83.91 66.52 41.38 258.73 174.55 287.72 187.2

12 8.56 7.67 16.92 16.26 80.33 65.47 37.89 279.05 174.37 284.01 228.87

13 8.47 9.67 15.35 15.74 80.14 76.93 42.47 274.35 174.12 233.50 228.48

14 9.06 11.08 15.86 18.22 84.30 82.49 44.01 294.46 174.41 209.93 140.4

15 9.17 7.67 15.33 17.95 85.60 63.62 46.38 289.94 174.75 209.87 139.84

16 8.97 7.06 15.32 14.61 84.80 60.46 47.70 260.52 174.54 212.02 219.96

17 6.74 7.76 16.75 15.00 69.68 65.45 46.38 266.10 174.33 207.59 220.47

18 8.73 9.72 14.93 17.86 83.94 75.90 51.76 289.47 174.89 227.55 216.48

19 8.72 8.75 16.07 16.54 83.79 68.60 50.87 277.59 174.47 274.96 139.72

20 9.07 11.05 13.56 17.33 85.60 78.59 53.81 282.49 174.02 210.40 165.08

21 5.95 8.71 13.31 17.03 62.84 65.41 54.94 278.20 174.14 135.18 139.29

22 6.54 10.51 12.57 18.37 67.77 74.48 56.68 287.48 109.42 124.83 139.33

23 7.29 10.26 16.76 18.19 73.72 72.37 54.08 282.74 102.73 124.84 139.51

24 7.06 13.57 12.56 19.99 72.27 82.37 58.41 291.53 102.13 128.06 65.24

EPC ($) 42,853.70 EEP (lb) 16,899.86

4.2. Test System-II

Test system-I with the transmission losses is considered to be Test system-II to
impose more complexity, and also justify the robustness of the proposed NSDOGSA
approach. To tune the parameters of NSDOGSA, 50 trial runs are performed, and there-
after the selected prime parameters for NSDOGSA are as follows: =100, =2000, =20,
=0.5, =150, =15, and =150. The size of chromosomes, termination criteria, selection
tournament, crossover parameter, and mutation value of probability for NSGA-II have
all been set to 100, 2000, 0.7, and 0.4, respectively. MOPSO parameters are chosen as fol-
lows: swarm size = 100, maximum number of evolutions = 2000, cognitive constant = 7,
social constant = 1.5, and maximum and minimum parameters of weight= 0.8 and
0.3. The computational outcomes found by NSDOGSA for separate EPC, EEP, and
MSHTS are obtainable in Table 6 and analyzed with published techniques includes
MDE [3], MODE [16], LM-MODE [16], CM-MODE [16], TM-MODE [16], MODE [17], CB-
MOHDE [17], NSGA-II [18], MOCA-PSO [18], NSGA-II [19], HMOCA [19], MOABC [20],
MODE-ACM [22], NSGA-II [22], MOQPSO [22], MODE [23], PMODE [23], HMOCA [30],
NSGA-II [30], and IMOGSA [30] published in the literature.

It is understood from Table 6 that the single EPC optimization: EPC is 42,738.57$ and
EEP is 20,617.73 lb; for single EEP optimization: EPC is enlarged to 49,472.11$ and EEP is
declined to 16,939.41 lb, and for MSHTS problem compromised with EPC is 43,664.12$ and
18,211.05 lb. Tables 7 and 8 shows the optimal hydro water discharges and hydrothermal
power outputs attained using DOGSA for separate optimization of EPC and EEP. The
convergence characteristics for individual minimization of EPC and EEP with DOGSA
approach are revealed in Figure 5.
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Table 6. Performance evaluation of Test System-II’s multiple approaches.

Approach
Minimum EPC ($) Minimum EEP (lb) Mshts

EPC ($) EEP (lb) Time (s) EPC ($) EEP (lb) Time (s) EPC ($) EEP (lb) Time (s)

MDE [3] - - - - - - 44,435.68 20,622.43 -

MODE [16] 43,053.00 20,860.00 - 45,152.00 18,409.00 - 44,149.00 19,250.00 -

LM-MODE [16] 42,819.00 20,464.00 - 45,888.00 18,134.00 - 43,978.00 19,017.00 41.57

CM-MODE [16] 42,992.00 20,754.00 - 45,574.00 18,215.00 - 43,748.00 19,039.00 42.06

TM-MODE [16] 42,782.00 20,444.00 - 45,446.00 18,183.00 - 43,889.00 18,914.00 41.73

MODE [17] 43,249.00 19,794.00 - 45,922.00 17,782.00 - 44,434.00 18,654.00 -

CB-MOHDE [17] 42,722.00 19,816.00 - 45,797.00 17,601.00 - 43,894.00 18,384.00 34.30

NSGA-II [18] 43,489.00 18,332.00 - 47,251.00 17,054.00 - 44,847.00 17,415.00 -

MOCA-PSO [18] 42,656.00 18,125.00 - 47,956.00 16,881.00 - 44,627.00 17,364.00 -

NSGA-II [19] 43,489.00 18,332.00 - 47,251.00 17,054.00 - 44,643.00 17,457.00 -

HMOCA [19] 43,278.00 17,984.00 - 47,871.00 17,019.00 - 44,344.00 17,408.00 -

MOABC [20] 42,234.35 18,061.29 - 49,791.95 16,672.27 - 44,817.59 17,194.43 -

NSGA-II [22] 43,489.00 18,332.00 - 47,251.00 17,054.00 - 44,847.00 17,415.00 -

HMOCA [22] 43,278.00 17,984.00 - 47,871.00 17,019.00 - 45,026.00 17,306.00 -

MOQPSO [22] 43,032.00 17,960.00 - 48,350.00 16,803.00 - 44,852.00 17,280.00 -

MODE [23] 44,355.00 18,009.00 - 49,396.00 16,854.00 - 45,680.00 17,436.00 -

PMODE [23] 43,128.00 17,868.00 - 49,387.00 16,715.00 - 44,673.00 17,246.00 -

HMOCA [30] 43,278.00 17,984.00 - 47,871.00 17,019.00 - 45,026.00 17,306.00 -

NSGA-II [30] 43,489.00 18,332.00 - 47,251.00 17,054.00 - 44,847.00 17,415.00 -

IMOGSA [30] 42,914.00 18,041.00 - 47,276.00 16,950.00 - 44,492.37 17,354.44 -

NSGA-II - - - - - - 44,958.00 18,458.00 213.47

MOPSO - - - - - - 44,653.00 18,190.00 137.63

GSA 43,590.29 21,443.91 41.63 49,399.43 18,038.89 42.14 - - -

OGSA 43,178.95 20,299.15 36.45 49,641.62 17,434.50 35.61 - - -

DGSA 42,825.61 20,421.52 32.74 49,572.92 17,111.71 34.92 - - -

DOGSA 42,738.57 20,617.73 28.14 49,472.11 16,939.41 29.68 - - -

NSGSA - - - - - - 45,085.08 18,502.98 69.52

NSOGSA - - - - - - 44,942.17 18,320.67 73.31

NSDGSA - - - - - - 43,891.31 18,419.36 71.23

NSDOGSA - - - - - - 43,664.12 18,211.05 75.97

Table 7. EPC minimization schedule results with DOGSA for Test system-II.

Hour
Hydro Water Discharges (104 m3) Hydropower Generation (MW) Thermal Power Generation (MW)

Loss (MW)
Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

1 8.78 6.80 28.59 9.11 79.77 54.49 0.00 170.92 101.77 124.26 229.25 10.45

2 6.94 6.64 28.88 6.38 68.31 54.12 0.00 131.23 101.62 207.47 228.79 11.55

3 7.9 6.31 28.55 6.22 75.39 52.67 0.00 125.42 102.35 125.37 229.21 10.41

4 5.51 7.61 13.29 7.22 57.63 62.75 42.88 133.6 94.81 124.61 139.50 5.77

5 7.75 6.46 15.45 8.46 74.84 55.99 40.54 140.77 102.63 122.38 138.95 6.10

6 6.5 7.70 12.92 9.86 65.48 64.96 44.81 177.43 103.40 124.87 229.49 10.42
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Table 7. Cont.

Hour
Hydro Water Discharges (104 m3) Hydropower Generation (MW) Thermal Power Generation (MW)

Loss (MW)
Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

7 9.93 9.15 14.24 13.79 86.93 72.91 44.56 236.13 173.45 208.12 139.71 11.82

8 7.73 6.98 14.64 12.37 73.87 58.23 45.46 235.93 174.59 208.60 229.17 15.84

9 6.41 7.00 18.47 13.88 64.77 58.35 35.28 251.73 174.36 208.40 319.23 22.13

10 8.46 9.49 14.33 17.55 79.82 73.47 46.08 284.07 174.15 209.17 229.35 16.11

11 7.76 7.51 20.43 15.18 75.89 61.95 28.20 260.71 174.86 286.72 229.48 17.82

12 9.58 7.64 12.11 16.50 87.88 63.57 46.78 270.65 174.92 210.00 318.41 22.21

13 5.32 7.08 12.68 15.82 57.47 60.18 48.40 263.35 174.12 209.43 319.14 22.09

14 6.72 8.35 15.63 13.87 69.90 68.60 47.82 248.72 173.58 207.76 229.45 15.82

15 11.54 9.34 18.92 18.34 99.55 74.41 39.77 285.19 174.91 208.85 139.62 12.30

16 8.19 9.45 17.67 15.19 81.23 74.78 43.11 263.08 174.57 209.79 229.50 16.06

17 7.31 8.33 18.54 16.60 74.98 67.83 39.42 271.68 174.75 208.08 229.32 16.05

18 6.03 9.07 12.91 14.55 64.57 71.13 51.81 250.76 174.74 209.81 319.30 22.12

19 8.01 9.60 17.57 17.31 80.40 71.99 46.18 274.13 174.38 209.54 229.46 16.08

20 6.18 8.66 12.42 16.31 65.88 65.43 53.70 268.17 174.60 209.04 229.14 15.95

21 8.30 9.28 13.57 17.09 82.37 68.30 54.20 275.49 174.49 126.17 139.67 10.70

22 8.55 10.93 13.64 18.05 83.93 75.73 55.56 283.84 102.09 126.16 139.76 7.07

23 10.83 8.34 13.48 17.43 96.79 61.79 56.62 274.18 102.15 126.27 139.19 6.99

24 14.78 14.29 11.23 17.96 108.29 84.54 56.77 278.03 102.42 125.33 50.03 5.41

EPC ($) 42,738.57 EEP (lb) 20,617.73

Table 8. EEP minimization schedule results of DOGSA for Test system-II.

Hour
Water Discharges (104 m3) Hydropower Generation (MW) Thermal Power Generation (MW) Transmission

Loss (MW)Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

1 7.58 6.25 29.96 7.27 72.39 50.74 0.00 148.55 166.45 191.46 130.95 10.53

2 8.19 6.44 29.57 6.87 77.00 53.12 0.00 139.35 164.36 212.41 145.06 11.3

3 7.88 6.14 29.41 6.81 75.27 51.92 0.00 134.32 141.91 182.08 123.00 8.51

4 6.85 6.43 16.26 7.01 68.19 55.54 35.85 131.73 131.06 110.36 124.00 6.74

5 6.18 6.32 16.42 6.27 63.08 56.15 35.47 115.28 137.77 157.25 112.39 7.39

6 6.43 6.63 14.72 10.16 65.00 59.18 39.77 185.21 149.52 179.69 130.75 9.12

7 8.29 6.27 16.66 14.03 78.07 56.83 36.15 243.11 174.43 223.20 150.77 12.56

8 10.34 6.81 17.36 14.3 88.78 60.44 33.48 259.82 174.41 237.33 169.45 13.71

9 8.79 6.96 15.56 16.3 80.55 61.54 37.48 279.18 174.39 276.89 195.80 15.84

10 8.24 9.77 15.22 14.22 77.60 78.57 38.38 260.94 174.79 262.68 202.84 15.8

11 10.15 8.00 16.34 16.56 88.8 68.34 36.66 281.89 174.49 266.26 199.38 15.83

12 8.95 9.23 15.58 17.44 83.11 75.85 38.67 288.80 174.90 286.80 219.26 17.39

13 11.68 8.27 15.69 16.86 95.95 69.82 39.10 284.32 174.42 267.01 195.06 15.67

14 9.76 8.49 17.47 14.67 87.57 70.97 37.45 264.41 174.50 237.65 171.28 13.83

15 8.06 8.49 16.79 15.51 78.27 71.21 40.50 272.44 174.80 236.68 149.10 12.99

16 8.55 8.51 13.39 17.17 82.00 71.59 49.04 286.76 174.54 241.56 168.39 13.88

17 9.76 9.88 16.03 14.60 89.22 78.67 47.39 263.58 174.92 241.71 168.33 13.82

18 9.44 10.84 15.84 18.47 87.36 81.45 48.62 295.72 174.75 276.75 170.23 14.87

19 8.99 11.19 15.36 18.01 84.47 79.90 50.52 291.55 174.38 240.60 162.24 13.67

20 8.10 11.52 15.43 18.54 78.54 78.41 51.58 294.03 174.72 227.72 158.26 13.27

21 6.43 7.67 13.64 17.24 66.09 57.21 54.93 279.69 173.19 181.43 108.01 10.55

22 5.29 10.12 13.23 18.69 56.74 71.11 57.03 288.48 146.49 147.43 100.98 8.26
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Table 8. Cont.

Hour
Water Discharges (104 m3) Hydropower Generation (MW) Thermal Power Generation (MW) Transmission

Loss (MW)Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

23 6.07 11.47 15.29 18.86 63.71 75.92 57.28 286.60 136.60 144.78 92.65 7.54

24 5.00 10.29 15.14 20.00 54.72 68.64 58.26 289.54 126.98 125.33 83.14 6.62

EPC ($) 49,472.11 EEP (lb) 16,939.41
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For MSHTS problem, the detailed objective function values of non-dominated solu-
tions obtained with NSDOGSA approach are listed in Table 9. A fuzzy strategy is used
to identify viable result from tradeoff solutions and corresponding optimal hydrothermal
schedules are presented in Table 10 and Figure 6, which indicates the satisfaction of all
kinds of constraints by using the constraints handling method.
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Table 9. NS results attained with various techniques for MSHTS of Test system-II.

Scheme Index
NSDOGSA NSDGSA NSOGSA NSGSA

EPC ($) EEP (lb) EPC ($) EEP (lb) EPC ($) EEP (lb) EPC ($) EEP (lb)

1 43,570.08 18,270.29 43,816.72 18,500.01 44,697.82 18,455.36 44,578.08 18,715.46

2 43,584.03 18,254.88 43,822.06 18,468.71 44,727.58 18,438.35 44,582.70 18,711.37

3 43,594.84 18,248.13 43,859.69 18,440.95 44,763.7 18,424.36 44,590.81 18,703.52

4 43,601.49 18,243.94 43,872.52 18,428.78 44,773.88 18,415.21 44,635.47 18,685.50

5 43,614.08 18,240.17 43,884.56 18,426.01 44,783.26 18,408.02 44,652.56 18,679.12

6 43,630.18 18,230.82 43,884.83 18,424.13 44,797.29 18,404.00 44,690.48 18,667.34

7 43,646.56 18,224.12 43,891.31 18,419.36 44,800.26 18,390.26 44,710.03 18,659.53

8 43,654.43 18,217.42 43,906.46 18,417.44 44,837.87 18,371.36 44,733.37 18,648.93

9 43,664.12 18,211.05 43,911.22 18,414.28 44,858.87 18,359.31 44,744.73 18,642.28

10 43,677.60 18,206.40 43,912.25 18,410.02 44,867.97 18,357.54 45,085.08 18,502.98

11 43,694.22 18,201.37 43,928.05 18,403.01 44,873.94 18,347.25 45,098.55 18,498.36

12 43,722.34 18,187.66 43,957.77 18,392.01 44,903.54 18,342.53 45,117.49 18,491.32

13 43,732.99 18,185.34 44,057.74 18,357.99 44,931.15 18,328.18 45,131.72 18,485.27

14 43,830.42 18,150.56 44,077.13 18,355.48 44,942.17 18,320.67 45,167.70 18,484.80

15 43,870.55 18,136.63 44,088.09 18,351.00 44,953.95 18,318.36 45,190.99 18,467.46

16 43,883.72 18,135.89 44,132.21 18,341.47 44,980.61 18,310.85 45,212.60 18,464.32

17 43,884.10 18,134.97 44,139.95 18,338.58 45,016.21 18,305.82 45,216.08 18,460.96

18 43,901.07 18,129.38 44,159.20 18,335.46 45,032.58 18,301.31 45,253.05 18,448.54

19 43,969.55 18,106.21 44,164.92 18,328.03 45,043.33 18,293.21 45,263.07 18,444.63

20 43,980.60 18,101.12 44,197.01 18,321.55 45,325.12 18,276.06 45,318.81 18,427.51

Bold font values indicate the best optimal MSHTS solution using a fuzzy decision strategy.

Table 10. Optimal MSHTS results with NSDOGSA for Test system-II.

Hour
Water Discharges (104 m3) Hydropower Generation (MW) Thermal Power Generation (MW) Transmission

Loss (MW)Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

1 10.6 6.36 29.85 8.31 88.6 51.49 0.00 161.43 106.29 209.99 139.94 7.74

2 8.75 6.10 29.8 7.25 79.39 50.66 0.00 143.22 165.96 211.9 140.11 11.24

3 6.89 6.75 29.84 6.81 67.57 56.21 0.00 132.89 106.71 124.91 221.86 10.15

4 7.03 6.14 13.81 6.38 68.87 53.26 41.70 122.32 105.07 125.28 139.71 6.20

5 7.98 6.73 17.42 7.89 75.18 58.94 34.79 134.43 101.74 131.40 139.71 6.20

6 8.70 7.53 15.91 8.94 78.91 64.82 38.56 168.90 107.54 209.20 139.75 7.68

7 9.32 8.19 13.56 14.52 81.64 68.64 43.39 246.48 173.56 208.75 139.39 11.85

8 7.41 6.48 16.53 13.55 69.97 56.41 39.16 251.63 174.73 209.77 223.99 15.66

9 6.26 7.15 15.41 14.72 62.26 61.21 42.21 262.97 174.05 282.59 221.85 17.13

10 10.35 9.45 13.96 15.13 87.94 75.12 45.45 269.07 174.78 215.19 228.64 16.19

11 6.95 7.86 16.67 13.58 68.50 65.92 41.12 255.18 174.01 284.65 228.14 17.52

12 8.99 8.18 13.26 16.92 82.95 68.5 46.03 284.72 174.07 282.63 228.77 17.67

13 8.02 7.66 16.87 15.00 77.30 65.22 41.81 268.21 174.02 274.12 226.58 17.25

14 7.26 7.15 19.86 15.24 72.73 62.15 32.13 270.77 173.83 209.85 224.29 15.75

15 10.86 8.34 13.61 16.41 94.61 70.50 48.99 279.51 174.74 212.57 141.40 12.33

16 6.57 8.87 16.70 16.71 68.25 73.92 45.55 282.17 173.77 209.15 222.86 15.68

17 8.12 7.66 14.80 15.02 80.14 66.27 49.48 264.74 174.46 289.12 139.57 13.78

18 9.53 12.24 15.47 18.73 88.95 88.33 50.03 295.34 174.50 209.91 229.22 16.28
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Table 10. Cont.

Hour
Water Discharges (104 m3) Hydropower Generation (MW) Thermal Power Generation (MW) Transmission

Loss (MW)Hydro 1 Hydro 2 Hydro 3 Hydro 4 Hydro 1 Hydro 2 Hydro 3 Hydro 4 Plant 1 Plant 2 Plant 3

19 9.55 10.03 13.78 18.96 88.83 75.40 52.60 297.96 174.79 211.99 182.41 13.98

20 6.70 9.01 12.83 16.50 69.36 68.37 54.16 274.95 173.50 287.19 136.04 13.56

21 6.38 9.96 12.29 17.80 66.69 72.48 55.42 284.88 174.49 126.95 139.83 10.74

22 5.99 8.63 16.94 14.91 63.57 65.09 53.41 259.01 101.14 198.66 126.30 7.18

23 8.96 11.32 16.97 17.48 85.27 77.96 53.80 280.20 102.33 127.05 130.15 6.77

24 7.83 14.24 12.17 20.00 77.98 84.39 58.04 292.40 103.93 120.55 68.27 5.56

EPC ($) 43,664.12 EEP (lb) 18,211.05

4.3. Statistical and Non-Parametric Analysis

Further, the statistical analysis is conducted to show the robustness of the proposed
approach for separate minimization of EPC and EEP in terms of the best, average, worst,
and standard deviation values, and for MSHTS problem with the highest cardinal priority
ranking value which are presented in Tables 11 and 12, for Test system-I and II.

Table 11. Test System-I Statistical analysis with various approaches.

Technique Scheduling Problem Superlative Value Middling Value Wickedest Value Standard Deviation

GSA
Optimization of EPC ($) 42,032.35 42,292.38 42,561.94 9.43

Optimization of EEP (lb) 16,523.80 16,534.76 16,683.23 4.53

OGSA
Optimization of EPC ($) 41,844.69 42,051.67 42,395.45 5.94

Optimization of EEP (lb) 16,482.66 16,495.34 16,509.23 3.85

DGSA
Optimization of EPC ($) 41,751.15 41,821.65 41,989.78 8.54

Optimization of EEP (lb) 16,403.20 16,439.34 16,489.23 2.85

DOGSA
Optimization of EPC ($) 40,865.79 40,978.56 41,219.57 3.02

Optimization of EEP (lb) 15,984.44 16,039.30 16,187.45 1.24

NSGSA

MSHTS

0.055593 0.052142 0.047392 0.00476

NSOGSA 0.058393 0.056843 0.048684 0.00352

NSDGSA 0.053160 0.050326 0.048051 0.00263

NSDOGSA 0.054031 0.051594 0.049493 0.00207

Table 12. Test system-II Statistical analysis with various techniques.

Technique Scheduling Problem Superlative Value Middling Value Wickedest Value Standard Deviation

GSA
Optimization of EPC ($) 43,590.29 43,658.23 43,833.42 7.49

Optimization of EEP (lb) 18,038.89 18,295.34 18,639.60 8.23

OGSA
Optimization of EPC ($) 43,178.95 43,385.02 43,730.95 4.16

Optimization of EEP (lb) 17,434.50 17,623.52 18,049.28 5.27

DGSA
Optimization of EPC ($) 42,825.61 43,101.79 43,503.07 3.75

Optimization of EEP (lb) 17,111.71 17,293.34 17,693.42 4.28

DOGSA
Optimization of EPC ($) 42,738.57 42,846.09 42,965.95 2.07

Optimization of EEP (lb) 16,939.41 17,023.52 17,124.53 2.18
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Table 12. Cont.

Technique Scheduling Problem Superlative Value Middling Value Wickedest Value Standard Deviation

NSGSA

MSHTS

0.051433 0.050532 0.046230 0.01359

NSOGSA 0.055553 0.052394 0.048304 0.00934

NSDGSA 0.054226 0.051053 0.047597 0.00862

NSDOGSA 0.052525 0.050906 0.049394 0.00673

From statistical analysis, it is clear that the superlative, middling, and wickedest
objective values and standard deviation obtained with DOGSA after 50 runs are better than
that obtained with GSA and its variants, which depicts the robustness of the solutions found
with DOGSA approach. For MSHTS problem, the highest membership value obtained
with the fuzzy decision approach is compared with NSGSA, NSOGSA, NSDGSA, and it
is concluded that the NSDOGSA approach attains a greater satisfaction in terms of the
quality of the solution. It can also be mentioned that the results obtained with the proposed
approach show minimum standard deviation in values, which ensures the precision of
the obtained results. To observe the robustness of the proposed algorithm for solving
MSHTS problems, a well-known Kruskal–Wallis non-parametric test is conducted for all
the test systems. It is a non-parametric method to test the null hypothesis that all the
populations have the same median. This test can be used to compare three or more samples
and assumed that the populations under comparison need not be normally distributed.
Simulation results are obtained from 50 trial runs of the proposed algorithm and compared
with the other methods for all the cases mentioned in box plots of Figure 7 for Test system-I
and Figure 8 for Test system-II. It is observed that the probability of rejection of the null
hypothesis is very low and variation is very small for the proposed method.
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5. Conclusions

In this paper, the hydrothermal scheduling problem is formulated in three different
scenarios, namely: (a) minimizing economical production cost, (b) minimizing envi-
ronmental emission pollution, and (c) minimizing both the objective functions while
considering the water transport delay between hydraulic connected reservoirs, valve
point loading effect of thermal units, and transmission line losses among generation
units. The major contribution of the proposed work concludes that (i) an oppositional-
based learning concept during the initiation phase and a disruption operator during the
updating phase to achieve diversity and prevent premature convergence; (ii) the concept
of a non-dominated sorting procedure has been presented to optimize both objective
functions simultaneously to achieve a conflicting solutions in same computational run;
(iii) an archive has been formed to store trade-off and a spread metric utilized to update
the archive; (iv) a fuzzy strategy is adopted to select the best feasible solution; (v) an
effective constraint approach has been formulated to satisfy the load balance and end
reservoir storages; (vi) carried out on two MSHTS problems, the first one consisting
of four hydro and three thermal plants without considering transmission losses, and
another with including transmission losses results have been compared with the other
existing approaches, and (vii) statistical analysis has been conducted to show the robust-
ness of the proposed approach for separate minimization of EPC and EEP in terms of
the best, average, worst, and standard deviation values, and for MSHTS problems with
the highest ranking value, (viii) the simulation results with the proposed NSDOGSA
revealed that it is an effective and competitive solution approach for solving complex
MSHTS problems.

Further, the areas of the research and the solution techniques presented so far can
be further extended to wider regions. In spite of all the above-mentioned contributions,
much more intensive work still needs to be carried out, which can be broadly suggested
for the following aspects such as (i) the work can be extended to consider the hydro
and thermal unit commitment, which involves the optimization of continuous as well as
discrete variables during the analysis, (ii) by considering additional complex constraints
such as minimum up and down times of generating units, spinning reserve, ramp rates
of thermal plants and prohibited zones of hydro plants, (iii) the scheduling problems
can be further extended to consider the renewable energy such as tidal energy, wind
energy, solar energy, etc., (iv) the present research work can be extended to include
pumped storage plants for all scheduling problems, (v) the multi-objective optimization
problems can also be handled using other aggregation methods such as ε-constraint
method, normal boundary intersection method, lexicographic approach, etc., to generate
non-dominated solutions.
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Appendix A

Table A1. Water discharge rate limits, reservoir storage volume limits, reservoir end storage condi-
tions number of upstream plants, water transportation delays, and hydro plant generation limits
(MW) for MSHTS of Test System-I and II.

Hydro Plant qmin
j qmax

j Vmin
j Vmax

j Vinitial
j Vfinal

j
Nu rm

j Pmin
j Pmax

j

1 5 15 80 150 100 120 0 2 0 500

2 6 15 60 120 80 70 0 3 0 500

3 10 30 100 240 170 170 2 4 0 500

4 6 20 70 160 120 140 1 0 0 500

Table A2. Hydropower generation coefficients for Test System-I and II.

Hydro Plant c1j c2j c3j c4j c5j c6j

1 −0.0042 −0.42 0.030 0.90 10.0 −50

2 −0.0040 −0.30 0.015 1.14 9.5 −70

3 −0.0016 −0.30 0.014 0.55 5.5 −40

4 −0.0030 −0.31 0.027 1.44 14.0 −90

Table A3. Reservoir inflows of Test System-I and II.

Interval
Reservoir

Interval
Reservoir

1 2 3 4 1 2 3 4

1 10 8 8.1 2.8 13 11 8 4 0

2 9 8 8.2 2.4 14 12 9 3 0

3 8 9 4 1.6 15 11 9 3 0

4 7 9 2 0 16 10 8 2 0

5 6 8 3 0 17 9 7 2 0

6 7 7 4 0 18 8 6 2 0

7 8 6 3 0 19 7 7 1 0

8 9 7 2 0 20 6 8 1 0

9 10 8 1 0 21 7 9 2 0

10 11 9 1 0 22 8 9 2 0

11 12 9 1 0 23 9 8 1 0

12 10 8 2 0 24 10 8 0 0

Table A4. MSHTS problem Test System-I and II load demands.

Interval Load Demand (MW) Interval Load Demand (MW)

1 750 13 1110

2 780 14 1030

3 700 15 1010

4 650 16 1060

5 670 17 1050

6 800 18 1120
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Table A4. Cont.

Interval Load Demand (MW) Interval Load Demand (MW)

7 950 19 1070

8 1010 20 1050

9 1090 21 910

10 1080 22 860

11 1100 23 850

12 1150 24 800

Table A5. Thermal generator data of Test System-I and II.

Thermal
Plant

ai
$/h

bi
$/MWh

ci
$/(MW)2h di $/h ei

1/MW
αi

lb/h
βi

lb/MW h
γi

lb/(MW)2h
ηi

lb/h
δi

1/MW
Pmin

i
MW

Pmax
i

MW

1 100 2.45 0.0012 160 0.038 60 −1.355 0.0105 0.4968 0.01925 20 175

2 120 2.32 0.0010 180 0.037 45 −0.600 0.0080 0.4860 0.01694 40 300

3 150 2.10 0.0015 200 0.035 30 −0.555 0.0120 0.5035 0.01478 50 500

B =



0.34 0.13 0.09 −0.01 −0.08 −0.01 −0.02
0.13 0.14 0.10 0.01 −0.05 −0.02 −0.01
0.09 0.10 0.31 0 −0.11 −0.07 −0.05
−0.01 0.01 0 0.24 −0.08 −0.04 −0.07
−0.08 −0.05 −0.01 −0.08 1.92 0.27 −0.02
−0.01 −0.02 −0.07 −0.04 0.27 0.32 0
−0.02 −0.01 −0.05 −0.07 −0.02 0 1.35


× 10−4

B0 =
[
−0.75 0.06 0.70 0.03 0.27 0.77 0.01

]
× 10−6

B00 = 0.55 MW
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