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Abstract: The study presents an optimal control approach for managing a hybrid Photovoltaic/Wind
Turbine/Battery system in an isolated area. The system includes multiple energy sources connected
to a DC bus through DC/DC converters for maximum power point tracking. The proposed hybrid
MPPT approach (HMPPT) manages the energy production from different sources, while the power
flow method is used to balance the load and renewable power. The study shows that integrating the
HMPPT algorithm and power flow approach results in improved system performance, including
increased power generation and reduced stress on the batteries. The study also proposes an accurate
sizing method to further improve system efficiency. The study demonstrates the effectiveness of the
proposed approach by presenting results for twelve different days with varying weather conditions.
The results show that the proposed approach effectively manages the energy production and load,
resulting in optimal system performance. This study provides valuable insights into the optimal
control of hybrid renewable energy systems, and highlights the importance of considering different
energy sources and optimal sizing for maximizing system efficiency.
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1. Introduction

Wind and photovoltaic energies are clean and environmentally friendly. Nevertheless,
their power output is intermittent, posing a threat to the electrical power system resilience.
Hence, the introduction of storage is a feasible solution to balance the demand and supply
of electricity by storing extra energy and producing it when needed. As a result, a hybrid
system is created that is safer and more environmentally friendly [1–4].

When the wind speed changes or solar irradiation deteriorates, power point tracking
approaches are used to extract the optimal load power. A wide variety of MPPTs are used
to track the maximum power point of photovoltaic panels [5–24] and wind turbines [25–40].
While they all aim to boost power, each performs differently from the others.

Because of its simplicity, the Perturb and Observe (P&O) method is the most widely
employed to determine the MPP point for PV systems and wind turbine (WTb) generators,
but this technique suffers from steady-state oscillations [5–8]. Other methods have been
employed to evaluate quick and effective MPPT strategies for PV systems, such as MPPT
algorithms based on voltage and current [9,10]. Regarding smart MPPT methods [11,12],
they are more frequently used to address the non-linear characteristics of solar PV panels.
A table on a microcomputer is also used in [13] to track MPP. In [14,15], mathematical
equations or numerical approximations utilizing the curve-fitting approach are used to
characterize the non-linear behavior of the PV generator. In the short-circuit method [16],
the voltage of the PV generator at the MPP is roughly linearly related to its opencircuit.
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These techniques appear to be easy and costeffective, but they are unable to adapt to
shifting climatic conditions.

The P&O (Perturb and Observe) technique is commonly used in control schemes due
to its simplicity. However, it has a drawback of oscillation, which cannot be complete-
lyeliminated [17–20]. The conductance incremental approach described in [21] needs a
complicated control circuit. Additionally, intelligent methods based on control by MPPT
were introduced [22–24]. The fuzzy logic controller (FLC) optimizes the magnitude of
the increment to obtain fast and fine tracking. This method is widely used because of its
advantages, but the controller depends on speed and power variations. The adaptive fuzzy
logic controller (AFLC) method is also widely used for its advantages of fast response.

In wind turbines, the P&O algorithm [25–32] is the most used, and other techniques
such as Optimal Torque Control (OTC) [25], Tip Speed Ratio (TSR), Power Signal Feedback
(PSF), Fuzzy and Adaptive Logic Controller (FLC and AFLC), Genetic Algorithm (GA),
Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN)-based
controller and Particle Swarm Optimization (PSO) are also frequently used [33–39]. Due to
its simplicity of implementation, the hill climb search (HCS) algorithm is the most widely
used strategy. It compares the power that was previously given with that following the
disturbance. The Power Signal Feedback (PSF) approach generates a reference power signal
to achieve the best power output. On the other hand, the Optimal Torque Control (OTC)
approach adjusts the generator torque to an optimal level for different wind speeds to
maximize power output [36]. Power and speed variations are the AFLC’s input controllers,
and the reference speed variation is the output. The rules will be dependent on variations
in speed and power to converge to the optimum point.

Power and speed variations are the input controllers for the AFLC, with the reference
speed variation serving as the output. The rules for convergence to the optimum point are
dependent on variations in speed and power. In multi-source renewable energy systems
(MSRES), energy management control (EMC) is mandatory. EMC is used in a wide range
of applications, from renewable energy sources like photovoltaics (PV) and wind with
their simple or multi-storage, to automotive traction using batteries, fuel cells (FC) and
supercapacitors (SC). Control strategies for EMC have been investigated in numerous
publications [40–71].

In this work, an optimal control of a hybrid photovoltaic/wind/battery system is
implemented and validated through Matlab/Simulink. The suggested sizing strategy
makes use of the total incident annual monthly average [1]. This method enables estimation
of the size of the two renewable generators. Many PV, wind turbine, and battery parameters
have been determined experimentally and used in numerous simulations to generate more
precise models. The proposed optimization strategy is associated with the P&O and AFLC
strategy, and is based on a hybrid maximum power point tracking (MPPT) method that
includes the advantages of each strategy alone. The hybrid MPPT method offers several
advantages, including higher power, efficiency and response time, which results in reduced
battery stress. Measured solar irradiances and wind speeds during twelve different days
corresponding to each month in the year 2021 are used, along with a chosen load profile to
supply power to a residential home.

To manage the different powers, a power flow or supervision method is used. It is
worth noting that this technique has been used in previous works [51,56,65], but not yet
on a hybrid PV/wind turbine/battery system. The method is simple, easily implemented
and does not require heavy computations. The load power and hybrid renewable power
are always compared, and when there is a lack of power, the batteries, if charged, supply
the load alone or in combination with the other sources; if there is an excess of power, it
charges the batteries. The key accomplishments of this work are a substantial increase in
renewable power and reduced battery stress in a multi-source (PV/Wind turbine) system.
The hybrid MPPT (HMPPT) method is associated with the proposed management method,
and the accuracy of the sizing method used contributes to the feasibility of the system.
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Simulation results using Matlab/Simulink show that the system can handle varying solar
irradiance and wind speed conditions.

2. Design and System Description

A permanent magnet synchronous generator (PMSG)-equipped wind turbine system,
DC/DC and DC/AC photovoltaic converters, storage batteries, solar irradiance sensors
and wind speed sensors make up the studied system (Figure 1). The power maximization
in each generator is performed using the proposed hybrid MPPT algorithm (HMPPT), and
a power flow strategy is used to control the different sources.
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Figure 1. System description.

The implemented design method is based on the total incident energy’s annual
monthly average. Monthly energy of each generator and load demand are calculated
to find the different areas of panels and wind turbine [1]. The different areas of the PV and
wind turbine generator are given by Equations (1) and (2) [1]:

Spv = max
(

ELoad,m

Epv,m

)
(1)

Swind = max
(

ELoad,m

Ewind,m

)
(2)

The PV, wind and load energy produced are given by Equation (3):

Epv = ηpv.Spv.Eirr (3)

Ewind = Pwind.∆t = (1/2).ρ.S.V3
wind.Cp (4)

ELoad = Spv.Epv + Swind.Ewind (5)

with:
ηpv = ηpv−STC.

[
1− βoc.

(
Tj − Tj−STC

)]
(6)
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{
Spv = kperc

(
ELoad/Epv

)
Swind =

(
1− kperc

)
(ELoad/Ewind)

(7)

The monthly energies produced are
Epv,m =

(
∑12

m=1 Epv

)
/12

Ewind,m =
(

∑12
m=1 Ewind

)
/12

ELoad,m =
(

∑12
m=1 ELoad

)
/12

(8)

where kperc is the PV source’s fraction of the load, and (1 − kperc) is the wind source’s
fraction of the load.

As a result, it is obtained:{
Spv = kperc

(
ELoad,ave/Epv,ave

)
Swind =

(
1− kperc

)
(ELoad,ave/Ewind,ave)

(9)

The following equations determine the number of PV panels and wind turbines:{
Spv,final = Npv.Spv,unit

Swind,final = Nwind.Swind,unit
(10)

The average consumed energy is given by:

Eload−ave = Epv,ave.Spv,unit + Ewind,ave.Swind,unit (11)

In Table 1, various calculations are summarized to demonstrate the different configura-
tions of the solar system’s linkage with the wind power system. It can be observed that the
average photovoltaic energy is about 19.80 kWh/day, and the average wind energy is about
134.12 kWh/m2. Since the average load energy required is 476.86 kWh, the combination
of 38 solar panels and 0 wind turbines (Table 2) corresponds to the required load energy
(486.02 kWh). However, since the studied system is a hybrid system (PV/wind turbine),
only the configuration of 8 panels and 1 wind turbine is closest to the required load energy
(523.47 kWh).The calculation of battery capacity can be written as [32]:

CBatt = (daut.Eload,m)/(UBatt.PDP.ηBatt.Nm) (12)

The batteries number can be calculated as

Nbatt = ENT[Cbatt/Cbatt−u] (13)

with: daut as the days of autonomy (days), Eload,m the monthly load consumed (kWh/day)
Nm: 31 days, Ubatt as the voltage battery (V), PDP as the depth of discharge, ηbatt the
efficiency battery and Cbatt−u as the chosen battery capacity.

Table 3 summarizes all the number components to be used. Finally, the total maximum
power of Photovoltaic panels is Ppv-tot = 3 × 110 = 640 Wp, while the maximum wind
turbine power is about 01 × 900 W = 900 W and 02 batteries of (12 V, 100 Ah) are used.

Table 1. PV and wind system configurations.

Months Eir
(kWh/m2)

Ta
(◦C)

Tj
(◦C) ηpv

Vwind
(m/s)

Epv
(kWh/m2)

Ewind
(kWh/m2)

ELoad
(kWh)

January 180.14 16.00 21.63 0.1130 6.50 15.90 191.47 664.82

February 190.11 14.00 19.94 0.1138 6.00 16.89 136.03 477.15

March 200.45 18.00 24.26 0.1118 5.00 17.51 87.15 311.52
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Table 1. Cont.

Months Eir
(kWh/m2)

Ta
(◦C)

Tj
(◦C) ηpv

Vwind
(m/s)

Epv
(kWh/m2)

Ewind
(kWh/m2)

ELoad
(kWh)

April 292.32 19.00 28.14 0.1101 4.70 25.14 70.05 260.00

May 200.03 25.00 31.25 0.1087 4.10 16.99 48.05 178.13

June 260.41 28.00 36.14 0.1065 4.20 21.67 49.99 188.78

July 290.70 31.00 40.08 0.1048 3.50 23.79 29.89 122.29

August 290.80 36.00 45.09 0.1025 3.70 23.29 35.32 140.30

September 185.56 30.00 35.80 0.1067 3.90 15.46 40.02 149.51

October 190.10 22.00 27.94 0.1102 5.50 16.36 116.00 408.60

November 190.10 18.00 23.94 0.1120 6.60 16.63 193.98 673.97

December 160.26 14.00 19.01 0.1142 6.80 14.29 219.23 757.78

Epv,ave =
18.66

Ewind,ave =
101.43

ELoad,ave =
361.07

Table 2. The number of panels and wind turbines calculated.

kperc Spv (m2) Swind (m2) Npv Nwind Spvfinal (m2) Swind,final (m2) ELmean (kWh)

0.00 0.00 3.56 0.00 2.00 0.00 6.90 699.87

0.10 1.93 3.20 3.00 1.00 2.60 3.45 398.52

0.20 3.87 2.85 5.00 1.00 4.34 3.45 430.92

0.30 5.80 2.49 7.00 1.00 6.08 3.45 463.31

0.40 7.74 2.14 9.00 1.00 7.81 3.45 495.71

0.50 9.67 1.78 12.00 1.00 10.42 3.45 544.30

0.60 11.61 1.42 14.00 1.00 12.15 3.45 576.69

0.60 11.61 1.42 14.00 1.00 12.15 3.45 576.69

0.70 13.54 1.07 16.00 1.00 13.89 3.45 609.08

0.80 15.48 0.71 18.00 1.00 15.62 3.45 641.48

0.90 17.41 0.36 21.00 1.00 18.23 3.45 690.07

1.00 19.35 0.00 23.00 0.00 19.96 0.00 372.53

Table 3. Component numbers.

PV Panels Wind Turbine Batteries

03 01 02

3. Optimization Methods

To optimize the strategy in PV and wind turbine generators, two MPPT approaches
(P&O and AFLC) are adopted.

3.1. P&O Method

This algorithm principle is described in Figure 2, and explained in the flowchart
(Figure 2) [1].
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Figure 2. P&O algorithm principle. (a) Photovoltaic. (b) Wind turbine. Where: Ppv and Ipv are
photovoltaic power and current, respectively, and PTb and ωTb are power and mechanical wind
turbine power, respectively.

3.2. Adaptative Fuzzy Logic Controller (AFLC)

Adaptive Fuzzy Logic Controller (AFLC) is an upgraded version of the Fuzzy Logic
Controller (FLC) that includes an adaptive mechanism for tuning the controller parameters
in realtime based on changes in the system and environmental parameters (Figure 3). The
goal of the AFLC is to improve the performance of the FLC by adjusting its duty-cycle or
other control parameters to optimize the system response. The AFLC typically includes
two main components: a fuzzy logic controller and a learning mechanism. The fuzzy
logic controller is similar to the FLC, and is used to process inputs from sensors and
generate control signals. The learning mechanism is responsible for monitoring the system
performance and environmental parameters and adjusting the FLC parameters accordingly.
In the AFLC, the inputs to the fuzzy logic controller typically include the PV module’s
voltage and current, which are added to the preceding values to produce the average value.
This input is then processed by the fuzzy logic controller, which generates an output signal
that is used to control the system. The learning mechanism is used to modify the FLC
duty-cycle or other parameters based on the performance of the system and environmental
parameters. This mechanism typically includes a set of rules that are used to adjust the FLC
parameters based on feedback from sensors and other sources.The AFLC is a powerful tool
for optimizing the performance of renewable energy systems by providing real-time control
and adaptation to changes in the system and environmental parameters. By incorporating
fuzzy logic control and adaptive learning mechanisms, the AFLC can improve the efficiency,
reliability and stability of renewable energy systems.

The controller MAMDANI type is shown in Table 4, along with functions for mem-
bership in seven classes [1]. By using linguistic terms to describe the input and output
variables, the FLC can make control decisions based on qualitative descriptions rather than
precise numerical values.
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Table 4. AFLC rules.

Error (e) Variation of Error (Ce)

NB NM NS ZE PS PM PM

NB NB NB NM ZE ZE ZE ZE

NM NB NM NM ZE NM PS PS

NS NB NB NB NB PM PS PM

ZE NB NB NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS PB PB PB PB PB PB

PB ZE PB PB PB PB PB PB

Where: NB, NS, NM, ZE, PM, and PB refer to linguistic terms used to describe the degree of membership. NB:
“Negative Big” represents a high degree of negative membership, NS: “Negative Small” represents a moderate
degree of negative membership, NM: “Negative Medium” represents a moderate degree of negative membership,
ZE: “Zero”represents a neutral degree of membership, PM: “Positive Medium” represents a moderate degree of
positive membership, PS: “Positive Small” represents a moderate degree of positive membership and PB: “Positive
Big”—represents a high degree of positive membership.

3.3. Hybrid MPPT Approach

A hybrid MPPT approach is suggested (HMPPT). This is a combinationof P&O and
AFLC methods. First, the optimal values are calculated (Equation (14)), and then the
proposed algorithm gives the chosen best power values (Equation (15)).{

PPV−opt = {PPV−P&o,PPV−AFLC}
PTb−opt = {PTb−P&o,PTb−AFLC}

(14)

{
PPV−best = max

(
PPV−opt

)
PTb−best = max

(
PTb−opt

) (15)

where: PPV−opt and PTb−opt are the different PV and wind turbine power values of each
MPPT method (P&o and AFLC),respectively, and PPV−best and PTb−best are the selected
best optimal PV and wind turbine power chosen by the HMPPT algorithm, respectively.

An application ismade during a whole day to show the performance of the HMPPT
method (Figure 4).
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Figure 4. Optimized PV and wind turbine powers.

The three MPPT methods (P&O, AFLC and HMPPT) have been applied. It is evident
from Figure 4 that the suggested HMMPT approach reacts more quickly than the P&O and
AFLC methods.

4. Simulation Study

The power of each generator is maximized using the proposed HMPPT strategy
(Figure 5).The hybrid HMPPT MPPT approach is a combination of the P&O and AFLC
methods.
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In a wind turbine generator, field-oriented control (FOC) is used for DC bus regulation
to keep constant the voltage DC bus constant whatever the wind speed variations. This is
used to control the currents and voltages of the stator windings of the generator, which are
then converted to DC voltage by a rectifier and fed into the DC bus.

4.1. Measurements ofSolar Irradiation, Temperature and Wind Speed Profiles

A measurement acquisition equipment was used in the lab to detect the sun radiation,
temperature and wind speed (Figure 6). It is essentially composed of sensors in order to
transfer the different signals to a data processing interface, and then to a PC where they
will be displayed using ACQUIsol software in realtime.
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turbine, 3: data acquisition system, 4: solar irradiance and ambient temperature sensor, and 5: PV
panel.

4.2. Simulation under Measured Profiles of Solar Irradiation, Temperature and Wind Speed

Matlab/Simulink is used to run the simulations, which consider the measured solar
irradiance and wind speeds profile for each day (Figure 7).

The chosen load profile is as shown in Figure 8. In our work, we use a hybrid HMPPT.
The power obtained from the PV generator under the three MPPTs is shown in Figure 9.
Three zoomed-in views of the photovoltaic power during three different profile days
are displayed in Figure 9a–c, corresponding respectively to medium, low and high solar
irradiance.

The wind power obtained using the HMPPT strategy is presented in Figure 10. Three
zoomed-in views of the wind turbine power during three different profile days are dis-
played in Figure 10a–c, corresponding respectively to high, medium, and low wind speed
velocity.

The renewable power is defined as shown in Figure 11. Three zoomed-in views of
the renewable power during three different profile days are presented in Figure 11a–c,
corresponding respectively to medium, low and high solar irradiance and wind speed
velocity.

PRenew = Ppv + Pwind (16)

It can be said that when using the hybrid method HMPPT and for each energy source,
significant power improvements can be realized when compared to using a single MPPT
technique. The required power by the batteries is reduced, as shown in Figure 12. Three
zoomed-in views of the battery power during three different profile days are displayed in
Figure 12a–c.
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Figure 12. Battery power.

The battery state of charge (SOC) is a critical parameter that must be evaluated to
ensure safe charging and discharging procedures. Estimating the SOC helps to protect the
battery from overcharging or deep discharging, thereby extending its life. The battery SOC
is maintained within the following limits

SOCmin ≤ SOC ≤ SOCmax (17)

where SOCmax is the maximum SOC value and SOCmin is the minimum SOC value.
For battery control, we usually use a Buck-Boost converter for the charging and

discharging process (Figure 13).
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Figure 13. Control of battery.

In our case, the SOC was controlled between 30% and 90% (Figure 14). Three zooms
of the SOC during three different profile days, respectively, are shown in Figure 14a–c,
corresponding respectively to medium, low and high solar irradiance and wind speed
velocity It is noticed that the SOC in maintaining between the SOCmin and the SOCmax
whatever the variations of solar irradiance and wind speed during the three different profile
days. It is maintained to its maximum value of 90 percent whatever the day profile with
some variations to reach a SOCmin of 56.57% in the first day (Figure 14a), 48.98% in the
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second day (Figure 14b) and 61.98 % in the third day. The batteries are less stressed and
discharge less, which is very important for their life span.
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Figure 14. Battery state of charge.

It can be said that on any given day, with its own weather variables, the suggested
hybrid technique produces the best SOC results. In comparison to the other methods, it
maintains its maximum value of 90 percent. With the proposed hybrid method, the batteries
are less stressed and discharge less, which is very important for their lifespan. Furthermore,
it is noted in Figure 15 that the battery voltage stays close to the reference voltage of 24V,
which is likely the desired voltage for the system. The hybrid MPPT approach (HMPPT)
produces the best values in terms of battery voltage, whatever the day chosen. This one
quickly reaches its value of 24V and is kept longer compared to the other methods. Three
zoomed-in views of the voltage battery during three different profile days, respectively, are
shown in Figure 15a–c.
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Figure 15. Battery voltage.

The battery voltage is maintained to its maximum value of 24V whatever the day
profile with some variations to decrease to 23.77 V in the first day (Figure 15a), 23.61 V in
the second day (Figure 14b) and 23.75 V in the third day. The batteries have not discharged
too much, which is very important for their life span.

The findings suggest that the HMPPT approach is effective at optimizing the power
output of the renewable energy source and regulating the battery voltage to ensure the safe
and optimal operation of the system.

5. Power Control of the Studied System
5.1. Literature Review on Energy Management Control

Energy management control (EMC) is a crucial component in multi-source renewable
energy systems (MSRES). Its applications range from renewable energy sources such as
PV and wind, with their simple or multi-storage systems, to automotive traction using
batteries, fuel cells (FC) and supercapacitors (SC). Numerous research articles [40–65] have
investigated various control strategies for these systems, as outlined in Table 5. While the
technologies used in each study differ, most applications focus on isolated systems for
electrification [40,45–51], microgrids [42,58,60,62–64] and multi-storage in traction and elec-
tric vehicles [47,50,52]. In most works, optimal component sizing has been studied [3–13],
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and it has been concluded that efficient control management strategies are necessary for
correctly sizing the different components of MSRES. Some of these strategies are based
on linear controllers [51–53], while others employ more intelligent methods [47,60–65].
Most of the works focus on simulation, implementation, economic study, optimization and
analysis of the system’s performance and environmental impact. The mainfocus of EMC
methods is controlling the power from different sources to supply the load and protect the
storage system. Some EMC methods use “if-else” statements in the decision algorithms [56],
while others employ more intelligent and predictive methods [60–71]. The following table
provides a summary of the literature review of the systems studied.

Table 5. Literature review of some systems under study with their components with EMC.

Year System under Study
Components

References
PV WTb Batteries Diesel Generator Fuel Cells Hydropower SC

2009 Autonomous system X X X X X X [40]

2010 Autonomous system X X X [41]

2012 Micro-grids X X X [42]

2013 Domestic micro-grids X X [43]

2013 Micro-grids X X [44]

2014 Traction motor X X X [45]

2014 Autonomous
network X X X [46]

2014 Electric vehicle X X X [47]

2014 Autonomous system X X [48]

2015 Electric car X X X [49]

2016 Water pumping
system X X X [50]

2017 Autonomous system X X X X [51]

2017 Electric vehicle X X [52]

2018 Autonomous system X X [53]

2018 Hybrid vehicle X X [54]

2018 Water pumping
system X X X X [55]

2019 Autonomous system X X X X [56]

2020 Micro-grids X X X [57]

2020 Standalone system X X X [58]

2020 Grid-PV system X X X [59]

2021 Micro-grid systems X X X X X X X [60]

2021 Isolated renewable
energy system X X [61]

2021 Isolated hybrid
micro-grids X X X [62]

2021 Micro-grid systems X X [63]

2021 Micro-grids X X X X X X X [64]

2021 DC micro-grids X X [65]

2022 Micro-grids X X X [66]

2022 Micro-grids X X X X X [67]

2022 Stand-alone system X X [68]

2022 Stand-alone system X X X [69]

2022 Electric vehicle X X X [70,71]
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5.2. Control of the Studied System

The studied system PV/Wind turbine with batteries with the HMPPT strategy has
been controlled using a proposed power management control (Figure 16). There is always
a comparison between load power and hybrid renewable power. When there is a lack of
power, the batteries, if fully charged, can supply the load alone or in compensation with
other sources; it also charges batteries if there is an excess of power. For this, four switches
are used in the suggested power flow system (Figure 17).
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The system uses four switches (K1, K2, K3, K4) to control the flow of power between
the different sources and the load. When there is sufficient power from the renewable
sources to meet the load demand, switch K1 is closed to allow the power to flow directly
to the load. At the same time, switch K4 is closed to allow any excess power to be stored
in the batteries. If the renewable sources are not producing enough power to meet the
load demand, switch K1 is opened and switch K2 is closed to allow the batteries to supply
power to the load. The batteries can either supply power alone or in conjunction with any
remaining power from the renewable sources. If the batteries become depleted, switch K3
is closed to allow an alternate power source, such as a generator or grid power, to supply
power to the load. At the same time, switch K4 is closed to allow the batteries to be charged
from the alternate power source. The different switches operate as shown in (Table 6).



Energies 2023, 16, 2286 19 of 24

Energies 2023, 16, x FOR PEER REVIEW 19 of 25 
 

 

 

Figure 16. Proposed overall structure of the system under study. 

 

Figure 17. Proposed power flow method. 
Figure 17. Proposed power flow method.

Table 6. Different states of the switches.

Switch States Powers SOC

K1 = 1 K2 = 0 K3 = 0 K4 = 0 Phyb = PLoad SOC

K1 = 1 K2 = 0 K3 = 0 K4 = 1 Phyb > PLoad SOC > SOCmax

K1 = 1 K2 = 1 K3 = 0 K4 = 0 Phyb > PLoad, SOC < SOCmax

K1 = 1 K2 = 0 K3 = 1 K4 = 0 Phyb < PLoad, SOC > SOCmin

K1 = 0 K2 = 1 K3 = 0 K4 = 0 Phyb < PLoad SOC < SOCmin

K1 = 0 K2 = 0 K3 = 0 K4 = 1 PLoad = 0, Phyb > 0 SOC ≥ SOCmax

The load profile depends on PV, wind and battery powers:

PLoad = PPV + Pwind ± PBatt. (18)

Figure 18 shows the various switch signals, while Figure 19 depicts the various
powers. It can be concluded that the load power was satisfied during the twelve typical
days throughout the year due to good sizing and the effective management of the different
power sources, in accordance with the power balance equation.

The batteries’ capacity was used up to 44.93%on the first day (Figure 19a), 62.96% on
the second (Figure 19b), and only 32.36% on the third (Figure 19c). As expected, the power
discharge represented only a small quantity (indicated by the negative parts in a red color)
when compared to the results obtained using the proposed hybrid method, which placed
less stress on the battery.
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6. Conclusions

The paper presents the optimal control of a hybrid photovoltaic/wind turbine/battery
system, and analyzes and compares the results from different findings. There was a
significant improvement in power for each energy source when using the hybrid HMPPT
method, as compared to using a single MPPT technique. The required power from the
batteries has been greatly reduced. The main contribution of this paper is the reduction
of stress on the storage batteries in a multi-source system through the combination of
an accurate sizing approach and a hybrid MPPT algorithm with a power flow method.
The results demonstrate that the different energy sources were managed optimally to
meet the load demand, even under varying weather conditions. The findings confirm the
effectiveness and viability of the suggested control method for the entire year.
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