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Abstract: One preliminary key step for developing an offshore wind farm is identifying favorable
sites. The process of sitting involves multiple requirements and constraints, and therefore, its feasible
implementation requires either approximating assumptions or an optimization method that is capable
of handling non-linear relationships and heterogeneous factors. A new optimization method is
proposed to address this problem that efficiently and accurately combines essential technical criteria,
such as wind speed, water depth, and distance from shore, to identify favorable areas for offshore
wind farm development through a user-friendly data-driven tool. Appropriate ranks and weighting
factors are carefully selected to obtain realistic results. The proposed methodology is applied in the
central Aegean Sea, which has a high offshore wind energy potential. The application of the proposed
optimization method reveals large areas suitable for developing floating wind energy structures. The
algorithm matches the accuracy of the exhaustive search method. It, therefore, produces the optimum
outcome, however, at a lower computational expense demonstrating the proposed method’s potential
for larger spatial-scale analysis and use as a decision support tool.

Keywords: sequential Monte Carlo method; simulation; K-means clustering; floating installations;
site selection; Aegean Sea

1. Introduction

Allocating marine areas for human activities that include aquaculture, renewable
energy generation, tourism, and shipping, requires geospatial data, expertise in relevant
industry sectors, and the identification of the various interactions and constraints between
sectors. For example, different types and sizes of aquaculture stations and renewable energy
devices require different depths and sea-surface areas. Additionally, aquaculture and
renewable energy installations cannot be collocated with shipping routes. Such interactions
and constraints result in a complex problem of maritime spatial planning.

Among all types of “green” energy, wind power is one of the fast-growing and most
cost-effective renewable energy sources. As an alternative to fossil fuels, wind energy can
offer many advantages for human societies and the environment. Specifically, it can sig-
nificantly decrease CO2 emissions, mitigate the effects of climate change, decouple energy
costs from oil prices, improve competitiveness with an internal energy market, and ensure a
secure energy supply, a key element in the EU energy policy. Wind turbines are considered
one of the most competitive renewable technologies in terms of cost. Even though onshore
wind farm deployment is more mature and still less expensive than offshore, offshore wind
farms (OWFs) are rapidly expanding globally, becoming a prominent renewable energy
source. Although OWFs demand higher construction and operational costs than onshore
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installations, the resource potential encountered offshore, and the ability to utilize vast
spaces at sea with larger wind turbines are solid motives for investments [1].

Northern European countries have exploited offshore wind to a great extent, with
45% and 27% of the total installed capacity being connected in the United Kingdom
and Germany, respectively [2]. On the other hand, in the Mediterranean countries, the
development of such projects follows a relatively slow pace; the first OWF was inaugurated
in 2022 offshore Taranto with a capacity of 30 MW [3]. A few years ago, investing was not
an urgent priority despite Greece’s significantly high available offshore wind potential.
The main reason for this was the lack of a solid legislation framework. However, very
recently (July 2022), the Greek Parliament approved new legislation (Law No. 4964/2022,
articles 65–80) focusing on developing offshore wind energy and simplifying the relevant
licensing procedures. The national goal is to install at least 2 GW in offshore wind farms by
2030. According to this law, among the first steps in developing offshore wind in Greece are
the approval of the National OWF Development Programme, which will propose potential
zones for OWF development, followed by a presidential decree that will finalize the areas
for the development of OWFs. In this context, it is clear that identifying suitable areas for
OWF development is of utmost importance.

The OWF site selection problem presupposes the consideration of a multitude of,
either qualitative or quantitative, parameters such as technical, environmental, and socio-
economic factors that reflect the designer’s or decision maker’s priorities and preferences
and involve constraints and expected impacts [4]. Moreover, this problem requires ana-
lyzing the above parameters using geographical features and implementing mathematical
models for management and spatial planning purposes. On the other hand, multi-criteria
decision analysis (MCDA) methods have been developed to provide a preferred alternative
by determining and assessing the importance of the selected criteria in the decision-making
(weighting process), aggregating all information usually into an impact matrix (alterna-
tives vs. criteria), and ranking alternatives subjectively [5]. Thus, MCDA methods have
supported decision-making through the joint consideration of multiple parameters and
the evaluation of the characteristics of various sites for selecting the best among multiple
alternatives. It should be noted that the final outcome for a given problem may differ when
using either the same set of criteria and weighting/aggregation techniques with different
MCDA methods or different criteria and weights with the same MCDA method.

Several MCDA methods have been introduced over the years, characterized by in-
dividual advantages and disadvantages. Although the rationale of the various MCDA
methods is similar, the algorithms implemented to achieve the final goal, assumptions,
computational complexity, speed, and applicability differ within them. Some examples
of MCDA approaches include distance-based methods, ratio-based additive methods,
and algorithms that operate under compromising situations. Weighted Sum Method
(WSM) [6], later modified to Weighted Product Method (WPM); Analytical Hierarchy
Process (AHP) proposed by [7]; Technique for Order Preference by Similarity to Ideal
Solutions (TOPSIS) [8]; Vlšekriterijumsko KOmpromisno Rangiranje—or multi-criteria
optimization and compromise solution—(VIKOR) [9]; Elimination and Choice Translating
Reality (ELECTRE) [10] and its evolutions; and Performance Ranking Organization Method
for Enrichment of Evaluations (PROMETHEE) [11] are some well-known techniques used
in energy decision-making studies. For a review and comparative analysis of different
MCDA methods, see also [12–15]. For example, Ref. [16] used the AHP to assess renewable
energy generation sources in Saudi Arabia. Deveci, Özcan, and John presented a TOPSIS
technique to select the best site for offshore wind farm development in the Black Sea Region
of Turkey [17]. Xiao and Wang applied the VIKOR method to identify and propose suitable
provinces in China for building solar power plants [18]. In [19], a new hybrid method is
proposed that is a combination of AHP and PROMETHEE-II methods to select sites for
offshore wind energy projects in Egypt. In the offshore wind energy sector, the MCDA
methods have been applied at a national (e.g., [20–22]), regional (e.g., [23]), and local level
(e.g., [24,25]).
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Few studies have been conducted to identify favorable locations for offshore wind
energy projects in the Greek Seas, most of which have employed the AHP from the MCDA
family of methods. Specifically, Ref. [26] applied AHP to evaluate and compare sites for
offshore wind farm projects in Greece, while [4] proposed a methodological framework for
the identification of appropriate areas that can host offshore wind and wave energy systems
simultaneously. This framework was based on AHP for evaluation and ranking purposes
and Geographic Information System (GIS) for processing and representing the data and
was implemented in Greece. Vagiona and Kamilakis developed and applied an integrated
methodology to address the offshore wind farm site selection problem in the South Aegean
Sea by combining AHP and TOPSIS [27]. Ref. [28] used the AHP method and GIS tools
to identify suitable areas for OWFs around Crete Island by considering 14 exclusion and
16 evaluation criteria.

In this work, the authors use a non-linear optimization method that is capable of
navigating through the possibly multimodal surface of a cost function that considers the
various factors related to the choice of placement of offshore energy production facilities
while avoiding simplifying approximations. Choices of non-linear optimization methods
include genetic algorithms that are inspired by natural evolution. In Genetic Algorithm-
based methods, potential solutions to the optimization problem evolve over time through
evolutionary operations such as selection, crossover, and mutation with the goal to pre-
serve and combine the best aspects of those solutions in the concept of the “survival of the
fittest” [29–31]. Genetic algorithms are commonly used to optimize the layout or arrange-
ment of objects in space. Such applications include facility layout, warehouse optimization,
and the optimization of the spatial layout of the process industry. Genetic algorithms have
been applied to solve problems related to the optimal placement and sizing of distributed
energy generation systems, as demonstrated in [32,33]. Additionally, Ref. [34] presents an
example of using genetic algorithms for multi-objective forest planning.

Another well-known probabilistic optimization algorithm used for solving spatial
optimization problems is Simulated Annealing. Simulated Annealing is based on the idea
of annealing in metallurgy, in which a material is heated and then gradually cooled to
reduce defects and increase its structural purity [35]. The algorithm generates a random
initial solution and then, similarly to genetic algorithms, it iteratively alters it, but, in this
case, it accepts or rejects the change based on the improvement it causes to the solution.
The decision of whether to accept or reject a solution is made using a probabilistic function
that, early in the optimization process, can enable the acceptance of other than the best
solution to avoid local optima [36]. Simulated Annealing has been applied in multiple
spatial optimization problems, including the spatial layout of a process industry [37] and
the distribution of generation facilities [38].

Particle Swarm Optimization is another optimization technique for finding the best
solution to a problem by imitating the behavior of birds or fish in a group [39]. This is
achieved by representing potential solutions as particles and continually adjusting them
based on their ability to solve the problem and the progress of nearby particles [39]. This
method can be applied to many problems with multiple dimensions. Particle Swarm
Optimization has been used in various fields, such as forestry for optimal forest spatial
planning [40], land use management for spatial structure optimization [41], and urban
water management [42].

The Ant Colony Optimization algorithm simulates the behavior of insects (ants) when
they follow the shortest path toward their food source. In this process, ants release a
chemical called pheromone as they move between the colony and food sources. This creates
a pheromone trail that other ants can detect and use to find their way. The trails with the
strongest pheromone concentrations are more likely to be chosen, further strengthening the
trail through a positive feedback loop. Over time, this leads to the formation of the shortest
path between the colony and food sources [43]. Ant Colony Optimization is used in many
cases, including solving the ship pipe route design optimization problem in 3D space using
a dynamic local search. The problem can be translated to a graph representation, and Ant
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Colony Optimization is used to find the shortest path that satisfies the greatest number of
constraints [44].

In this paper, the authors (a) propose a new optimization method for identifying
areas suitable for offshore energy production, and (b) the method for the allocation of
wind farms in the Aegean Sea is applied. The authors define an objective function that
includes the conditions for the operation of renewable energy sources, i.e., water depth
and wind speed; constraints related to other activities, such as shipping routes; and other
technical restrictions, including distance from shore, distance from ports, and suitability of
electrical grid infrastructure. The objective function, made of heterogeneous criteria, forms
a multimodal surface with multiple locations of possible renewable energy installations.
To solve the optimization problem, a method is developed based on sequential Monte
Carlo methods [45–48]. The authors assess the effectiveness of the method in consistently
identifying areas of deployment of renewable energy installation and the method to an
exhaustive search in terms of efficiency and computational expense.

The structure of the full paper is as follows. In Section 2, the authors state the optimiza-
tion problem in terms of the objective function that depends on criteria and constraints of
offshore energy production, and the methodology for solving the optimization problem and
the algorithm is provided. In Section 3, the data utilized for the purposes of this work are
briefly described, and the simulation results are provided, demonstrating the effectiveness
of the method in identifying the areas suitable for hosting offshore energy installations while
minimizing conflicts with other human or environmental processes. Section 4 presents the
results of the new tool and the comparative analysis with the exhaustive search method. In
the final section, the main findings of this study are summarized, additional applications
where this approach could be useful are recommended, and subsequent research directions
are proposed.

2. Materials and Methods
2.1. Problem Statement

The problem of identifying suitable areas for offshore energy production is posed as an
optimization problem. The problem consists of maximizing an objective function reflecting
the conditions and constraints related to offshore energy production installations. The
objective function is then a two-dimensional function of the position of possible offshore
energy production units in the Cartesian coordinates. The objective function is, moreover,
composed of functions that represent the conditions necessary for significant renewable
energy production and constraints imposed by other activities or natural environment
protective measures.

The objective function is given by:

W(x) =
M

∏
m=1

I(wm(x))
M

∑
m=1

cmwm(x) (1)

where

x =

[
χ
ψ

]
(2)

which is a two-dimensional vector with elements χ and ψ that denote spatial coordinates
in the Cartesian plane. wi(x) are functions that describe the suitability of a location with
coordinates (χ, ψ) based on a factor indexed by m = 1, . . . , M. Functions wm(x) may, for
example, have high values at locations with coordinates (χ, ψ) associated with factors such
as depth, average wind speeds, or distance from suitable harbor facilities and low values
when criteria for feasible or efficient offshore energy production are partially met. Similarly,
functions wm(x) may be assigned low values at coordinates (χ, ψ) reserved for shipping
routes or marine protected areas. The factors used in this study are provided in more detail
in the “Simulation Results” section. Furthermore, cm, m = 1, . . . , M are the contributions of
the M factors to the total weight specified in the “Simulation Results” section. For example,
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some natural environment or human activity factors, such as shipping routes at coordinates
(χ, ψ) Will have a low-valued contribution to the overall weight as they are prohibitive
to the placement of offshore energy installations. Additionally, an indicator function is
defined that will be used to set the total weight to zero in case any of the factors produce a
zero weight. The indicator function is defined as

I(wm) =

{
1, wm > 0
0, otherwise

(3)

2.2. Optimization Method

The optimization problem utilizes the two-dimensional objective function in (1) that
takes into account all factors affecting the choice of locations for offshore energy production.
Additionally, the sought solution does not include a single point but instead larger areas
that are represented by peaks in the objective function. This is because the objective
function has many locally optimal solutions representing multiple areas where offshore
energy production would be suitable based on the set criteria.

A sequential Monte Carlo method is proposed and described briefly in this section
to identify the peaks in the objective function. The method evolves a large number of
hypotheses indexed by l = 1, . . . , L on the possible locations of offshore wind energy
installations. The optimization method initially proposes multiple hypothetical locations
uniformly across the geographical area examined. The locations are then given weights
based on the value of the objective function. The weights are normalized to sum to one, and
then an equal number of locations is sampled with replacement from the pool of available
locations. The sampled locations also evolve by adding Gaussian noise to increase the
diversity and to navigate towards higher objective value functions. The repeated evolution
of the locations and the resampling operation results in the concentration of hypothetical
locations in favorable areas for offshore wind energy. Next, the hypothetical locations
are clustered, and areas are defined based on the clusters. The process is then provided
in detail.

Each hypothetical location evolves as:

xl,j = xl,j−1 + Vηl,j (4)

where j is the iteration step, ηl,j is a process noise vector of zero-mean, unit variance Gaussian
random variables, and V is a diagonal matrix with the square root of the variance of the process
noise vector in its main diagonal. In addition to providing diversity in the proposed locations,
the noise component accommodates errors in data provided for constructing the objective
function. After the evolution step, hypotheses are assessed by evaluating the objective function
at each location, resulting in location weights given by (1) as:

Wl

(
xl,j

)
=

M

∏
m=1

I
(

wm

(
xl,j

)) M

∑
m=1

cmwm

(
xl,j

)
, l = 1, . . . , L, (5)

where the indicator function in (3), the weights based on each factor, and the factor’s
importance have been used. The weights are normalized to form a probability distribution,
and locations are sampled with replacement. After a number of evolutions, weighting,
and sampling steps, locations start to form clusters, identified using K-means clustering.
Specifically, clustering is performed based on the geographical distance between proposed
locations. The clustering process involves initially randomly clustering the locations and
then performing iterations to re-cluster locations based on the minimum sum of the squared
distance between the data points and centroids of clusters [49,50]. Further evolution occurs
within clusters until areas identified by clusters remain unaltered. The result is areas with
a high potential of hosting offshore wind energy generation installations. The method is
summarized in Algorithm 1. In Figure 1, the set research area can be inspected. This is
the area of interest where all investigations are conducted, and therefore, no results are
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produced outside this area. Moreover, Figures 2–5 illustrate the process of identifying
favorable areas through the initial research, refinement, and clustering of proposed locations
into recommended areas.

Algorithm 1: The developed algorithm

At iteration step j = 0, proposed locations xl,j, l = 1, . . . , L, are sampled with uniform
distribution over the selected area.
Monte Carlo resampling:
For each iteration step j = 1, . . . , J

• Calculate proposed locations weights Wl

(
xl,j

)
, l = 1, . . . , L (5);

• Normalize proposed locations weights;
• Sample proposed locations with replacement using normalised weights;
• Propagation of proposed locations xl,j (4).

K-Means clustering:

• Assign proposed locations to K clusters.

Identify final areas:
For each cluster k = 1, . . . , K

• Place suggested locations at equidistant points within the cluster;
• Calculate weight for each suggested location;
• Reject locations with zero weight.
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3. Simulation Results
3.1. Data and factors

The most important technical parameter in the identification of potential areas for
offshore wind energy development is wind speed. Offshore wind speed data can be
obtained in a variety of ways, such as in situ measurements (using, e.g., oceanographic
buoys, floating lidars, or offshore wind masts), remote sensing techniques, numerical
atmospheric model results, etc. Offshore in situ wind measurements and satellite wind
data are considered reference data for local wind energy assessment [51]. In situ wind
measurements are absolutely necessary for site-specific analysis but, due to the poor spatial
coverage, are not sufficient for analyses of extended areas of complex morphology, such
as the Aegean Sea. On the other hand, satellite data are characterized by poor spatial
and temporal resolution, while atmospheric conditions may also affect the quality of the
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measurements. Therefore, in this work, the mean annual wind speed for the Greek Seas is
obtained from the Eta-SKIRON model, with a spatial and temporal resolution of 0.1 deg
and 3 h, respectively [52].

Bottom depth was obtained from EMODnet Bathymetry [53], a freely available Digital
Terrain Model for the examined sea areas with a resolution 1/16 of an arc minute (~130 m).
Regarding the shipping routes, they were derived via the Open Street Map API using the
web-based overpass-turbo tool [54]. Information on the existing electrical grid infrastruc-
ture and offshore cabling along an inland coastal zone of 150 km was obtained from the
2014 ENTSO-E Interconnected Network Grid Maps. This information was used to calculate
the nearest source connection for each proposed location. The scale of the map is 1:4,000,000
and shows both existing and under-construction elements (e.g., substations, power plants,
etc.). This information was also enriched by digitized data from the map of the Indepen-
dent Power Transmission Operator published in 2018. The information regarding ports,
which is analyzed to distance from suitable port/harbor and corresponding (maximum)
water depth, was derived from the World Port Index Database of the national geospatial
intelligence agency [55]. The coastline was derived from the Ministry of the Interior and
Administrative Reconstruction of Greece [56].

Table 1 shows the factors and contributions to total weight and ranks. The ranks vary
from 0, denoting the least favorable location, to 4, denoting the most promising one in terms
of OWF development. The lowest mean annual wind speed (at 10 m above sea level) for
marginal OWF suitability is defined between 4 m/s and 5 m/s. The reason for considering
such a low limit is that the wind speed results from the Eta-SKIRON model tend to be
underestimated compared to buoy measurements and satellite data [57]. Therefore, in
order to avoid accidentally excluding areas that may be proved promising for OWF projects,
the above threshold was chosen. It is noteworthy that the reference height of wind speed
is irrelevant for the purposes of this work since the analysis is based on the same wind
speed reference height for the entire area of interest. In addition, water depths between
40 m and 200 m have the first two best ranks since there is a trend to move to the floating
structures for the Mediterranean Sea and, consequently, move to deeper water sites, more
distant to the shore. On the other hand, depths greater than 200 m are characterized by
the lowest ranks since such values are not suitable from a financial point of view. By
keeping a balance between financial and optical disturbance reasons, the ideal distance
from shore was selected to be 5–11 km, while 0–5 km has the second highest factor rank
due to visual disturbance issues. For the proximity to ports, apart from the distance from
suitable harbors, two aspects were also considered: (i) the size of the harbor and (ii) its
maximum water depth alongside the wharf/pier, which should be over 10 m. If the latter
factor was unknown, the corresponding harbor was not included in the analysis. Moreover,
the spatial limitation of the 6 nm from the coastline of the Greek territory (instead of 12 nm,
the standard zone of territorial waters according to the UN Convention on the Law of the
Sea) from its non-EU adjacent countries was taken into consideration.

Table 1. Factors and contribution to overall weight and rank.

Index m Factor Contribution to Total Weight ci Factor Weight wm Classification

1 Land 0%
1 Proposed location on sea
0 Proposed location on land

2
Distance from

ship routes 0%
1 ≥1 km
0 <1 km

3 Distance from
the shore

20%
4 5–11 km
3 0–5 km
0 Otherwise
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Table 1. Cont.

4 Distance from
transmission lines

15%

4 0–20 km
3 20–50 km
2 50–70 km
1 Otherwise

5 Distance from ports 5%

4 0–20 km
3 20–50 km
2 50–70 km
1 70–100 km
0 Otherwise

6 Water depth 25%

4 40–70 m
3 70–200 m
2 0–40 m
1 200–300 m
0 Otherwise

7
Mean annual
wind speed 35%

4 ≥7 m/s
3 6–7 m/s
2 5–6 m/s
1 4–5 m/s
0 Otherwise

Based on the above technical factors, the corresponding contributions are assigned to
each one of them to quantify their total influence in economic terms (i.e., according to the
financial impact of the factor on the project cost). In this respect, the following contributions
are adopted based on their significance: 35% for wind speed, 25% for water depth, 20% for
distance to shore, 15% for distance to the power grid, and 5% for proximity to ports; see
also the third column of Table 1 (see also [11]).

3.2. Software Tools

The simulation was implemented using Python 3.9 and Jupyter Notebook. For the
geographical data, the libraries “folium”, “shapely”, and “geopandas” were used. The
folium library was used for creating map visualizations and uses Open Street Maps. Addi-
tional libraries used include “pandas”, “matplotlib”, “seaborn”, “sklearn”, and “scipy”. A
detailed list of the libraries and their documentation is shown in Appendix A (Table A1).
The code generates an interactive map (.html format) that includes all suggested locations.
The user can zoom in and out from the map and click on each suggested location to read its
characteristics. For the purposes of this paper, more detailed and compact visualizations
were produced by importing the results in shapefile format to the ArcGIS Pro tool and
creating presented figures.

4. Results

In this section, the authors provide evidence of favorable areas for offshore energy
production, considering information on other human activities and technical constraints.
The data-driven tool takes as input the research area to be investigated. An example of
a set research area used in this work is shown in Figure 1. The blue lines represent the
transmission lines, and the blue pins represent the ports considered in this analysis. Then,
the tool uses the algorithm to produce a map with suggested renewable energy points, such
as the one displayed in Figure 6a. The suggested areas are illustrated as rectangles with a
total area of 1 square km each. This makes it easier for the user to merge rectangles and
build a final area based on their needs. The areas are colored based on their suitability. A
colored scale is used where the dark, green-colored areas are highly recommended areas
for OWF development. Areas colored with lighter green colors scored average weights
whilst the areas almost in white have the lowest weight values, indicating areas that are
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least favorable for such projects. The exact range values are shown on the legend. Figure 6b
provides a closer look at the resulting areas.
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The performance of the data-driven tool was assessed by comparing the result to the
outcome of an exhaustive search method. The exhaustive search results are considered
accurate and used as a benchmark. The exhaustive method divides the entire research
area into rectangular areas representing the proposed renewable energy station’s locations.
The method then calculates the total weight for each suggested renewable energy station
and displays the final suggestions. However, the accurate exhaustive search results are
expected to arrive at a prohibitive computational expense for large areas. Figure 7 shows
the result of the exhaustive search method.
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The number of final proposed locations with high-weight values was used as a measure
of accuracy. The result of the data-driven method relies on the number of proposed locations.
Increasing the number of proposed locations also increases the computational cost. On
the other hand, the exhaustive search method produces a fixed number of high-weight
locations; however, the execution time slightly varies due to the processing power (4 vCPUs,
8 GB RAM). The data-driven algorithm has a trade-off between the speed and accuracy of
the result. This trade-off is demonstrated in Figure 8. The result shows that the algorithm
matches the accuracy of the exhaustive search method at a lower computational expense.
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5. Discussion

The realization of OWF projects in both established and upcoming markets, such
as Greece, can be viewed as a multi-dimensional and multi-parameter marine spatial
problem. Apart from the technical (engineering) criteria, the specific environmental and
socio-economic characteristics of the area of interest should also be considered during the
site selection process for OWF development. For instance, the Mediterranean countries are
highly linked with tourism activities, fisheries, and aquaculture that act as major economic
drivers in the basin. When designating areas for offshore wind energy exploitation, po-
tential conflicts with existing marine uses that are concentrated in a limited space should
not be neglected, while any environmental and spatial planning constraints derived from
the legislation at the national and European levels must be applied. The effects of OWF
development on marine life in selected regions of the Mediterranean Sea have been in-
vestigated by Bray et al. [57]. In that study, potential effects on birds, marine mammals,
fish, benthos, and plankton were analyzed based on review studies and findings from
the Northern European seas, the grey literature, and expert opinions. Species, habitats,
and taxa found in the Mediterranean waters that are likely to be affected by OWF during
construction and operation phases were identified, and potential mitigation measures were
proposed. The lack of comprehensive planning for OWFs and the particularities of the
Mediterranean Sea with valuable seascapes and high biodiversity areas in a busy space on
a narrow continental shelf has also been highlighted recently by Lloret et al. [58].

In terms of levelized cost of energy, a parameter measuring the viability of offshore
wind energy projects, the cost of energy for floating wind farms, as presented in the
work of Martinez and Iglesias [59], is relatively low in the central Aegean Sea (below
150 EUR/MWh) when compared to other sites of the Mediterranean Sea. This is attributed
mainly to the high wind resource and proximity to the shore resulting in lower OPEX and
electrical infrastructure costs. Note that LCOE values for bottom-fixed technologies are
lower, but significant reductions are foreseen for the floating ones as deployment expands
and supply chains and technology mature [60]. In terms of life cycle assessment and based
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on the analysis performed by Pulselli et al. [61], the results for the carbon intensity of
electricity indicated the good environmental performance of floating wind turbines in the
test site in Greece with values comparable to those estimated in ocean contexts.

Another factor that affects the commercial viability of offshore wind projects is energy
storage. The power production of OWFs is of stochastic nature and thus cannot always
follow the varying power demands, while transmission systems cannot always respond to
the maximum potential of OWFs’ power output. This inadequacy can be efficiently tackled
with the introduction of energy storage systems. Among the widely used technologies are
mechanical (e.g., pumped storage systems) and electrochemical (e.g., large-scale lithium-
ion battery) energy storage systems [62,63]. An alternative way to store offshore wind
energy is hydrogen, which has a higher energy density than batteries and can act as an
energy carrier [64]. As a fuel, hydrogen can be utilized for transport purposes (power to
mobility), in gas grids (power-to-gas), and in industrial applications (power-to-industry).
Other advantages of hydrogen, when combined with offshore wind farms, include the
minimization of transmission losses and the reduction in installation costs of electrical
transmission systems. The efficient integration of these energy storage technologies is
expected to boost the development of offshore wind energy projects at the global level.

6. Conclusions

In the present work, a data-driven tool was presented for the identification of candidate
locations for OWF development, with the main advantage of efficiency, scalability, and
wide applicability in any industry and marine area. The tool utilizes technical requirements,
which are critical factors in the design of an OWF project. Five quantifiable factors with
appropriate weighting schemes were taken into account in this study. The spatial extent of
this case study was in the order of several hundred kilometers.

After combining all technical criteria, the final results from the proposed methodology
reveal that there are large areas located in the northern part of Andros and Tinos islands;
eastern Mykonos Island; and sporadic locations around Naxos, Ikaria, Chios, and southern
Evia islands. The above-identified areas are favorable for an in-depth assessment as regards
OWF development on a local (spatial) scale utilizing more detailed technical, environmental,
and socio-economic data to guarantee more credible results.

Future work will include the combination of different types of activities within blue
economy industries that pose the significant challenge of potential conflict between activi-
ties. Moreover, the work will expand to include more user interaction and specific input
from users that will be utilized by the software as learned user preferences.
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Notation and Acronyms
Notation Explanation
c Factor’s contribution to total weight
m Factor index
j Iteration step index
k Cluster index
l Proposed location
w Factor weight
W Total weight
x Two-dimensional location vector
η Noise vector
(χ, ψ) Cartesian coordinates
AHP Analytical Hierarchy Process
ELECTRE Elimination and Choice Translating Reality
GIS Geographical Information System
MCDA Multi-Criteria Decision Analysis
OWF Offshore Wind Farm
PROMETHEE Performance Ranking Organization Method for Enrichment of Evaluations
TOPSIS Technique for Order Preference by Similarity to Ideal Solutions
VIKOR Vlšekriteri-jumsko KOmpromisno Rangiranje
WPM Weighted Product Method
WSM Weighted Sum Method

Appendix A

Table A1. Python Libraries used for simulating the results.

Library Used Documentation

Folium Folium—Folium 0.14.0 documentation (python-visualization.github.io)

Random random—Generate pseudo-random numbers—Python 3.11.2
documentation

Pandas pandas documentation—pandas 1.5.3 documentation (pydata.org,
accessed on 12 December 2022)

GeoPandas Documentation—GeoPandas 0.12.2+0.gefcb367.dirty documentation
NumPy NumPy Documentation
Matplotlib Matplotlib documentation—Matplotlib 3.7.0 documentation

Seaborn seaborn: statistical data visualization—seaborn 0.12.2 documentation
(pydata.org, accessed on 12 December 2022)

Scikit-learn scikit-learn: machine learning in Python—scikit-learn 1.2.1 documentation
SciPy SciPy documentation—SciPy v1.10.0 Manual
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