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Abstract: This paper presents a multi-objective design optimization of a power transformer to find
the optimal geometry of its core and the low- and high-voltage windings, representing the minimum
power losses and the minimum core and copper weights. The optimal design is important because it
allows manufacturers to build more efficient and economical transformers. The approach employs a
manufacturer’s design methodology, which is based on the usage of the laws of physics and leads to
an analytical transformer model with the advantage of requiring a low amount of computing time.
Afterward, the multi-objective design optimization is defined along with its constraints, and they
are solved using the Non-Sorting Genetic Algorithm III (NSGA-III), which finds a set of optimal
solutions. Once an optimal solution is selected from the Pareto front, it is necessary to fine-tune it
with the 3D Finite Element Analysis (FEA). To avoid the large computing times needed to carry out
the 3D Finite Element (FE) model simulations used in multi-objective design optimization, Response
Surface Methodology (RSM) polynomial models are developed using 3D FE model transformer
simulations. Finally, a second multi-objective design optimization is carried out using the developed
RSM empirical models that represent the cost functions and is solved using the NSGA-III. The
numerical results of the optimal core and windings geometries demonstrate the validity of the
proposed design methodology based on the NSGA-III. The used global optimizer has the feature of
solving optimization problems with many cost functions, but it has not been applied to the design of
transformers. The results obtained in this paper demonstrate better performance and accuracy with
respect to the commonly used NSGA-II.

Keywords: power transformer; finite element analysis; genetic algorithms; optimization; surface
response methodology

1. Introduction

The power transformer is an important element in an electrical network because it
makes possible the transmission and distribution of electrical energy. Even though a trans-
former is passive equipment, i.e., with no rotating parts, it may be exposed to malfunctions,
and its failure can generate energy interruptions that directly impact consumers and cause
economic losses to the electrical energy companies. A transformer’s electrical and magnetic
performance is governed by Maxwell equations [1]; it can also be described in a simpler
way by using Faraday’s induction equation and equivalent electrical and magnetic cir-
cuit theory [2]. By employing simpler equations than those of the electromagnetic theory,
transformer manufacturers have developed their own proprietary design computer pro-
grams, which they have improved over the years based on their experience manufacturing
many transformers. Alternatively, Maxwell equations can be numerically solved either in
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2D or 3D, giving more accurate results than the manufacturer’s design method, but this
approach has the disadvantage of having high computing times when used directly in
an optimization process; the use of symmetries can significantly reduce the computing
time [3,4]. The manufacturer’s design approach has the drawback of being less accurate,
but, due to its simplicity, it has the advantage of being quickly solved and having fast
designs. In the design process of a transformer, it is desirable to have the best possible
design that can fulfill constraints, and this can be achieved by employing optimization
algorithms. Initially, determinist optimization algorithms were developed and used in
designing transformers. In the last two decades, applying global optimization algorithms
to improve the design of power transformers has been a topic of interest to academic and
industrial researchers. Recently, global optimization algorithms that can handle multiple
objectives have also been used in engineering [5]. Amoiralis et al. proposed a global trans-
former optimization based on decision trees and adaptively trained neural networks, which
were combined with the Finite Element Method (FEM) and Boundary Element, where
the selection of winding materials was achieved [6]. Amoilaris et al. also used a parallel
mixed-integer programming technique combined with the branch and bound algorithm for
the global design optimization of several transformer ratings, where the cost of its active
parts was chosen as the objective function to be minimized [7]. In 2009, Amoilaris et al.
also published a complete bibliographic survey related to transformer design carried out
in the previous forty years, where they reported the appearance of stochastic methods
that included artificial intelligence techniques and genetic algorithms [8]. Arjona et al.
developed a methodology that they applied to the optimal design of a power transformer,
where they combined the conventional transformer design with genetic algorithms at the
start of the design process and then used a 2D Finite Element (FE) transformer model with
the Gauss-Newton method [9]. Tran et al. proposed an adapted output space-mapping
technique with a bi-objective optimization based on a 3D FE model of a single-phase trans-
former; the Pareto front was constructed for the loss and total mass of the transformer; this
technique reduces the computation time needed when using direct 3D FE simulations [10].
Cheema et al. published a practical approach for the global optimization of a three-phase
core-type distribution transformer design where the total owning cost was considered as
the cost function, which was minimized using four different algorithms: direct search,
differential evolution, simulated annealing, and random search [11]. Hultman Ayala et al.
proposed a multi-objective optimal design for a safety insulating transformer where the
metaheuristic wind-driven optimization algorithm was employed and the minimization of
two cost functions was used: the total mass, iron loss, and copper loss; no Finite Element
Analysis (FEA) was applied [12]. Xia et al. proposed an optimal design applied to the
winding transposition of power transformers, where an adaptive co-Kriging surrogate
model was constructed with 2D and 3D FEA and the binary particle swarm optimization
algorithm was used; the single objective of circulating current winding loss was mini-
mized [13]. Mohammed et al. proposed the use of evolutionary algorithms and FEA for
the multi-objective transformer design where total loss and total ownership cost were
defined as the cost functions to be minimized; the Non-Sorting Genetic Algorithm (NSGA)
II, the genetic algorithm, and the differential evolution algorithm were used [14]. Liu et al.
applied the NSGA-II to the optimal design of a distribution transformer with an amorphous
core; they considered the total owning cost as the objective function to be minimized along
with the transformer constraints [15]. Orosz et al. proposed an optimal design of a power
transformer, where NSGA-II was applied to minimize the total cost of ownership and the
geometric programming method was used to calculate the optimal winding layout of the
transformer; 2D FEA was included in the optimization process [16]. Recently, a thermal
analysis based on the electromagnetic and fluid dynamic modeling of a power transformer
was presented by Stebel et al. [3].

Metamodeling and global optimization have also been applied to the optimal design
of low-power transformer applications. Cove et al. applied response surface modeling and
FEA to design small planar transformer windings, where heuristic models were developed
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for predicting leakage and magnetizing inductances, capacitances, and winding resistances;
optimization algorithms were not applied [17]. Li et al. presented the optimal design
of a high-frequency coaxial transformer where artificial neural networks and FEA were
used; the design was focused on determining the ring core size, the winding structure
using Litz wires, and the working parameters [18]. Xiaowei et al. used the NSGA-II for
the multi-objective optimal design of a high-frequency transformer. Two cost functions
were defined: the first one is related to the product of the magnetic window area and
cross-section area of the core, and the second function represents the losses of the core and
windings [19]. Tan et al. conducted a multi-response optimization of the thermo-hydraulic
performance of a transformer [20].

The above-published research results demonstrate that the transformer industry can
benefit from using powerful evolutionary multi-objective algorithms to design transformers
that can fulfill complex goals and constraints. The advent of optimization algorithms that
can solve real optimization problems with many objectives can help electrical engineering
designers [21,22]. Multi-objective problems with at least four objectives are known as many
objectives, even though some authors consider problems with at least three objectives to
be many-objective problems [23]. Numerical methods have become mature transformer
designer tools like the FEM [1]. Furthermore, multi-physics problems can be numerically
solved to obtain an optimal solution to complex problems. In addition, the role of statistics
in process optimization by using the design of experiments and surrogate modeling is also
important [24]. Nonetheless, few publications related to multi-objective optimization of
power transformers have been reported, and none of them have applied the NSGA-III
algorithm, whose application is being proposed in this paper.

This paper presents an optimal design to find the geometry of the core and the high-
and low-voltage windings of a power transformer. The multi-objective electromagnetic
design minimizes the transformer’s electrical power losses and the copper and core weights
with two equality constraints related to the apparent output power and the leakage reac-
tance of the transformer. The problem is solved using the many-objective optimization
algorithm NSGA-III, an analytical transformer model, Response Surface Methodology
(RSM) polynomial models, and 3D FEA. An analysis of the optimal solution, convergence
performance using the running metric, computing time, and the accuracy obtained with
the optimizers NSGA-II and NSGA-III is reported.

2. Multi-Objective Transformer Design Methodology

The proposed analytical approach is illustrated in Figure 1. It starts by using a
manufacturer’s approach to design a transformer. The procedure begins by defining the
technical specification of the device (Table 1). Afterward, a multi-objective optimization is
formulated and solved using the NSGA-III algorithm, which can handle any number of
goals defined by the designer. When this step ends, one of the best optimal solutions must be
selected and considered in the second step, where FEA is employed to solve a more detailed
transformer model [25]. In the next step, a RSM polynomial model is constructed; this
model is obtained through the design of experiments, where the FEA provides information
on the desired performance of the transformer. Finally, a multi-objective optimization
is carried out using the RSM models, which can speed up the numerical solution of the
multi-objective optimization. The last step may also include verifying the selected optimal
solution against FE simulations of the power transformer.
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Table 1. Transformer design specification.

Power
Rating
(kVA)

High
Voltage

(V)

Low
Voltage

(V)
Type Connection Frequency

(Hz)
Reactance

(%)

1500 13,200 220 Oil filled Delta-wye 60 5.5

3. Transformer Modeling

The transformer modeling consists of simplified analytical closed-form equations,
electromagnetic formulation, and response surface methodology.

3.1. The Manufacturer’s Transformer Design Approach

The initial problem in designing a transformer consists of determining its appropri-
ate dimensions and performance. A summary of the transformer’s performance can be
described by Equations (1)–(5) [26].

V = 4.44N f Bc Ac, (1)

S = 3VI, (2)

PCu =
J2ρCumCu

ρdCu
, (3)

Pcore = VcρcPc, (4)
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X =
(2π)2µ0 f (VI)base(

V
N

)2
hm

(
rm1b1

3
+

rm2b2

3
+ rmgg

)
, (5)

where V is the winding voltage, N represents the winding turns, f stands for frequency, Bc
is the flux density, Ac is the core area, S denotes apparent power, and I is the phase current.
PCu stands for cooper loss, J is the winding current density, ρCu is the copper resistivity,
mCu is the winding weight, and ρdCu denotes the density of cooper. Pcore represents the core
loss, ρc is the density of oriented steel, Pc indicates specific iron loss, and Vc is the core
volume. X represents the transformer reactance, hm is the winding mean height, rm denotes
mean radius, b is radial winding depth, rmg is the airgap mean radius, and g is the airgap
length between primary and secondary windings. Subscripts c, 1, and 2 indicate the core,
low voltage, and high voltage windings, respectively.

The transformer schematic diagram with the main dimensions of its active elements is
presented in Figure 2; this information is the output of the transformer analytical model
used by manufacturers. Figure 2 represents the geometry considered in the design of the
power transformer, where a set of distances and diameters related to the electrical clearances
of the main transformer’s electrical insulation and the magnetic circuit, along with its
windings, can be seen. A side view of the transformer is shown in Figure 2a, illustrating
the height, radial thickness, and inner diameters of the low- and high-voltage windings.
Additionally, the core dimensions are indicated, such as its diameter and the core leg
height; the distance between the centers of the core legs can be obtained from the winding’s
dimensions and their insulation clearances. The gaps related to the main insulation of
the transformer, such as the distance between the core and tank, the electrical clearance
between the HV winding and tank, the gap between the high voltage windings, the
distances between the yokes and tank, and the windings and core, are also illustrated. The
expressions employed for the calculation of the height and width of the tank are indicated
in Figure 2a. The top schematic view of the transformer is presented in Figure 2b, where
the dimensions of the HV and LV windings are seen and the electrical insulation distance
between the windings and core is also indicated. The algebraic expression employed to
calculate the tank depth is also shown; this distance depends on the core, windings, and
electrical clearance dimensions. The description of the dimensions indicated in Figure 2 is
given in Table 2.

Table 2. Description of the main transformer dimensions of Figure 2.

Dim. Description Dim. Description Dim. Description

d0 Core diameter h Core leg height h3 Yoke bottom tank clearance
d1 LV winding diameter g HV–LV windings gap h4 Yoke top tank clearance
d2 HV winding diameter g0 LV–Core clearance tw Tank width
h1 LV winding height g1 LV–Yoke clearance th Tank height
h2 HV winding height g2 HV–Yoke clearance td Tank depth
b1 LV winding radial depth g3 HV–HV clearance
b2 HV winding radial depth g4 HV–Tank clearance
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3.2. Electromagnetic Model

The 3D magnetodynamic formulation includes the variation of the magnetic scalar
potential (Ω) and the electric vector potential in conducting regions. The time variation is
assumed to be sinusoidal, and complex numbers are used to represent it. The electric vector
potential T is related to the vector current density J and to the magnetic field intensity H as
follows (6)–(9) [1]:

∇× T = J, (6)

(T−∇Ω) = H. (7)

By using the Faraday and Gauss laws, the induced current in conducting regions is
given by (8):

∇2T = −σµ0µr(T−∇Ω), (8)
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where σ is the electric conductivity, µ0 is the free space permeability, and µr is the relative
permeability. In other regions, the scalar magnetic potential is used (9).

∇2Ω = 0. (9)

3.3. Response Surface Methodology

Response Surface Methodology uses statistics and mathematics to develop heuristical
models that are used to analyze and improve physical processes [24]. It has been applied
to the industrial world, such as chemical, automotive, electromagnetics, and electronics.
RSM allows the determination of models, which can be of the type of polynomial functions,
Kriging, or neural networks. RSM analyzes the effect of several inputs (also known as
factors, independent variables, or design variables) on the response of a system. This
methodology has the advantage that it can represent systems with multiple inputs and
multiple outputs, and hence can be applied to complex processes such as an electrical
power transformer. The resulting models of applying RSM are not based on physical
principles; they are also known as metamodels; hence, the methodology can be applied to
different areas of engineering. RSM is mainly applied as a sequential procedure, as shown
in Figure 3a. The first step consists of defining the design variables that may impact the
outputs of interest; this phase may be based on the expertise of the design engineer who
knows the process response. In the work presented here, the design factors considered
in the RSM are the core diameter, core leg height, low-voltage winding radial thickness,
high-voltage winding radial thickness, and the gap radial length between the windings.
The second RSM step is related to determining the values of the design variables where the
optimum or near-optimum operating point lies; this procedure in RSM is commonly carried
out using deterministic optimization using the RSM-derived first-order polynomial models.
However, in this paper, the optimum operating point of the power transformer is obtained
using a global optimizer and an analytical model of the transformer, which was derived
from the manufacturer’s design experience. The third step of a response surface is to find a
heuristic model that represents the response with higher accuracy in a small region near
the optimum. In this stage, the design of experiments is used to collect FEA-derived data,
which are then used to develop RSM-based polynomial models. There are several methods
for carrying out the experiments for data collection, such as the Central Composite Design
(rotatable, face-centered, and spherical), Box-Behnken, full factorial, and fractional factorial,
among others. The CCD rotatable fractional factorial design of experiments is used in this
paper for two main reasons: It allows for a reduced set of experiments, and it has five-level
design variables (−α, −1, 0, +1, +α), where the +α and −α represent the maximum and
minimum values of each input parameter (Figure 3b), and level 0 is the mean value of that
input. The center point and the axial points located at distances ±α from the center point
allow the estimation of curvature and quadratic terms. The number of design points in
the experiment is calculated as 2(k−f ) + 2k + 1, where k is the number of factors and f is
the fraction of the full factorial experiment [27]. Furthermore, the rotatable CCD has the
property of having an equal predicted variance for the samples that are equidistant from the
center of the design. Furthermore, the larger value of α allows for including a larger region
of the operating point, and it is calculated as α = 2(k−f)/4. An empirical second-order model
is used because it is recommended when the response near the optimum usually exhibits
a curvature. In the fourth RSM step, the resulting model is analyzed to determine the
optimum values of the factors that represent the core and winding dimensions of the power
transformer. In the final step, a confirmatory experiment must be carried out, in which the
objective is to confirm the identified optimum operating point. In RSM, a second-order
polynomial model is given by (10) [24].

y = β0 + ∑k
i=1 βixi + ∑k

i=1 βiix2
i + ∑k−1

i=1 ∑k
j=i+1 βijxixj + ε, (10)
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where x’s represent the input coded variables, β’s are the unknown parameters, and ε
stands for the prediction error. The second term in the Equation (10) indicates the main
effects, the third term shows the quadratic components, and the fourth term shows the
interactions for factor xi.
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4. Multi-Objective Optimization

Genetic algorithms are search and optimization tools that work differently compared
with classical methods and are capable of handling multi-objective problems with a wide
scope of applications [28]. Since their introduction by Holland in 1975, they have evolved,
passing through different extensions: real-coded, multimodal, multi-objective, and many-
objective, which led them to solve different optimization problems. Genetic algorithms
search simultaneously for multiple solutions on discontinuous regions next to the approxi-
mate Pareto front. Deb and Jain proposed a many-objective evolutionary algorithm whose
basic framework remains similar to the NSGA-II algorithm [21]. The main difference is the
substitution of crowding distance for a selection based on well-distributed reference points.
Reference points of the original NSGA-III are uniformly distributed on a hyperplane to
guide solutions to converge.

The NSGA-III algorithm starts with an initial population of feasible solutions of size N
and a set of reference directions on a unit simplex. One of the requirements of this algorithm
is the initial supply of a set of reference directions. A reference direction is constructed by a
vector starting from the origin and connected to each of the reference points that belong
to a set of points initialized on an M-dimensional unit simplex, where M is the number
of objectives. Das and Dennis’s method is one of the most commonly used methods to
place reference points [29]. However, with Das and Dennis’s method for a large number
of objectives, very few points of a reasonable-sized reference set lie in the interior of the
simplex. Blank et al.’s Riesz s-Energy method was used here to create a well-spaced set of
points on the unit simplex [30], whose concept is to find the z-matrix that minimizes the
s-Energy function subject to every z(i) vector lying on the unit simplex (11):

∑M
i=1 z(i)m = 1, (11)

Inverted Generational Distance (IGD) is a performance indicator used to evaluate
the quality of an obtained solution set in comparison with a pre-specified reference point
set [31,32]. One of the issues with the IGD performance indicator is that it requires a set of
solutions from the true Pareto-optimal (PO) front, which makes it difficult to apply to a real-
world problem where PO solutions are not available before an evolutionary multiobjective
optimization algorithm is run. Blank and Deb updated to IGD metrics with no use of
PO front [33]. They keep track of how the realized ideal point (z*) and realized nadir
point (znad) move from one generation to another, considering the maximum absolute
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difference of each component. The first one is a vector with the minimum of all objectives,
and the latter is a vector with the maximum of non-dominated solutions in the objective
space. The non-dominated solutions are accumulated from the initial generation to the
current generation (τ) and then z* and znad points are calculated from the accumulated set.
Afterwards, the normalized i-th objective value of the j-th non-dominated point at the t-th
generation P(j)

i (t) using P(τ) for (0 ≤ t ≤ τ) is calculated by:

Pτ,(j)
i (t) =

P(j)
i (t)− z∗i (τ)

znad
i (τ)− z∗i (τ)

(12)

Blank and Deb [33] state that once the non-dominated sets at generations 0 ≤ t ≤ τ
are normalized with fixed z* and znad points, a performance metric that requires a reference
set P* and an evolving non-dominated set Q(t) can now use Pτ

(τ) and Pτ
(t), respectively,

to evaluate the performance of the algorithm for the mentioned generations. Then, the IGD
metric for 0 ≤ t ≤ τ can be calculated using (13):

IGD
(

Pτ
(t), Pτ

(τ)
)

for 0 ≤ t ≤ τ, (13)

where t represents the t-th generation, τ stands for the accumulated non-dominated so-
lutions from the initial to the current generation, Pτ

(t) is an evolving non-dominated set,
and Pτ

(τ) represents the reference set. To reduce the computational complexity and IGD
computations, Blank and Deb [33] calculate the average improvement of the IGD metric
over generations (t− 1) to t as follows (14):

Φt = IGD
(

Pt
(t− 1), Pt

(t)
)

, (14)

The demonstration of the proposed new design methodology is given in this section.
First, a multi-objective optimization is mathematically formulated based on the design
approach used by manufacturers, where a cost vector function, f (x), is solved with the
NSGA-III algorithm as indicated by (15)–(21).

minf(x) = { f1(x), f2(x), f3(x)}, (15)

s.t.

f1(x) = ρdCuVCu, (16)

f2(x) = ρcVc, (17)

f3(x) = PCu + Pcore, (18)

S(x) = Srated, (19)

X(x) = Xre f , (20)

xl ≤ x ≤ xu, (21)

where x is the design variable vector, f 1 is the copper weight of the windings, f 2 stands for
core weight, f 3 represents the copper and core electrical power losses, S(x) is the apparent
electrical power, Srated is the desired transformer’s apparent power, X(x) is the transformer’s
reactance, and Xref represents the specified transformer’s reactance. The copper and core
volumes are represented by VCu and Vc, respectively. The subscripts l and u mean the lower
and upper bounds, respectively.
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5. Numerical Results

The population size and number of generations for the NSGA-III optimization power
transformer problem with the three objectives and two equality constraints are 200 individ-
uals and 1000 generations.

5.1. Optimization Results with the Manufacturer’s Transformer Design Approach

The Pareto front with three objectives minimized with the NSGA-III, i.e., f 1(x) for
copper weight, f 2(x) for core weight, and f 3(x) for copper and core power losses, are
shown in Figure 4 in normalized values. The used vector of design variables is defined as
x = [B, JHV, JLV, d0, h, g]. The blue circles indicate the Pareto front with all possible optimal
solutions, whereas the cyan region indicates the plane of the reference points. As mentioned
in the previous section, the performance of the applied optimization was evaluated by
using the running performance metric proposed by Blank and Deb [33]. The convergence
of the multi-objective solutions plotted in Figure 5 sets out two phases of the running
performance metric for the transformer manufacturer’s design approach. The criteria
employed to choose the best solution are based on selecting the optimum operating point
with the lowest power losses with the minimum weight of copper and grain-oriented
silicon steel, such that it represents the lowest cost considering a price of 15.15 USD/Kg
for the copper and 6 USD/Kg for the core. The selected optimal point obtained with the
NSGA-III is shown in Table 3.
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Table 3. Optimal solution obtained with the transformer manufacturer’s design approach.

Design Variables and
Transformer Quantities Description Optimum

NSGA-II
Optimum
NSGA-III

FEA of Optimum
NSGA-III Units

B Flux density 1.48 1.69 - T
JHV HV current density 3.36 3.20 - A/mm2

JLV LV current density 3.25 2.81 - A/mm2

d0 Core diameter 255.83 239.08 - mm
h Core leg length 457.60 493.21 - mm
g HV–LV winding gap 12.00 14.82 - mm
S Apparent power 1499.72 1499.84 1501.09 kVA
X Leakage reactance 5.54 5.5 5.86 %

Ploss Power losses 14,751 13,740 13,248 W
WCu Copper weight 515.88 548.40 548.3 Kg
Wcore Core weight 1261.15 1113.19 1124.9 Kg

Figure 5 shows the reference points used with NSGA-III to ensure diversity in the
obtained solutions. Blank et al.’s Riesz-Energy method was used to place points on a
normalized hyper-plane that is equally inclined to all objective axes and has an intercept of
one on each axis [30]. The blue circles correspond to the obtained optimal solutions.

The running metric is used to visualize the performance of the NSGA-III algorithm.
Figure 5 shows the proceedings with an interval of 50 generations. To compute the blue line
in the early phase, non-dominated sets for all past generations where 0 ≤ t ≤ τ with τ = 50
are normalized using Equation (12), then IGD values are computed with Equation (13).
After 50 more generations, the IGD plot for τ = 100 is shown in orange. The IGD values in
the first 50 generations are different from the ones of the plot in the blue line because all non-
dominant sets are re-normalized with z* and znad points from the 100th generation. From
the final phase, it can be seen how NSGA-III improves and the IGD value approaches zero.

A comparison of the performance of both NSGA-II and NSGA-III in terms of the
running metric is presented in Figure 6. It is clearly seen how the NSGA-III shows better
convergence performance with an optimization problem defined by three objectives and
two equality constraints. It is seen that the NSGA-II IGD metric does not get better values as
the number of generations increases. Meanwhile, the NSGA-III running metric converges to
lower values after generation 200. This demonstrates that NSGA-III has better convergence
performance than NSGA-II.
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The optimum solutions obtained with the NSGA-II and NSGA-III, using the analytical
model for the transformer design, are shown in Table 3. The optimum dimensions of the
core and the best values of the current densities of the LV and HV transformer windings
are given in Table 3. The winding areas can be calculated using the rated transformer
current and these optimal current densities. The core leg height defines the height of
both LV and HV windings because they are calculated considering the insulation gaps
between the core and the windings. In Table 3, it is seen that the current density values have
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relatively high values, as is expected because of the power loss minimization problem, and
at the same time, the optimizer minimizes the copper weight to be used in the transformer.
Alternatively, it can be observed that the core flux density has a value of 1.69 T (NSGA-III),
which means better utilization of the core by minimizing the core weight. It can also be
seen that the core diameter and the core leg height have values that the optimizer finds
to satisfy both the cost functions and equality constraints. It is important to note that the
independent variables, core diameter and core leg height, directly impact the windings’
volume because their diameters and heights depend on these two independent variables.
Regarding the fulfillment of the equality constraints, Table 3 shows values that are very
close to the desired apparent power and leakage reactance. However, it should be taken
into account that the analytical model of the transformer does not have high accuracy when
compared with a 3D FE model, yet this solution is important because it defines the region
to be analyzed using RSM (Figure 2a). Regarding the accuracy of the optimal solution
(NSGA-III) using the analytical model shown in Table 3, a 3D FE simulation was carried
out using the optimal transformer dimensions; the results are shown in the same table. It is
seen that the transformer leakage reactance is higher, i.e., 5.86%, and the apparent power is
higher by 1.09 kVA than the specified transformer power. Differences in the power losses,
copper, and core weights were also found, and these are due to the higher accuracy of the
FE model when compared with the analytical model.

A comparison of the solutions obtained with NSGA-II and NSGA-III is also shown in
Table 3. It is seen that the power loss is lower with NSGA-III than with NSGA-II; this means
that the designed transformer will have a higher efficiency. Alternatively, the copper weight
is higher, and the core weight is lower. It is important to point out that these optimum points
belong to the Pareto front. Regarding the fulfillment of the equality constraints, NSGA-
III has more accuracy in the leakage reactance than NSGA-II; meanwhile, the apparent
transformer power is almost the same for both optimizers. The power loss and the core
weight are lower. The differences may be attributed to the difference in convergence as
indicated by the running metric shown in Figure 6. The computing time for the NSGA-II is
5349 s, while for the NSGA-III it is 3200 s using a computer with a CPU i7-7700 at 3.6 GHz
and 16 GB of RAM; hence, it was found that the NSGA-III is faster.

5.2. Multi-Objective Optimization Results Using RSM Polynomial Models

In the development of the empirical models using RSM, the optimum point obtained
with NSGA-III, shown in Table 3, is employed to construct the 3D FE model of the power
transformer, which is voltage fed; this means that the current in its windings is dependent
on the electrical load connected to the LV winding. Therefore, the radial thickness of both
LV and HV windings and the core leg height were selected as the design variables. The
windings’ height is a function of the core leg height and the insulation gaps. Choosing
the above three independent variables is equivalent to selecting the current density in the
windings. The additional independent variables are the core diameter and the air gap
between the HV and LV windings. The core flux density is dependent on the voltage
source of the FE 3D transformer model. The used vector of design variables is defined as
x = [d0, g, b1, b2, h]. The values of the five independent variables (d0, g, b1, b2, and h) and
their coded values, based on the rotatable CCD experimental design, are shown in Table 4.

Table 5 shows the experimental design using the fractional rotatable CCD for the five
factors (d0, g, b1, b2, and h) and the five model outputs (power loss, copper weight, core
weight, apparent power, and leakage reactance). The combinations of the input variables,
the model responses, and the runs, executed using 3D FE transformer models, are also
shown in Table 5. It is necessary to point out that variations of the five design variables
modify the dimensions of the transformer tank because the insulation clearances must be
taken into account. The matrix information in Table 5 is used to determine the second-
order polynomial models. The three output functions (power loss, copper weight, and
core weight) represent the three objectives of the multi-objective optimization problem. In
addition, there are two output functions (apparent power and leakage reactance). The total
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computing time to obtain the RSM models, including the 3D FE transformer simulations,
was 2061 s. A workstation with two Xeon E5-2695 2.3 GHz processors, 28 cores, and 128 GB
of RAM was used. The full set of RSM second-order polynomial functions is then employed
to find the optimal value of the transformer’s core and windings dimensions using the
optimizer NSGA-III (Table 6).

Table 4. Design variables used in the experimental design.

Levels Core Diameter
(mm), d0

HV–LV Gap (mm), g LV Radial Depth
(mm), b1

HV Radial Depth
(mm), b2

Core Leg Height
(mm), h

−α (min) 215.17 13.34 32.35 28.32 443.89
−1 (low) 227.13 14.08 34.14 29.90 468.55
0 (center) 239.08 14.82 35.94 31.47 493.21
1 (high) 251.03 15.56 37.74 33.04 517.87

+α (max) 262.99 16.30 39.53 34.62 542.53

Table 5. Rotatable CCD experimental design matrix and FEA transformer responses for each run.

Run d0
(mm)

g
(mm)

b1
(mm)

b2
(mm)

h
(mm)

Power Loss
(W)

Copper Weight
(Kg)

Core Weight
(Kg)

Sout
(kVA)

X
(%)

1 239.08 14.82 35.94 31.47 493.21 13,248.4 548.3 1124.9 1501.09 5.86
2 215.17 14.82 35.94 31.47 493.21 13,421.7 507.8 874.6 1447.99 5.41
3 262.99 14.82 35.94 31.47 493.21 12,997.5 588.8 1415.7 1501.85 6.26
4 239.08 13.34 35.94 31.47 493.21 13,248.6 546.1 1121.3 1502.08 5.62
5 239.08 16.3 35.94 31.47 493.21 13,245.5 550.5 1128.5 1500.71 6.09
6 239.08 14.82 32.35 31.47 493.21 13,243.9 513.3 1116.1 1501.03 5.6
7 239.08 14.82 39.53 31.47 493.21 13,232.8 584.0 1133.6 1500.86 6.12
8 239.08 14.82 35.94 28.32 493.21 13,237.6 517.9 1117.2 1502.15 5.69
9 239.08 14.82 35.94 34.62 493.21 13,256.9 579.2 1132.5 1500.26 6.01
10 239.08 14.82 35.94 31.47 443.89 13,155.9 485.3 1079.9 1500.16 6.53
11 239.08 14.82 35.94 31.47 542.53 13,325.3 611.3 1169.9 1502.74 5.3
12 227.13 14.08 34.14 29.90 517.87 13,427.9 523.8 1006.1 1495.79 5.06
13 251.03 14.08 34.14 29.90 468.55 13,064.5 503.2 1229.2 1502.40 6.04
14 227.13 15.56 34.14 29.90 468.55 13,321.0 468.9 968.8 1494.00 5.86
15 251.03 15.56 34.14 29.90 517.87 13,135.8 566.7 1282.8 1502.96 5.68
16 227.13 14.08 37.74 29.90 468.55 13,321.3 499.0 973.4 1494.08 5.89
17 251.03 14.08 37.74 29.90 517.87 13,143.3 602.7 1288.5 1502.91 5.69
18 227.13 15.56 37.74 29.90 517.87 13,380.8 561.9 1017.3 1493.31 5.54
19 251.03 15.56 37.74 29.90 468.55 13,066.3 539.3 1242.8 1501.34 6.58
20 227.13 14.08 34.14 33.04 468.55 13,322.8 494.5 972.4 1492.01 5.78
21 251.03 14.08 34.14 33.04 517.87 13,136.8 597.5 1287.3 1503.22 5.59
22 227.13 15.56 34.14 33.04 517.87 13,429.2 557.4 1016.3 1495.18 5.44
23 251.03 15.56 34.14 33.04 468.55 13,060.7 534.6 1241.6 1501.53 6.47
24 227.13 14.08 37.74 33.04 517.87 13,424.5 591.3 1020.9 1492.19 5.46
25 251.03 14.08 37.74 33.04 468.55 13,067.2 567.1 1247.3 1501.34 6.5
26 227.13 15.56 37.74 33.04 468.55 13,336.8 529.2 983.6 1493.92 6.3
27 251.03 15.56 37.74 33.04 517.87 13,161.2 638.7 1300.9 1502.26 6.09
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Table 6. The optimal solution obtained using the RSM polynomial model and NSGA-III.

Design Variables and
Transformer Quantities Description Optimum Values

Using RSM Models FEA Validation Units

d0 Core diameter 232.49 - mm

g HV–LV
windings gap 14.51 - mm

b1
LV winding
radial depth 33.10 - mm

b2
HV winding
radial depth 28.57 - mm

h Core leg height 478.52 - mm
S Apparent power 1499.92 1500.22 kVA
X Reactance 5.52 5.51 %

Ploss Power losses 13,287.5 13,280.47 W
WeightCu Copper weight 466.1 465.9 Kg
Weightcore Core weight 1025.5 1025.4 Kg

The 3D representation of the surface response of the RSM polynomial models as a
function of the combination of some independent variables is shown in Figures 7–11. The
surface response of the transformer power losses is illustrated in Figure 7a, where it is seen
that the power losses decrease as the core leg height (h) and core diameter increase. The
increase of the core diameter (d0) makes the inner diameters of the LV and HV transformer
windings increase the copper volume, while an increase in the core diameter generates
an increment in the core cross-section, which originates a decrease in the magnetic flux
density and hence the core power loss. Figure 7b shows how the transformer power loss
increases with an increment of the core leg height, which means a core volume increment
and, therefore, higher core losses. Alternatively, the increase in the radial thickness (b1) of
the LV transformer winding will increase the conductor’s area, and consequently, the LV
current density increases. A similar response can be seen in Figure 7c using the factors h and
b2. Figure 7d shows a slight variation in the power losses when the HV–LV gap (g) varies.
Dots indicate the FEA results in Figure 7a–d, where they are close to the response surfaces.
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Figure 7. RSM polynomial model for the transformer power loss as a function of the design variables.
(a) Power loss as a function of core leg height (h) and core diameter (d0); (b) Power loss as a function
of core leg height (h) and low voltage winding radial depth (b1); (c) Power loss as a function of core
leg height (h) and high voltage winding radial depth (b2); and (d) Power loss as a function of core leg
height (h) and HV–LV windings gap (g). Dots indicate 3D FEA results.
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Figure 8. RSM polynomial model for the copper weight of the transformer windings as a function of
the design variables. (a) Copper weight as a function of core leg height (h) and core diameter (d0);
(b) Copper weight as a function of core leg height (h) and low voltage winding radial depth (b1);
(c) Copper weight as a function of core leg height (h) and high voltage winding radial depth (b2); and
(d) Copper weight as a function of core leg height (h) and HV–LV windings gap (g). Dots indicate 3D
FEA results.
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Figure 9. RSM polynomial model for the core weight of the transformer as a function of the design
variables. (a) Core weight as a function of core leg height (h) and core diameter (d0); (b) Core weight
as a function of core leg height (h) and low voltage winding radial depth (b1); (c) Core weight as a
function of core leg height (h) and high voltage winding radial depth (b2); and (d) Core weight as a
function of core leg height (h) and HV–LV windings gap (g). Dots indicate 3D FEA results.
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Figure 8 shows the objective function that represents the copper weight obtained by
RSM. Figure 8a shows the response of the copper weight, which increases when the core
leg height increments; therefore, the transformer windings’ heights (h1 and h2) will also
increase, as shown in Figure 2a. The surface model also shows how the copper weight
increases with the increment of the core diameter (d0); this will generate an increment in the
inner diameters of the LV and HV transformer windings. Figure 8b illustrates the response
of the function that represents the copper weight, which increases with the increment of the
core leg height (h), which represents an increase of the low voltage winding (h1) and also
of the high voltage winding (h2) of the power transformer. As the LV winding thickness
increases, the copper volume increases. A similar response on the model’s surface is seen
when the high-voltage winding thickness varies (Figure 8c). Figure 8d shows the model’s
output, represented by the copper weight, as a function of the core leg height as the HV–LV
gap (g) varies; an increase in the copper weight is seen as both design variables increase.
Finally, it is seen that surface responses are close to the 3D FE transformer model results
(indicated by dots).

The cost function, representing the core weight, is shown in Figure 9. It is seen that
an increase in the core leg height (h), along with an increment of the core diameter (d0),
generates a higher volume of the grain-oriented silicon steel and hence a higher core weight
(Figure 9a). While the core weight response exhibits slight variation with changes in the
independent variables b1, b2, and g, as can be seen in Figure 9b–d, respectively, this is an
expected result due to the changes in the winding dimensions. Finally, it is observed that
the RSM empirical model response closely follows the dots (3D FE transformer model) and
with acceptable accuracy in Figure 9b–d.

Figure 10 illustrates the output of the RSM polynomial model that represents the
apparent power (S), which is used in the equality constraint of the multi-objective opti-
mization problem. Figure 10a shows that when the core diameter decreases, a decrease in
the apparent power is obtained due to the reduction in the core area that leads to a lower
magnetic flux, which impacts the induced voltage and, consequently, the output power.
While a little effect is seen on the response (S) due to the changes in factor h with variations
of radial depth of the LV and HV windings (b1, b2), as can be seen in Figure 10b,c. A similar
response is seen in Figure 10d, where the variation of the apparent power is plotted as a
function of core leg height and the air gap between HV and LV windings.

The second equality constraint uses the leakage reactance of the power transformer,
and its 3D response in the associated RSM heuristic model is shown in Figure 11. It is seen
that the reactance is inversely proportional to the core leg height and, consequently, to
the height of the transformer windings (h1, h2); the core diameter (d0) directly affects the
mean diameter of the LV and HV transformer windings; the model response is shown in
Figure 11a. The model’s response as a function of the variations on the factors h and b1 is
shown in Figure 11b, where an increase is seen due to increments in the radial depth of the
low voltage winding (b1). Figure 11c shows a similar surface response to Figure 11b when
there are changes in the independent variables h and b2. Finally, Figure 11d shows the RSM
polynomial model of reactance under variations of the factors h and g. In all figures, there
is a close agreement with respect to the 3D FE transformer model results (indicated by
the dots).

Once the RSM polynomial models have been obtained for the three objective functions
(illustrated in Figures 7–9) and the RSM models for the apparent power and leakage
reactance, the multi-objective optimization defined by Equations (15)–(21) is solved using
the NSGA-III. Figure 12 shows the Pareto front (blue points) with the normalized cost
functions. The criteria employed to select the best solution consist of choosing the operating
point with the lowest power losses (f 3(x)) and those weights of copper (f 2(x)) and core
(f 2(x)) that represent the minimum cost. The optimal solution selected is indicated in
Table 6. Figure 13 shows the running metric of the IGD that shows the convergence of the
multi-objective problem.
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The running IGD metric shown in Figure 13 oscillates, but in the last few generations,
the performance suddenly gets better. It could be helpful to compare the true IGD values
calculated with the true Pareto optimal points. However, this is one of the real-world
problems for which a Pareto optimal solution is not available. Applying the Running
Performance metric [33] in Figure 13, it was possible to appreciate how the algorithm
improves its performance from the start to the end of 600 generations.

The optimal solution to the optimization problem is given in Table 6. The values
of the design variables represent the optimum geometry of the core and low- and high-
voltage windings. It can also be seen that the apparent power and reactance, related to
the equality constraints, are fulfilled with a minimum difference. Table 6 also gives the 3D
FE transformer model simulation results for the optimum solution, where there are close
values with respect to the RSM-based optimization with NSGA-III; this demonstrates the
validity of the RSM models and the NSGA-III optimization. An accuracy in the apparent
power of 0.01% and an accuracy value of 0.01% for the reactance were obtained. There is
an overprediction of 7.03 W in the electrical power losses. The copper and core weights
are almost identical to those obtained by the RSM-based NSGA-III optimization. The tank
has a height (th) of 1243 mm, a width (tw) of 1345 mm, and a depth (td) of 536 mm. The
computing time was 2575 s using a desktop computer with a processor i7-7700, 3.6 GHz,
and 16 GB of RAM.

Finally, Figure 14 shows the core flux density distribution (Figure 14a) and the core
loss distribution (Figure 14b). The 3D FE model solution corresponds to the optimum
operating point reported in Table 6. The tangential field is used as a boundary condition to
reduce the model by half its mesh size; in all FEA simulations, the FE mesh was constructed
using the automatic mesh generator.
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6. Conclusions

This paper has presented a multi-objective optimization to find the optimum dimen-
sions of the core and windings of a three-phase power transformer. The cost function
has three objectives (electrical power loss, copper, and core weights) and two equality
constraints (apparent power and leakage reactance). Firstly, an analytical model was solved
using the NSGA-III to find an optimal region; secondly, RSM was applied using 3D FEA to
develop polynomial models; and finally, the RSM-based cost function was solved using the
NSGA-III. It is concluded that the use of RSM polynomial models allows for faster opti-
mization while maintaining accuracy because FEA was employed to construct the empirical
models. The running metric was used to assess the convergence of the optimization process.
It was numerically demonstrated that NSGA-III has better convergence performance and
can handle more accurately and faster a design problem with three objectives and two
equality constraints than the commonly used optimizer, NSGA-II.

Author Contributions: Conceptualization, M.A.A. and C.H.; methodology, M.A.A.; software, C.H.;
validation, J.L., E.M.-V. and M.A.A.; resources, C.H.; writing—original draft preparation, M.A.A.;
writing—review and editing, J.L., C.H., E.M.-V. and M.A.A.; visualization, C.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the La Laguna Institute of Technology, National
Technological Institute of Mexico, for the financial support to carry out this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reece, A.B.J.; Preston, T.W. Finite Element Methods in Electrical Power Engineering; Oxford University Press: Oxford, UK, 2000.
2. del Vecchio, R.M.; Poulin, B.; Feghali, P.T.; Shah, D.M.; Ahuja, R. Transformer Design Principles; CRC Press: Boca Raton, FL, USA,

2017; ISBN 9781315218342.
3. Stebel, M.; Kubiczek, K.; Rios Rodriguez, G.; Palacz, M.; Garelli, L.; Melka, B.; Haida, M.; Bodys, J.; Nowak, A.J.; Lasek, P.; et al.

Thermal Analysis of 8.5 MVA Disk-Type Power Transformer Cooled by Biodegradable Ester Oil Working in ONAN Mode by
Using Advanced EMAG–CFD–CFD Coupling. Int. J. Electr. Power Energy Syst. 2022, 136, 107737. [CrossRef]

http://doi.org/10.1016/j.ijepes.2021.107737


Energies 2023, 16, 2248 20 of 21

4. Bastos, J.P.A.; Sadowski, N. Electromagnetic Modeling by Finite Element Methods; CRC Press: Boca Raton, FL, USA, 2003;
ISBN 9780429213472.

5. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001.
6. Amoiralis, E.I.; Georgilakis, P.S.; Kefalas, T.D.; Tsili, M.A.; Kladas, A.G. Artificial Intelligence Combined with Hybrid FEM-BE

Techniques for Global Transformer Optimization. IEEE Trans. Magn. 2007, 43, 1633–1636. [CrossRef]
7. Amoiralis, E.I.; Tsili, M.A.; Georgilakis, P.S.; Kladas, A.G.; Souflaris, A.T. A Parallel Mixed Integer Programming-Finite Element

Method Technique for Global Design Optimization of Power Transformers. IEEE Trans. Magn. 2008, 44, 1022–1025. [CrossRef]
8. Amoiralis, E.I.; Tsili, M.A.; Kladas, A.G. Transformer Design and Optimization: A Literature Survey. IEEE Trans. Power Deliv.

2009, 24, 1999–2024. [CrossRef]
9. Arjona, M.A.; Hernandez, C.; Cisneros-Gonzalez, M. Hybrid Optimum Design of a Distribution Transformer Based on 2-D FE

and a Manufacturer Design Methodology. IEEE Trans. Magn. 2010, 46, 2864–2867. [CrossRef]
10. Tran, T.v.; Moussouni, F.; Brisset, S.; Brochet, P. Adapted Output Space-Mapping Technique for a Bi-Objective Optimization. IEEE

Trans. Magn. 2010, 46, 2990–2993. [CrossRef]
11. Cheema, M.A.M.; Fletcher, J.E.; Dorrell, D. A Practical Approach for the Global Optimization of Electromagnetic Design of

3-Phase Core-Type Distribution Transformer Allowing for Capitalization of Losses. IEEE Trans. Magn. 2013, 49, 2117–2120.
[CrossRef]

12. Hultmann Ayala, H.V.; de Vasconcelos Segundo, E.H.; Lebensztajn, L.; Mariani, V.C.; dos Santos Coelho, L. Multiobjective Wind
Driven Optimization Approach Applied to Transformer Design. In Proceedings of the 2016 IEEE Congress on Evolutionary
Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 4642–4647.

13. Xia, B.; Hong, S.; Choi, K.; Koh, C.S. Optimal Design of Winding Transposition of Power Transformer Using Adaptive Co-Kriging
Surrogate Model. IEEE Trans. Magn. 2017, 53, 1–4. [CrossRef]

14. Mohammed, M.S.; Vural, R.A. NSGA-II+FEM Based Loss Optimization of Three-Phase Transformer. IEEE Trans. Ind. Electron.
2019, 66, 7417–7425. [CrossRef]

15. Liu, D.; Wei, B.; Cai, C.; Ding, J.; Guo, Z. TOC Optimization Design of Amorphous Metal Core Distribution Transformer Based on
NSGA-II. In Proceedings of the 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices
(ASEMD), Tianjin, China, 16–18 October 2020; pp. 1–2.

16. Orosz, T.; Pánek, D.; Karban, P. FEM Based Preliminary Design Optimization in Case of Large Power Transformers. Appl. Sci.
2020, 10, 1361. [CrossRef]

17. Cove, S.R.; Ordonez, M.; Luchino, F.; Quaicoe, J.E. Applying Response Surface Methodology to Small Planar Transformer Winding
Design. IEEE Trans. Ind. Electron. 2013, 60, 483–493. [CrossRef]

18. Li, J.; Water, W.; Zhu, B.; Lu, J. Integrated High-Frequency Coaxial Transformer Design Platform Using Artificial Neural Network
Optimization and FEM Simulation. IEEE Trans. Magn. 2015, 51, 1–4. [CrossRef]

19. Xiaowei, G.; Zhiting, Y.; Danchen, J. Optimization of High Frequency Transformer Based on Advanced Genetic Algorithm. In
Proceedings of the 2017 IEEE 21st International Conference on Pulsed Power (PPC), Brighton, UK, 18–22 June 2017; pp. 1–4.

20. Tan, Y.; Yu, X.; Wang, X.; Lv, Q.; Shi, M. Interaction Analysis and Multi-Response Optimization of Transformer Winding Design
Parameters. Int. Commun. Heat Mass Transf. 2022, 137, 106233. [CrossRef]

21. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [CrossRef]

22. Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting
Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622.
[CrossRef]

23. Li, B.; Li, J.; Tang, K.; Yao, X. Many-Objective Evolutionary Algorithms. ACM Comput. Surv. 2015, 48, 1–35. [CrossRef]
24. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology, 4th ed.; John Wiley & Sons, Ltd.: Hoboken,

NJ, USA, 2016; ISBN 978-1-118-91601-8.
25. ANSYS Academic Research Maxwell; Release 2022 R2, Help System; ANSYS Inc.: Canonsburg, PA, USA.
26. Hernández, C.; Arjona, M.A. Design of Distribution Transformers Based on a Knowledge-Based System and 2D Finite Elements.

Finite Elem. Anal. Des. 2007, 43, 659–665. [CrossRef]
27. Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; ISBN

978-1-119-72210-6.
28. Deb, K. An Introduction to Genetic Algorithms. Sadhana 1999, 24, 293–315. [CrossRef]
29. Das, I.; Dennis, J.E. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria

Optimization Problems. SIAM J. Optim. 1998, 8, 631–657. [CrossRef]
30. Blank, J.; Deb, K.; Dhebar, Y.; Bandaru, S.; Seada, H. Generating Well-Spaced Points on a Unit Simplex for Evolutionary

Many-Objective Optimization. IEEE Trans. Evol. Comput. 2021, 25, 48–60. [CrossRef]
31. Sun, Y.; Yen, G.G.; Yi, Z. IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems. IEEE Trans.

Evol. Comput. 2019, 23, 173–187. [CrossRef]

http://doi.org/10.1109/TMAG.2006.892258
http://doi.org/10.1109/TMAG.2007.915119
http://doi.org/10.1109/TPWRD.2009.2028763
http://doi.org/10.1109/TMAG.2010.2044644
http://doi.org/10.1109/TMAG.2010.2043343
http://doi.org/10.1109/TMAG.2013.2242049
http://doi.org/10.1109/TMAG.2017.2659705
http://doi.org/10.1109/TIE.2018.2881935
http://doi.org/10.3390/app10041361
http://doi.org/10.1109/TIE.2012.2187416
http://doi.org/10.1109/TMAG.2014.2368123
http://doi.org/10.1016/j.icheatmasstransfer.2022.106233
http://doi.org/10.1109/TEVC.2013.2281535
http://doi.org/10.1109/TEVC.2013.2281534
http://doi.org/10.1145/2792984
http://doi.org/10.1016/j.finel.2007.01.004
http://doi.org/10.1007/BF02823145
http://doi.org/10.1137/S1052623496307510
http://doi.org/10.1109/TEVC.2020.2992387
http://doi.org/10.1109/TEVC.2018.2791283


Energies 2023, 16, 2248 21 of 21

32. Coello Coello, C.A.; Reyes Sierra, M. A Study of the Parallelization of a Coevolutionary Multi-Objective Evolutionary Algorithm.
In Proceedings of the MICAI 2004: Advances in Artificial Intelligence: Third Mexican International Conference on Artificial
Intelligence, Mexico City, Mexico, 26–30 April 2004; pp. 688–697.

33. Blank, J.; Deb, K. A Running Performance Metric and Termination Criterion for Evaluating Evolutionary Multi- and Many-
Objective Optimization Algorithms. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow,
UK, 19–24 July 2020; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Multi-Objective Transformer Design Methodology 
	Transformer Modeling 
	The Manufacturer’s Transformer Design Approach 
	Electromagnetic Model 
	Response Surface Methodology 

	Multi-Objective Optimization 
	Numerical Results 
	Optimization Results with the Manufacturer’s Transformer Design Approach 
	Multi-Objective Optimization Results Using RSM Polynomial Models 

	Conclusions 
	References

