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Abstract: In this paper, the latest research in the field of anaerobic co-digestion related to the ad-
vantages of using different mixtures of substrates on the performance of the process and increasing
its efficiency is reviewed. The main aspects presented in this review refer to the study of the most
commonly used types of substrates, highlighting their characteristics, the diversity of microbial
communities involved in the production of biogas, the applied pretreatments, and the possibility
of obtaining an improved digestate as a secondary product. The main types of substrates used in
anaerobic co-digestion are food waste, sewage sludge, animal manure, lignocellulosic biomass, algae,
fats, oils, and greases. The data from the studied works demonstrated that the anaerobic co-digestion
process improves the carbon/nitrogen ratio and nutrient balance, increases the process stability, and
diminishes the concentration of toxic inhibitors. At the same time, the use of appropriate mixtures of
substrates leads to an increase in the diversity of microbial communities, among which synergistic
relationships are established that ultimately favor the growth of the methanogenic potential. Finally,
based on the research results found, one of the main trends is the need to adapt technology to the
type of substrate and the industry.

Keywords: co-digestion; digestate; microbial communities; pretreatment; perspectives; substrates

1. Introduction

Globally, climate change represents a serious threat affecting the human factor, the
environment, and the economy [1]. The use of renewable energy sources helps reduce the
consumption of conventional energy, reduce greenhouse gas emissions, and thus contribute
to the prevention of climate change [2]. Currently, one of the main environmental problems
is the continuous increase in the amount of organic waste. Sustainable waste management,
as well as the prevention and reduction of its accumulation, have become key priorities in
many countries around the world [3,4].

In this context, anaerobic digestion (AD) is a key technology for the sustainable use
of biomass and is being considered one of the best methods for biofuel production from
biomass [5].

The AD process is considered to be at the intersection of the organic waste management
sector, energy generation, food production, and land-based carbon dioxide removal [6].
Moreover, AD is promoted as an efficient method for reducing greenhouse gas emissions
and improving circularity in the economy through the production of renewable energy
(biogas) [6,7].

The produced biogas can be used to run micro-turbines, fuel cells, engines, and to
generate heat and power [8]. Biogas can also be upgraded into biomethane by removing
carbon dioxide, water vapor, and other trace gases and used in the transportation sector
or pumped into the gas grid [9]. The benefits of anaerobic fermentation technology are
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also reflected in the stability and agronomic quality of the obtained digestate. In addition,
this method of treatment is in accordance with the provisions of the European Union that
assume the reduction and recovery of waste within the circular economy as well as the
promotion of clean technologies [10–12].

Hydrolysis, acidogenesis, acetogenesis, and methanogenesis are the four steps in
the AD of organic matter carried out by a syntrophic bacterial consortium. The bacterial
consortia involved in the AD process are influenced by a number of factors, namely
biodegradability, carbon/nitrogen (C/N) ratio, water content, temperature, fermentation
pH value, mixing ratios, additives, toxicity, organic loading rate, and dilution ratio [13,14].

Anaerobic co-digestion (AcoD) represents the degradation process of two or more
organic substrates, giving the anaerobic fermentation process a synergistic effect that leads
to an increase in biogas production [11]. This process is a promising option for enhancing
the yields of biogas and methane obtained from the anaerobic digestion of solid wastes [8].
It has been demonstrated that the AcoD technique is advantageous due to its enhanced
methane yields, economic viability, and capacity to overcome some of the issues that arise
during mono-digestion. These issues, such as unbalanced nutrients and the presence of
inhibitors and recalcitrant compounds in the substrate, have made AcoD a popular field of
research for improving traditional AD technology [5,15–17]. A parameter with a significant
influence on the development of the AD process is the C/N ratio of the substrate. The
optimum value of the used substrate is 25:1; higher C/N ratios result in lower methane
concentrations in biogas, whereas substrates with a C/N ratio that is too low will lead to
ammonia accumulation in the digester and inhibit methane production [3,13]. A suitable
C/N ratio in the anaerobic digester can be obtained by co-digesting substrates rich in
carbon, such as crop residues, with nitrogen-rich substrates, such as animal manure [17,18].

It has been shown that AcoD provides a better economic justification for installing
CHP (combined heat and power) systems, which are considered the most economical
method for obtaining energy from biogas [19]. AcoD improves substrate digestion and
energy production by enhancing the nutrients that are available to microorganisms and
the organic loading rate while decreasing the toxicity of chemical inhibitors through co-
substrate dilution [20]. In Figure 1, the main advantages of AcoD technology compared
with the mono-digestion process are presented.

However, the results found in the scientific literature that analyze the efficiency of
the AcoD process are still insufficient. A lot of researchers conducted experiments in this
field, but results varied from author to author regarding the blend proportions used in
the digester. Anyway, in all the experiments, the authors reported that biogas production
is enhanced by the co-digestion of different substrates. Further research in co-digestion
should be completed because many types of substrates still remain unstudied.

The main aim of this article is to review the latest research in the field of AcoD related
to the advantages of using different mixtures of substrates on the process performance and
increasing its efficiency. The paper refers to the study of the main types of substrates, the
diversity of microbial communities, applied pretreatments, and the possibility of obtaining
an improved digestate as a secondary product.
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Figure 1. Advantages of AcoD technology compared with mono-digestion process (adapted from [5]).

2. Substrates Used in Co-Digestion

In the AD process, a great variety of substrates are used, each different in terms of
chemical composition, water content, microbial load, presence of inhibitors, or different
growth factors. The properties of the substrates depend to a great extent on the materials
from which they were derived, either as by-products or as waste, on the geographical area
and climate, on the applied pre-treatments, and last but not least on the socio-economic
development of the region from which they come. Substrates significantly influence the
yield of biogas and CH4 due to the effect of stimulating or inhibiting the multiplication of
microbial populations for certain parameters of the process. The initial composition of the
substrates influences both the number, the type, and the ratio of the microbial species, their
metabolic pathways, the duration of the lag phase, the generation time, and, implicitly, the
growth rate. In general, the substrates used in AD are classified according to their origin or
content in organic matter, although it is obvious that there will always be differences even
in the case of the same type of substrate.

Since a single type of substrate with a fixed composition has a limited number of
nutrients for such a large diversity of microbial populations, the use of combinations of
substrates in optimal ratios ensures the stability of robust and synergistic microbiomes
and provides more effectively the compounds necessary for growth and for the metabolic
reactions involved in those 4 stages of AD: hydrolysis, acidogenesis, acetogenesis, and
methanogenesis.

2.1. The Main Characteristics of the Substrate Used in Co-Digestion

Food waste (FW) (including FW from the industrial processing of foodstuffs as well as
FW from catering, restaurants, and households), lignocellulosic materials from the agro-
industrial field, forestry, parks, and gardens, animal manure, sewage sludge (SS) resulting
from the aerobic treatment of wastewater, and various municipal organic solid waste, are
used for the production of biogas. Each of these categories of substrates can be combined
with one or more other substrates to reach an optimal C/N ratio and optimal conditions
for microbial populations (Figure 2).
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SS has a high content of organic matter and an important amount of water and can be
primary sludge (from the primary settler) or secondary sludge (waste-activated sludge),
with a significant amount of microbial biomass. SS can contain some pathogens and
various inhibitory substances for the bacteria in the AD process, such as heavy metals,
antibiotics, detergents, solvents, persistent organic pollutants, etc., that can be diluted
by co-digestion [21]. The mono-digestion of sludge is not effective due to the limited
concentration of nutrients, low organic loading rate, difficult biodegradability, presence of
extracellular polymeric substances secreted by the microorganisms [22], and harmfulness
of contaminants [23–27].

Animal manure is produced in large quantities in livestock farms and is characterized
by a high organic content, a low C/N ratio, and a large number of microorganisms from the
digestive tract of animals [21]. Sometimes it can contain pathogenic germs that end up in
the digestate. The high concentration of nitrogen compounds, especially proteins, leads to
the synthesis of ammonia in the form of ammonium ions (NH+

4 ) or ammonia (NH3), which
are harmful to the bacteria in the AD process and alter the balance between VFA (volatile
fatty acids) and the substances in the substrate but maintain a pH suitable for methanogens.
Co-digestion with appropriate substrates aims to increase the value of the C/N ratio and
improve the concentration of nitrogen compounds. Usually, this type of substrate is used
together with lignocellulosic materials from nearby agricultural or forestry areas to reduce
costs [21,28–33].

Lignocellulosic materials have a high C/N ratio, a high carbohydrate content, and a
low concentration of microelements, but their main problem is related to the availability
of nutrients. Macromolecular compounds such as cellulose and lignin are difficult to
transform into nutrients for bacteria and therefore generally require drastic and quite
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expensive pretreatments. It is obvious that this type of substrate should be mixed with
substrates with a high concentration of nitrogen compounds [34–37].

FW is perhaps the most diverse and complex substrate, with properties that depend
on the source of raw materials (waste from the dairy, meat and poultry, fish, fruit and
vegetable, cereal and bakery, brewing, and winery industries, among others). FW has an
increased biodegradability due to the high content of organic compounds (carbohydrate:
12–74%, protein: 14–18%, lipid: 4–34%, and dry weight) [38].

In the case of FW, both the water content varies (minimum, for example, for residues
from the milling industry and higher for waste from fruit and vegetable processing, dairy
industry) as well as the C/N ratio, which can be high in waste from the processing industry
(fruits and vegetables) or small in residues from the dairy industry, meat and poultry, and
fish. These types of substrates are rich in nutrients that are generally easily available to
microbial populations, growth factors (amino acids, purines and pyrimidines, vitamins),
and macro- and micronutrients. FW can have a variable microbial load, high, for example,
for waste from the fermentation industry (whey) or processes that use starter cultures. It
may contain traces of various food additives, of which preservatives in relatively large
quantities could influence the viability of AD bacteria. FW also differs depending on its
source: industrial, household, or public food production, but also depending on regional,
seasonal, and socio-cultural characteristics [38–41].

A special problem is the presence in FW and sewers of vegetable and animal fats from
slaughterhouses or the extractive industry of vegetable oils, but also from restaurants, fast
food outlets, and households. These fats, called FOG (fats, oils, and greases), once they
reach the sewers, can restrict the flow and even clog the pipes [42]. The fats present in the
substrate of the AD process are hydrolyzed by lipolytic microorganisms into glycerol and
long-chain fatty acids, which are then transformed into acetate and formate/hydrogen by
acetogenic bacteria and then into methane by methanogenic archaea [43]. Furthermore,
water from slaughterhouses has a high concentration of fats and proteins dissolved or in
suspension, contributing to improving the composition of the substrate in co-digestion and
increasing the pH value and the content of nitrogen and micronutrients [44].

Other sources of organic matter, used less often as a substrate in AcoD, are waste
from the leather industry, textile dyeing sludge, the pulp and paper industry, and others,
which generate different residues depending on the raw material processed. In general,
these substrates are characterized by their limited composition in nutrients, but also by the
presence of inhibitors used as specific process additives. The proteinaceous waste resulting
from the leather industry is difficult to degrade and often contains chromium, which is
toxic to the bacterial cell (for example, “chrome shavings” resulting from hide shaving
operations) [45,46].

The pulp and paper industry generates recalcitrant lignocellulosic materials, which
slow down the rate of degradation of the substrate, along with paper-making fillers such as
kaolin and calcium carbonate, pitch, lignin secondary products, and ash [47–49].

Micro- and macroalgae have the ability to grow in different types of wastewaters, such
as municipal, livestock farming, food processing, and agriculture runoff wastewater [50–54].
In addition, under favorable conditions, algae can produce harmful algal blooms, which can
severely affect the environment, especially the water biocenosis in coastal areas [55], and
also the tourism economy. Algal biomass is characterized by low C/N ratio values, which
are in the range of 4–10 [56], causing the release of toxic ammonia for methanogens. On the
other hand, algae are rich in nutrients and minerals that improve the growth of bacterial
cells [57]. Although relatively few studies are reported, algae are used in co-digestion
processes with other substrates such as animal manure, SS, FW, or others with a high C
content to balance the C/N ratio [58–60].

In most studies to date, FW has been used in the co-digestion process together with
the following substrates: SS [24–27,39,57,61–68], cattle rumen content [69], dairy ma-
nure [70–73], chicken manure [74], dry fallen leaves and cow dung [75], human feces
and toilet paper [76], solid leachate [77], yard waste [78], straw [79,80], mixed microal-
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gae [81], Spirulina platensis alga [52], olive milling waste [81], FOG [82], textile dyeing
sludge [45], petroleum oil sludge [83], biochar [84], but also in other mixtures.

The lignocellulosic materials in co-digestion are characterized by a poor buffering
capacity and an unbalanced C/N ratio and can be introduced into mixtures that contain:
different organic wastes, such as SS, dairy manure, fruit wastes, brewery trub and slaugh-
terhouse [34], cattle dung [35], tomato residues and dairy manure [85], cucumber residue
and pig manure [86], pig manure and sludge [87], FW [88], and chicken manure [89,90].

SS was used in a mixture with FW [24,25,27,39,57,61,62,65–68], fruit and vegetable
waste [26], coffee pulp, cattle manure and FW [91], chicken manure [23], pig manure [92],
yard waste [78], agricultural residues (wine vinasse and poultry manure) [93], different
selected organic fractions of municipal solid waste [64], citrus peel wastes and biochar [94],
olive waste [95], fatty wastewater [96], FOG [42,97], algae, and FW [52].

The biogas yield is the most significant quantity that shows how efficient an AcoD
process is, as can be seen in Table 1. From different studies, the methane yield value was
in the range of 50–600 mL CH4/gVS, with maximum values for mixtures of FW and SS,
FW and brown water, or municipal solid waste and SS. The presented data are valid for
the digestion conditions of each experiment (temperature, C/N ratio, volume, and type of
reactor) and are thus not fully conclusive for a certain mixture of substrates.

Table 1. Methane yield, C/N ratio and digester type for different substrate mixtures in AcoD.

Substrate Methane Yield
(mL CH4/gVSadded) C/N

Hydraulic
Retention Time

(Days)
Temperature (◦C) Digester Type/Volume

(mL) Reference

Low C/N ratio substrates

FW and waste-activated
sludge 407 / 302 35–55 high frequency feeding

system, 3000 [98]

FW and SS / 11–17 15–30 37 / [99]

FW and SS 305.4 14.5 - 35
high-solid anaerobic
membrane bioreactor,

15,000
[61]

FW, cattle manure and
corn straw 500 13–43 25 37 ± 2 long-term semi-continuous

AcoD, 300 [80]

FW, newsprint paper, and
branches 129.7–534.4 / 30 37 batch culture system, 400 [100]

FW and brown water 728 / 15–20 37 two-stage AcoD,
10,000–35,000 [101]

FW and SS 0.29 L CH4/g COD
removed 10.8–38.8 70–180 37 simulation model [102]

SS with crude or pretreated
glycerol 45 6.42 15–30 30 three stages, 100 [103]

Excess sludge with chicken
manure 82.4–123.1 / 40 37–55 batch system, glass

digester [23]

SS and glycerol 370–483 / 45 37 ± 1 continuous operation 160 [104]

Municipal solid waste and
SS 571–675 10.59–31.35 30 37 glass bottles, 100 [64]

Palm oil mill effluent with
decanter cake 515 10.7–15.8 35 37 ± 1 graduated cylinder, 250 [105]

Dark fermentation of SS
and agricultural residues 52.05 14.24 20 35 amber batch type flasks,

120 [93]

Cheese whey and septage 342.22 34.01 35 35 glass flasks, 100 [106]

Fresh vinegar residue and
pig manure 233.77 14.5–24.4 20 35 ± 2 semi-continuous stirred

tank reactor, 70,000 [107]

Taihu blue algae with
swine manure 212.7 5.8–11.41 22 37 400 [108]

Diary processing waste 178.1 / 3–15 37–58
two-stage digestion in
induced bed reactors,

60,000
[109]

Leather waste with raw
and wheat straw 43.15 10.88–68.87 274 35

Hermetically sealed bench
scale bioreactors, built in
cylindrical glasses, 300

[46]

Mixed microalgae and FW 639.8 ± 1.3 15.43 40 35 120 [110]
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Table 1. Cont.

Substrate Methane Yield
(mL CH4/gVSadded) C/N

Hydraulic
Retention Time

(Days)
Temperature (◦C) Digester Type/Volume

(mL) Reference

Decanter cake and empty
fruit bunch 257 9.72–49.55 35 35 batch reactors, 250 [111]

Rice wastewater with cow
dung slurry 292 23.717 4 37 ± 2 two-stage, 250–500 [112]

Press mud and bagasse
from sugar mill 450 13 35 35–37 glass flasks, 1000 [113]

Sargassum-pig manure 441.47 16.8 100 37 ± 1 serum bottles, 305 [60]

Wastewater grown
algae-bacteria polyculture

biomass and cellulose
323–380 5.67 60 35 ± 0.5 serum bottles, 150 [50]

High C/N ratio substrates

Banana stem and swine
manure 357.9 / 40 35 ± 1 solid state, 1000 [28]

Corn stover: Swine
manure 281 25 21 37 ± 1 8000 [114]

Wheat straw with cattle
manure 254.6 16.6–88.1 35 37 ± 1 1000 [115]

Lignocellulosic feedstock 320–360 / 40 28–32 1000 [35]

NaOH-treated biphasic
olives with FW 503.6 / 30 37 stirred tank reactor, 6000 [81]

Rice straw and pig manure 235.81 35–38 190 37–55
two reactors of

temperature phased AcoD
1000–8000

[116]

Mango and microalgal
residue biomass 204.4 / 30 37 glass bottle equipped with

septum cap, 250 [58]

2.2. Factors Influencing the Co-Digestion Process

The major important factors in the co-digestion process are both the composition of the
substrate resulting from various blending of organic waste and their mixing ratio, as well
as the pretreatments applied, the system temperature (under mesophilic or thermophilic
conditions), the type and quantity of the inoculum, the type and operating mode of the
reactor (batch or continuous, one-stage, two-stage, or multiple-stage reactors, anaerobic
membrane bioreactor), the presence of inhibitors, and others.

The stability of the process depends to a significant extent on the values of pH, am-
monia, and VFAs [41]. Studies have shown that the activity of methanogenic bacteria is
optimal at pH values between 6.5 and 7.5 [117]. Proteins and other nitrogen-containing com-
pounds produce ammonia nitrogen through degradation, which, in appropriate quantities,
maintains the pH range within favorable limits for methanogens but, in high concentrations
(greater than 700 mg/L), act by inhibiting methanogenesis [27,109,118]. Furthermore, the
concentration of VFAs in the reactor must have values that allow for maintaining an optimal
pH of approximately 1300 mg/L TVFA (total volatile fatty acids) [41]. Substrates with
high C/N ratios produce high concentrations of VFA, and therefore should be mixed with
nitrogenous feedstock such as animal manure or protein FW from the meat or fish industry.

The inoculation of the biogas reactor must be carried out in such a way as to ensure the
density of the microbial population necessary to start the process. The lag phase that usually
occurs due to the adaptation time of the microorganisms to the new conditions in the reactor
should be minimal, and the conditions should allow for the optimal multiplication of the
species. The use of an inoculum resulting from the previous series of the anaerobic digestion
process or of some substrates with a large number and diversity of microorganisms, for
example, cattle rumen content [69], leads to the start and normal development of the stages
of the process (hydrolysis, acidogenesis, acetogenesis, and methanogenesis). However,
one of the goals of co-digestion is to prolong the degradation time of organic compounds,
decrease the hydrolysis rate, and in this way improve the stability of the process [41].

The diversity of microbial communities in the hydrolysis stage of the co-digestion
process is positively influenced by the blending of substrates, and, moreover, the depoly-
merizing activity of exoenzymes increases the amount of soluble oligo- and monomeric
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compounds in the reactor. These nutrients, in their turn, favor the balance and stability of
the system through their greater variety and improve cooperative relations and the syn-
ergistic effect in the following stages of acidogenesis and acetogenesis. Co-digestion also
improves and balances the syntrophic relationship between acidogenic and methanogenic
bacteria by creating favorable conditions for archaeal communities. In addition, the effi-
ciency of AcoD increases significantly through different pretreatment methods, especially
for lignocellulosic material, and is influenced by pH, VFA, Eh, organic loading, temperature,
and others.

3. Microbial Communities in AcoD

Considering synergism as a cooperative relationship in which the associated species
have an effect that each of them could not achieve individually, in the AcoD process,
each bacterium synthesizes and releases into the environment important quantities of the
nutrients needed by the others in such a way that they meet each other’s growth needs.

The communities of microorganisms in the digester are complex and mostly composed
of bacteria, which are different depending on the nature of the waste. The facultative
anaerobes have the role of consuming and depleting the small amounts of oxygen present
in the environment and of modifying the potential Eh to a level accessible to the obligate
anaerobic microorganisms, which, over time, become the predominantly active population
in the digester.

The study of microbial communities became possible after the discovery of advanced
molecular biology techniques, among which are PCR (Polymerase Chain Reaction), cloning,
and sequencing of marker genes, molecular fingerprinting (terminal restriction fragment
length polymorphism (T-RFLP), single-strand conformation polymorphism (SSCP), dena-
turing gradient gel electrophoresis (DGGE), and automated ribosomal intergenic spacer
analysis (ARISA)), quantification of individual taxa of microorganisms using quantitative
PCR (qPCR) and droplet digital PCR, Fluorescent in Situ Hybridization (FISH), microarrays,
others.

In the first stage, hydrolysis, the degradation of complex organic substances, such
as those of vegetable origin (cellulose, lignin, etc.), is facilitated by the mixture of two or
three substrates, each with different communities of microorganisms [29]. Most hydrolytic
microorganisms come from the multiplication of microbial populations from the initial
substrates or from the inoculum.

In hydrolysis reactions, macromolecular organic compounds are released as different
monomers or oligomers: glucose and cellobiose from cellulose, glucose and maltose from
starch, xylose from hemicellulose, amino acids from proteins, and long-chain fatty acids
(LCFA) and glycerol from lipids. Figure 3 shows the main hydrolytic enzymes involved
in substrate degradation and the appearance of the producing colonies grown on specific
culture media. The most important hydrolytic bacteria belong to the phyla Firmicutes and
Bacteroides, among others.

In the acidogenesis stage, the products released from the hydrolysis reactions are trans-
formed by fermentation into short-chain fatty acids such as acetate, propionate, butyrate,
valerate, and isobutyrate by acidogens. The main acidogenic bacteria belong to the phyla
Firmicutes, Bacteroidetes, Chloroflexi, Proteobacteria, and Atribacteria.

Acetate, formate, H2, and CO2, resulting from acidogenesis, are directly utilized by
methanogens for biogas synthesis. In this stage, medium-chain fatty acids (MCFA) and long-
chain fatty acids (LCFA) from lipid hydrolysis are also produced. These compounds will
be oxidized to acetate, H2, and CO2 through syntrophic acetogenesis. Hydrogenotrophic
methanogenic bacteria live in proximity to syntrophic acetogens and consume the H2
released from the syntrophic bacteria. The activity of syntrophic acetogens is indispensable
for maintaining a stable and robust process and for reducing the production of inhibitory
compounds such as propionate, for example.
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Figure 3. Amylases, proteases, cellulases, lipases, and laccases are produced by microorganisms in
the hydrolysis stage of AcoD.

The methanogens can be classified into three groups depending on the substrate and
the metabolic pathway used: (a) acetotrophic or acetoclastic methanogens, (use acetate to
produce methane); (b) hydrogenotrophic methanogens, (use formate and H2 to reduce CO2
to CH4); and (c) methylotrophic methanogens, (produce CH4 from methyl compounds).
The main methanogenic hydrogenotrophic archaea belong to the genera Methanoculleus,
Methanobacterium, Methanobrevibacter, Methanospirillum, and Methanothermobacter. Ace-
totrophic methanogens are represented by Methanosaeta and Methanosarcina.

In 2022, Liu et al. [31] showed that in AcoD of Chinese cabbage waste and cow ma-
nure at mesophilic and thermophilic temperatures, the dominant bacterial communities
at mesophilic temperatures are Firmicutes (30.3–44.3%), Bacteroidetes (36.1–47.9%), Syner-
gistetes (2.6–15.2%), Actinobacteria (0.1–2.3%), Cloacimonetes (0.01–6.73%), and Spirochaetes
(0.03–3.51%). The most active microorganisms producing proteolytic and cellulolytic en-
zymes [119] belong to Firmicutes and Bacteroidetes. The dominant thermophilic bacterial
populations under temperature conditions of 55 ◦C were Firmicutes (60.2–83.5%), Thermoto-
gae (0.2–31.2%), Actinobacteria (0.1–6.8%), and Proteobacteria (0.1–2.2%). At 37 ◦C, the archaeal
bacteria are Methanosarcina (4.5–29.4%), Methanofollis (1.4–41.5%), Methanoculleus (0.8–11.0%),
Methanocorpusculum (0.2–51.7%), and Methanobacterium (1.1–10.1%). At higher tempera-
tures, Methanosarcina (16.8–54.0%), Methanothermobacter (0.5–26.5%), and Methanoculleus
(0.2–28.4%) are predominant. Therefore, the type and number of microorganisms in the co-
digestion process are closely related to the composition of the substrate and the temperature
in the digester.

A similar study was carried out by Wang et al. in 2022 [23] about the AcoD of excess
sludge with chicken manure. Wang finds that the main thermophilic non-methanogenic bac-
teria belong to Firmicutes (26.4–37.6%), Actinobacteria (13.5–29.1%), Proteobacteria (5.2–15.7%),
Chloroflexi (3.5–15.0%), Thermotogae (0.6–6.7%), and Synergistetes. Among the mesophilic
communities in the reactor, the most important were Firmicutes (2.2–9.9%), Actinobacteria
(9.8–19.2%), Proteobacteria (11.1–25.4%), Chloroflexi (20.1–36.4%), Bacteroidetes (3.2–9.1%),
Synergistetes (3.6–9.5%), Acidobacteria (0.5–3.4%), Planctomycetes (1.5–2.6%), and Spirochaetes
(0.5–1.5%). The authors also found differences in the structure of the archaea community as
follows: at thermophilic temperatures, Methanosaeta (2.7–5.9%), Methanospirillum (0.8–1.9%)
and Methanosarcina (13.2–59.5%) are dominant, while at mesophilic temperatures, predomi-
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nate Methanosaeta (57.1–84.2%), Methanobacterium (5.0–12.9%), Methanospirillum (3.7–9.0%),
Methanolinea (0.4–5.9%) and Methanobrevibacter (0.5–2.1%).

Studying the microbial populations in AcoD of chicken manure and cardboard, Zhao
et al. in 2021 [29] found that the main hydrolytic bacteria in anaerobic conditions belong to
the phylum Firmicutes, Bacteroidetes, Fibrobacter, Spirochaetes, and Thermotogae [120]. Among
the dominant bacteria, Proteobacteria could degrade glucose, propionate, butyrate, and
acetate [121]. Zhao et al. in 2021 [29] found that increasing the percentage of cardboard
waste in the mixture with chicken manure leads to an increase in the abundance of the
Proteobacteria. The Gram-negative bacteria from the Proteobacteria group are able to degrade
organic compounds in cardboard and have a high activity for glucose, propionate, butyrate,
and acetate degradation [29]. In the methanogenesis stage, the authors [29] demonstrated
that the dominant methanogens were Methanosaeta, Methanobacterium, Methanolinea, and
Methanomassiliicoccus, and the structure of the archaeal communities is strongly influenced
by the composition of the substrate.

Li et al. [30] showed that in a batch experiment using chicken manure (CM) and mi-
croalgae Chlorella sp. as co-substrates, Methanosaeta and Methanosarcina were the dominant
methanogens in all stages, and the hydrogenotrophic methanogens Methanospirillum and
Methanobacterium were the two other main genera since the 15th day [30].

The major influence of the inoculum was demonstrated in the process of co-digestion
of organic fractions of municipal solid waste by Zhou et al. in 2021 [100,122]. The structure
of the microbial populations was analyzed by PCR amplification and high-throughput 16S
rRNA gene sequencing.

The most important groups of bacteria were Firmicutes and Bacteroidetes, in which the
dominant orders were Clostridiales, Thermoanaerobacterales, and Sphingobacteriales, involved
in the hydrolytic degradation of the polymer components in the substrate as well as in
the acidogenesis and acetogenesis processes. The majority of methanogenic bacteria be-
longed to the orders Methanobacteriales, Methanocellales, Methanomicrobiales, Methanococcales,
Methanopyrales, and Methanosarcinales.

In 2022, Adarme et al. [123] studied the co-digestion of sugarcane biorefinery byprod-
ucts in single- and two-stage systems using hemicelluloses hydrolysate, vinasse, yeast
extract, and sugarcane bagasse fly ashes. Using PCR amplification and Illumina technology,
the authors demonstrated that the majority of bacteria belong to the genera Clostridium
(62.8%), Bacteroides (11.3%), Desulfovibrio (19.1%), Lactobacillus (67.7%), Lactococcus (22.5%),
Longilinea (78%), Methanosaeta (19.2%), and Syntrophus (18.9%), which are related to process
parameters.

In a mixture of green waste, Enteromorpha, and chicken manure, Zhao et al., in 2022 [55],
found that the dominant bacteria belong to the phyla Bacteroidetes, Synergistetes, Firmicutes,
and Chloroflexi, which represent approximately 80% of the total microbial populations.
Bacteria from the Firmicutes group synthesized hydrolytic enzymes from the class of cellu-
lases and proteases with degradative action on the substrate, while the Synergistetes group
synthesized acetate and hydrogen that will be used by methanogenic archaea. The authors
noted the abundance of syntrophic VFA-oxidizing acetogens such as Syntrophomonas and
Syntrophobacter in the co-digestion process.

Xing et al., 2022 [65] analyzed the structure of the communities of microorganisms in
the co-digestion process of waste activated sludge and FW and showed that Bacteroidetes,
Spirochaetes, Firmicutes, Chloroflexi, and Synergistetes are the dominant bacteria. Methanothrix,
Methanosaeta, and Methanosarcina are present among the methanogens.

A particular case of obtaining biogas through the AcoD of fats, oils, and grease with
municipal sludge. For this mixture of substrates, Ziels et al., in 2016 [43], studied syntrophic
LCFA-degrading bacteria using qPCR analysis. In substrates with high fat content, such as
slaughterhouse waste or from the oil industry, LCFA are formed by hydrolysis of fats, which
require the action of proton-reducing acetogenic bacteria that convert LCFA into acetate and
formate/hydrogen. Bacteria with this ability are part of the families Syntrophomonadaceae
and Syntrophaceae. Studies have shown that LCFA conversion to methane is the rate-
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limiting step for fat utilization in AD. From the archaea community, the most representative
groups were Methanospirillum and Methanosaeta species in a syntrophic relationship with
the Syntrophomonas genus. Based on the research data from recent years, Figure 4 shows
the main phyla and orders of bacteria in the four stages of anaerobic digestion.
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Using FISH analysis, Montecchio et al. in 2019 [24] suggest that waste-activated sludge,
when used in co-digestion with FW, improves the methanogenic activity and also has the
capacity to buffer the acids resulting from the acidogenesis stage. They showed that the
abundance of methanogens is approximately 30% of the total microbial population, and
the remaining 70% are fermentative bacteria.

4. AcoD Pretreatments

AcoD pretreatment is primarily used to increase the substrate’s capacity for biodegra-
dation and speed up the digestive process. Pretreatment techniques come in a variety of
forms, including mechanical, thermal, biological, and chemical ones. The choice of method
will depend on the kind of substrate being used and the desired result of the procedure.
Each method has advantages and cons of its own. There have been studies completed that
consider many inputs and outputs of the process. These pretreatments could potentially
increase methane generation and waste management; however, their use must first be
shown to be economically feasible given the higher operational cost.

1. Physical pretreatment: to promote AcoD and decrease the influence of particle size
substrate, some researchers in the literature suggest using mechanical techniques [124].
This pretreatment aids in increasing surface area by breaking the polymeric chains
and decreasing the particle size, which also helps with hydrolysis. Usually, physi-
cal techniques do not generate any hazardous elements, making them safe for the
environment [125]. According to scientists the disadvantage that highly influences
the decision to use physical pretreatment is related to energy consumption, which
can be influenced by the desired particle size [126,127]. The variables that influence
the results of the pretreatment are substrate type (feedstock), temperature, pressure,
and retention time. Thus, the overall results expressed that the best method for me-
chanical pretreatment appears to depend on the diversity of materials and cannot
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be recommended as a universal strategy, according to the observed variances in the
impacts of particle size, time, and grinding velocity [126,128–132].

2. Chemical pretreatment: one of the most efficient approaches involves chemical pre-
treatments with acids, alkalis, and organic solvents [133], as they can be quite good
at dissolving more intricately structured substrates. For example, for lignocellu-
losic biomass, this process further enhances the bioavailability of carbohydrates by
removing lignin and/or lowering the degree of polymerization and cellulose crys-
tallinity [134]. Since it is frequently less expensive, results in faster rates of degradation,
and has superior efficacy for complex organic compounds, chemical pretreatment has
attracted more attention [135]. One of the most popular kinds of chemical pretreat-
ment is acid hydrolysis, which uses diluted acids such as sulfuric acid or hydrochloric
acid [136–138]. Another often-used method is called alkaline pretreatment, and it
breaks down the lignin and hemicellulose. Ionic liquid pretreatment is a relatively
recent technique but widely spread [139,140]. Since ionic liquids may be recycled
and reused, this procedure is regarded as more environmentally friendly than acid or
alkaline treatments [140,141]. Mechanical, physical, and organosolv procedures are
some other chemical pretreatment methods; each has advantages and disadvantages
of its own. The particular substrate, the desired outcome, the equipment and facilities
available, as well as other factors, all have an impact on the pretreatment method
selection. Chemical pretreatment is a difficult procedure that must carefully take into
account the particular substrate, the anticipated end product, and the accessibility of
tools and resources, among other things [142].

3. Thermal pretreatments—These represent a common technique for different types of
substrates. For example, if lignocellulosic substrates areused to make the sugars more
accessible for fermentation or other downstream processing, the materials are sub-
jected to a procedure called heat pretreatment [143]. Thermal pretreatment’s primary
objective is the removal of lignin and hemicellulose, which pose the most challenges
to the effective hydrolysis of cellulose. Steam explosion, which uses high-pressure
steam to rapidly heat and then rapidly cool the substrate, is one of the most popular
thermal pretreatment techniques [144]. Consequently, the separation of cellulose,
hemicellulose, and lignin makes it easier to access the sugars for fermentation. Some
techniques for thermal pretreatment employ high temperatures and a small amount
of water to break down the lignin and hemicellulose. Given that it requires less
energy and produces less waste than a steam explosion, this method is thought to be
more eco-friendly [145]. Thermal pretreatment is also frequently used to treat raw
or processed sludge, which improves dewatering, solubility, viscosity, and results
in fewer pathogenic bacteria. This is because the non-soluble fraction’s structure is
changed by the heat treatment, making it simpler for microbes to break it down [146].
Ultrasonication, microwave, pyrolysis, ohmic heating (OH), and microwave-assisted
thermal pretreatment are further thermal pretreatment techniques [147]. Each has
pros and cons. The unique substrate, the desired end product, and the equipment and
facilities available all play a role in the pretreatment method selection. Overall, the
transformation of lignocellulosic substrates into valuable products, including biofuels,
chemicals, and materials, requires thermal pretreatment. It is a complicated procedure
that calls for careful thought about the particular substrate and the desired end result,
as well as the accessibility of tools and resources.

4. Combined pretreatments—Research has demonstrated that combining two pretreat-
ments, such as biological pretreatment with chemical or physical techniques, is consid-
erably more effective than employing a chemical or biological approach alone [148].
For example, it has been demonstrated that the use of fungal pretreatment for the
commercialization price of methane has been deemed impracticable due to the low hy-
drolysis rate and the slow processing speed of the procedure. However, the efficiency
and profitability of the overall process are boosted when paired with a mechanical or
chemical pretreatment [149]. Furthermore, according to ref. [150], to increase produc-
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tivity, mechanical pretreatment is frequently followed by chemical, physicochemical,
or biological pretreatment.

5. AcoD Management of Digestate

AcoD, the simultaneous digestion of two or more feedstocks, offers a chance to over-
come the limitations of mono-digestion. Co-substrate addition can have a positive or
negative effect on the AcoD process as well as digestate and biogas processing afterward.
The biogas and digestate represent the main end products of anaerobic digestion/co-
digestion [151].

One of the main advantages of co-digestion is the production of safe and superior-
quality co-digestate for agricultural use [152]. Additionally, the co-digestate presents a
higher bioavailability of nutrients when it is utilized for composting, vermicomposting
(converting organic waste into fertilizer using earthworms), mushroom farming, and black
soldier fly (a valuable insect species whose larvae have enormous potential for converting
organic waste into compost) growing [38].

Through anaerobic digestion, the complex organic compounds present in the feed-
stocks are converted into plant nutrients if the digestate is utilized in agriculture. But, the
use of mono-digestate obtained from feedstocks such as SS or animal manure causes a
number of environmental issues, such as the increase of soil salinity, ecotoxicity, and phyto-
toxicity, or the accumulation of heavy metals. As a conclusion of various research studies,
it was observed that co-digestion can solve these issues [153–155]. Montoro et al. [156]
showed in their study that the co-digestion of dairy cattle manure with sweet potatoes
(minimum 30%) led to a higher concentration of N and K (22.9% and 8.3%) in the co-
digestate, compared with the results obtained in the case of anaerobic digestion of cattle
manure (13.5% K and 5.8% N). Another study conducted by Kataki et al. [154] concluded
that the digestate concentration of nutrients (Ca, Cu, S, Mo, Ni, Zn, and Mn) was higher
in the case of co-digestion compared with mono-digestion. Wang et al. [157] studied the
co-digestion of acorn slag waste with dairy manure, and they obtained a 7.4% (w/w) total
nutrient content (total N, total K, and total P summation), which was higher than the results
obtained from individual feedstock mono-digestion. Experiments made by Herrmann
et al. [158] showed that anaerobic digestates produced by the co-digestion of animal slur-
ries and maize ensilage present a 30% higher nitrogen fertilizer value compared with the
value obtained for cattle and pig slurries. During the co-digestion of microalgal residues
with waste activated sludge, a higher nutrient availability (NH3, total phosphorus, and
total nitrogen) compared with mono-digestion of microalgal biomass was observed. This
conclusion was confirmed by the wheat growth, which had a higher value (62.5% dry
weight basis) [159]. The same trend was observed by Iocoli et al. [160] in their research.
The co-digestate obtained from cattle manure with onion residue co-digestion provided a
higher coverage area of 47.8% for Latuca sativa (L.) compared with the digestate of cattle
manure.

It is important to mention that using digestate in excess or applying it repeatedly
might cause an increase in salinity and inhibition of plant growth, meaning an increase
in phytotoxicity [152]. Furthermore, it is crucial to understand how nutrients from var-
ious substrates are balanced when co-digestion is used. It’s important to consider the
potential for secondary pollution when too many fertilizers are applied to the land [161].
If incorrectly exposed to agricultural land, some digestates with high concentrations of
ammonium, salt, COD, phosphate, and color represent a serious risk to the environment
and all organisms [162]. Astals et al. [163] concluded that the digestate obtained from the
co-digestion of pig manure with crude glycerol cannot be used directly as soil fertilizer or
conditioner. This is the consequence of the high levels of biodegradable matter present in
the digestate, which can have a negative impact on the soil or plant. Additionally, if animal
waste such as manure is used in the co-digestion, a hygenisation process must be carried
out to minimize the spread of unwanted materials when digestate is spread on land [164].
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5.1. Digestate Dewaterability

Digestate is primarily composed of water, with only 5–10% of it being solids. Dewater-
ing of the digestate, which represents a solid/liquid separation, is therefore a crucial step
in order to save transportation costs and ensure efficient digestate management [151].

The enhancement of digestate dewaterability by co-digestion was reported in the
specialty literature. Thus, Levia et al. [165] observed the improvement of digestate dewater-
ability during the AcoD of fruit-juice/wine production waste with leachate from municipal
sludge cake; the co-digestion also reduced the pathogen density. Dennehy et al. [166]
showed in their study that the digestate’s dewaterability is significantly enhanced with
the decrease in retention time for FW and pig manure co-digestion. A positive correlation
was observed between the volatile solids content and the digestate dewaterability from
SS [167].

The digestate dewatering consists of a polymer addition process and a physical separa-
tion method. The polymer addition process reduces the specific resistance to filtration, thus
the digestate dewaterability being improved. For the physical separation (dewatering) of
the digestate, different types of equipment can be used, such as centrifuges, screw presses,
or belt presses [151]. At the FW co-digestion, Higging et al. [168] observed that the increase
in polymer demand led to improved digestate dewaterability, quantified by the increase in
final solid cake content.

5.2. Liquid Fraction of Digestate

The liquid fraction of digestate (LFD), also called filtrate or sludge centrate, from the
dewatering of digestate resulted in co-digestion with a protein-rich co-substrate (such as
FW) and presents a higher content of nitrogen and phosphorus than mono-digestion. In
the co-digestion of dairy manure with crude glycerol and bone meal, an important increase
in NH3-N when compared with dairy manure mono-digestion was observed [169].

Carlos-Pinedo et al. [161] observed that the liquid fraction of digestate obtained from
AcoD of a mixture of substrates (biowaste, horse manure, and wood chips) presented the
highest nutrient content (especially in phosphorus and total carbon-biological). An impor-
tant step is the recovery of nutrients present in LFD in order to decrease the obstruction
caused by struvite (a crystalline mineral composed of equimolar concentrations of magne-
sium, ammonium, and phosphate), eliminate the phosphorus, and ensure a sustainable
fertilizer source [151].

The LFD from co-digestion of FW, swine manure, and maize silage can successfully
replace synthetic N fertilizer without maize yield losses and with important ecological
benefits for the soil, especially [170]. Muscolo et al. [171] observed an improvement in soil
fertility, meaning the soil chemistry and bioconversion, when LFD obtained from citrus
pulp and olive waste with animal manure co-digestion was applied.

Due to the high nutrient content and low content in suspended solids, the LFD
is recommended as a culture medium for the growth of both micro- and macro-algae.
Furthermore, the LFD with high nutrients content can be utilized for the cultivation of
fruits and vegetables via bioponics [172].

5.3. Solid Fraction of Digestate

The anaerobic digestion of feedstocks with high Ca content, such as compost of house-
hold waste and municipal solid waste compost, gives a mono-digestate with increased
amorphous Ca-P compounds, thus limiting the availability of P for plant nutrition [173].
Another study concluded that the mono-digestate obtained from agricultural residues
contains recalcitrant organic matter, which contributes to a higher humification index [154].
Thus, it is necessary to reduce the phytotoxicity and ensure the nutrient equilibrium of
feedstocks via co-digestion. The digestates solid fractions are usually utilized for land
application as organic fertilizer. In order to enhance their quality, the co-digestates solid
fraction may be composted or co-composted [174,175]. Additionally, stabilization through
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vermicomposting leads to an increase in kinetin concentration, a plant growth regula-
tor [176].

Saprophagous insect farming has recently become a new approach for bioconverting
organic wastes into useful products and biofuel [177]. The black soldier fly (BSF) demon-
strated a strong capacity to digest the organic material in biowastes [178]. The experiments
conducted in this field showed that co-digestate is recommended for BSF farming due to
the decrease in heavy metal accumulation [179] and the reduction of pathogens such as
Bacillus spp., Salmonella spp., and Escherichia coli [180].

Biochar is a carbon-rich material produced during the pyrolysis process of biomass.
The solid fraction of digestate can be used to produce biochar, which is suitable as a solid
fuel or soil fertilizer due to its high carbon sink capacity [181]. Biochar obtained from cattle
manure and silage co-digestate showed higher performance as a fertilizer than the biochar
produced from raw feedstocks. This is a consequence of increased N and P nutrients via
co-digestion [182].

The results of the study conducted by Isikhuemhen et al. [183] present the enhance-
ment of mushroom (Pleurotus ostreatus) yield when it was cultivated on millet and wheat
straw supplemented with solid fraction co-digestate. In contrast, due to its high salt con-
centration, mono-digestate obtained from feedstocks (like FW) reduced mushroom yield
and mycelium colonization [184].

The solid fraction of digestate can also be used as bio-fertilizers after a drying or
pelletizing process. In addition, it can be used as solid fuel after a pelletizing process.
Furthermore, other methods for the digestate solid fraction valorization are represented by:
biofuel production in domestic furnaces, methane recovery via different post-treatments,
or production of bioethanol after a mechanical fractionation [185].

6. Perspective Trends

The digestibility of various feedstocks for waste management, bioenergy, and other
high-value product generation could be greatly enhanced by co-digestion. AcoD still
involves vulnerabilities, though, due to the year-round accessibility of feedstocks, the
complexity of feedstocks due to varying rates of biodegradation, and co-digestate safety
concerns for agricultural applications, particularly when feedstocks such as wastewater
and animal manure are used [38].

If the challenges of AcoD are considered, aspects such as the following can be included:

• Incompatible feedstocks: due to variations in pH levels, nutritional composition,
particle sizes, and the anaerobic digestion process may be less effective with some
forms of organic waste.

• Process control and monitoring: temperature, pH, and nutrient levels need to be
carefully controlled during AcoD to generate the perfect conditions for microbial
activity.

• Handling and pretreatment of feedstocks: some feedstocks, such as FW or agricultural
residue, may require additional handling or pretreatment before they can be fed to the
anaerobic digestion process.

• Potential for process upsets: AcoD technologies might experience process disruptions
and reduced productivity because they are susceptible to alterations in the environ-
ment and the feedstock’s nature.

• Odor and air emissions: anaerobic digestion can produce odors and air pollutants,
which need to be regulated to meet standards and have as little of an influence on
nearby areas as possible.

• Expensive operating, maintenance, and building costs.

Boosting co-digestive effectiveness is a matter of research among all scientists, dis-
regarding the type of substrate used for the analysis. Difficulties in removing organic
matter or other constraints for applying co-digestion are still issues that are met while
testing/experimenting. For example, regarding the advancement of lignocellulosic pre-
treatment using co-digestion, it must be said that there have been several achievements
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using separated hydrolysis and fermentation (SHF) and simultaneous saccharification and
fermentation (SSF), thus obtaining high results in large-scale production. Even though
results are positive, the high costs involved in the pretreatment process and the significant
metabolic demand of a single microorganism still limit the area of development [186].
Research related to municipal organic solid waste (MOSW) revealed that the majority
of research to date has used lab trials to examine the idea of co-digesting MOSW with
conductive materials. The complexity of the co-substrate, the quality of the MOSW, the
control of iron and carbon-based components, the improvement of the process parameters,
and the unfavorable interaction of some other inorganic compounds are still some of the
significant challenges with this technology, though. Since it relies on a number of variables,
including the variety of substrates, concentration, quantity of metals, and biodegradability,
determining the ideal ratio for different substrates can be challenging [187]. Thus, to find
the best mixes, it is necessary to research the physicochemical characteristics of the various
feedstocks.

In relation to the challenges and perspectives of using AcoD for SS, it must be said
that although scientists have intensively studied it for more than 20 years, there are still
some limitations that have not been overcome yet. Researchers are still trying to give a
definition of high-solid waste and recommend future analyses of the total solids in SS.
Furthermore, according to scientific literature, gaining knowledge about the pollutants
and their transformation will aid the co-digestion process, making it more efficient by
balancing [188].

Despite the study reports that are already available on FOG deposit development in
wastewater collection systems and the potential financial advantages of FOG recycling,
there are still numerous problems to be solved and theories to be tested. Numerous studies
have demonstrated the viability of using yellow grease as a biodiesel feedstock, both from
an economic and environmental standpoint [189].

Notwithstanding the social and economic reasons, the effectiveness of lab-scale and
industrial-scale biogas systems varied dramatically. These differences are frequently caused
by the unpredictability of the waste feedstocks and local environmental aspects in the
regions where AD biogas is produced. Due to the uneven distribution of the substrate, it is
difficult to use co-digestion to produce the optimum volume of biogas in a certain plant.

Examining the response of a group of microorganisms to the addition of different
substances can help create a microbial community that improves the recycling and handling
of waste by altering the structure of those substances. To fully understand this process,
further research using advanced sequencing techniques is needed to identify and study
any unknown microorganisms. Such research will also aid in the optimization, regulation,
and simulation of bioreactors by connecting the characteristics of microbial populations to
co-digestion models.

7. Conclusions

Numerous studies have demonstrated that AcoD improves the C/N ratio and nutrient
balance, increases the methane yield and process stability, and diminishes the concentration
of toxic inhibitors through co-substrate dilution.

The main types of substrates used in co-digestion are FW, SS, animal manure, lignocel-
lulosic biomass, algae, FOG, waste from the leather industry, the pulp and paper industry,
and others.

The co-digestion process can be improved by applying mechanical, physical, chem-
ical, and biological pretreatments to barely degradable substrates, ensuring an optimal
environment for the development of microorganisms.

One of the main advantages of co-digestion is the production of safe and superior-
quality co-digestate for agricultural use. Additionally, the co-digestate presents a higher
bioavailability of nutrients when it is utilized for composting, vermicomposting, mushroom
farming, and black soldier fly growth.
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Considering the wide variety of substrates used, co-digestion parameters and condi-
tions, as well as the types of reactors, it is necessary to continue research to clarify as many
aspects of the biogas production process as possible.

Advanced techniques in the fields of genomics, proteomics, and metabolomics should
be widely utilized to identify and study all the microorganisms present in the digester.
Multiple studies will also aid in the optimization, regulation, and simulation of bioreactors
by connecting the characteristics of microbial populations to co-digestion conditions.
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