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Abstract: In this study, optimal allocation and planning of power generation resources as distributed
generation with scheduling capability (DGSC) is presented in a smart environment with the objective
of reducing losses and considering enhancing the voltage profile is performed using the manta ray
foraging optimization (MRFO) algorithm. The DGSC refers to resources that can be scheduled and
their generation can be determined based on network requirements. The main purpose of this study
is to schedule and intelligent distribution of the DGSCs in the smart and conventional distribution
network to enhance its operation. First, allocation of the DGSCs is done based on weighted coefficient
method and then the scheduling of the DGSCs is implemented in the 69-bus distribution network.
In this study, the effect of smart network by providing real load in minimizing daily energy losses
is compared with the network includes conventional load (estimated load as three-level load). The
simulation results cleared that optimal allocation and planning of the DGSCs can be improved the
distribution network operation with reducing the power losses and also enhancing the voltage profile.
The obtained results confirmed superiority of the MRFO compared with well-known particle swarm
optimization (PSO) in the DGSCs allocation. The results also showed that increasing the number of
DGSCs reduces more losses and improves more the network voltage profile. The achieved results
demonstrated that the energy loss in smart network is less than the network with conventional load.
In other words, any error in forecasting load demand leads to non-optimal operating point and more
energy losses.

Keywords: smart distribution network; distributed generation with scheduling capability; power
generation resources; manta ray foraging optimization algorithm

1. Introduction

In the power system, a significant part of power losses is related to the distribution
sector [1]. The most common approaches to minimize losses in distribution networks
include reconfiguration [2], capacitance allocation [3–5] and distributed generation (DG)
allocation [6,7]. DG allocation is one of the most convenient methods because of the ad-
vantages of reducing losses, reducing voltage deviations, improving reliability, and selling
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power. Improper allocation and irrational and non-optimal planning of these resources
weaken the network performance [8,9]. Optimal DG placement can be applied to all types
of DGs and implemented in the design phase with the help of general network information,
mainly related to the system worst conditions (e.g., peak load condition). While DGs
scheduling can only be implemented for dispatchable or schedulable DGs, such as fuel
cells, micro-turbines, and diesel generators. It is worth noting here that DGs can be placed
in two major categories, schedulable and non-schedulable. The schedulable DGs such as
micro-turbines, gas engines, and fuel cells are sourcing whose output can be controlled
by operators. The non-schedulable are such that their output is uncontrollable. Wind tur-
bines and photovoltaic systems are two well-known non-schedulable types. The optimal
performance of distributed generation with scheduling capability (DGSC) depends on the
network conditions and will change as these conditions change. Therefore, the best opera-
tional point of DGSC should be updated when network conditions change. More accurate
and accurate information on the network conditions will lead to better performance of the
DGSCs [10–12]. The network load is one of the parameters that are constantly changing
in the network and having more accurate information about it improves the performance
of DGs.

Few studies have been done on the optimal planning of the DGSCs in the distribution
network, especially smart distribution networks [13,14]. Many methodologies have been
applied for allocation of the DGSCs in the network. Some of these methods are mentioned
first and then the studies in the field of smart grids are discussed. The location of wind
and photovoltaic resources in the network is presented and aimed with reducing losses
and improving voltage stability via particle swarm optimization (PSO) algorithm in [15].
In [16], optimal allocation of renewable resources via evolutionary programming (EP)
is presented in the network with objective of loss reduction and enhancing the voltage
profile. In [17], a high-efficiency algorithm is suggested using the firefly algorithm (FA)
to find the site and capacity of DGs in an unbalanced network with objective for loss
reduction. In [18], network reconfiguration and allocation of DGs is performed for reducing
loss minimization and enhancing the voltage profiles via plant growth algorithm (PGA).
In [19], network reconfiguration with allocation of DGs is developed for losses and voltage
deviations minimization with cuckoo search algorithm (CSA). In [20], allocation of DGs
is presented for loss reduction and reliability enhancement with dynamic programming.
In [21], optimal allocation of DGs for minimizing the loss of energy have been done in
a smart grid but effect of forecasting error on load profiles has not been investigated.
In [22], the optimal performance of DGs to minimize energy losses in smart network
is compared with conventional network. Also, in [22], the effect of three-level load on
the network performance is not evaluated in the smart environment. In [23], optimal
application of DGSCs is presented with the objective of minimizing energy losses using the
PSO. The purpose of this study is to propose a DG planning model that allows operator
to optimally plan different types of DG, to reduce the loss of energy. In [24], the location
of DGs, automatic voltage control, types of generators and modes of operation of DGs is
investigated on the smart network. The results showed that if DG is exploited in current
and voltage control modes, losses are significantly reduced. Using the proposed method,
the losses can be reduced by selecting different DG technologies. In [25], optimal planning
of the DGSCs with aim of minimizing energy losses in the smart and traditional networks
using the teaching-learning optimization (TLO) method has been investigated but the
voltage profile enhancement is not considered in network performance analysis. In [26],
the advantages of smart network and distribution management system are presented
on the losses, reduction of fixed costs, network development costs and power quality
improvement. The results showed that the suggested methodology is a suitable approach to
improve the performance of the network. In [27], the effect of smart networks is performed
on reducing the cost of network losses. In this study, commercial locations that have the
potential for high losses are determined thus the cost of electricity declines and great benefit
is obtained from reducing losses. In [28], interconnection of energy resources in smart
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networks is developed using the evolutionary algorithm and optimal location of DGSCs
with the ability to inject reactive power is optimally determined by the GA to achieve the
appropriate solution.

As it is found from the literature review, most of the studies for allocation and im-
proving the performance of DGs have been done considering the peak load and for the
worst network conditions. To plan the DGSCs in the distribution network, selecting a load
with multi-level (estimated load model in conventional network) is desirable and opera-
tional point must be extracted with the aim of minimizing energy losses. This multi-level
load model can be accurately determined in smart networks based on measuring devices.
Therefore, a more accurate load model can lead to better scheduling of the network based
on DGSCs [27,28]. It is necessary to evaluate the effect of using smart load in improving
the network performance compared to conventional network loads in reducing energy
losses. So, in this study, the effect of considering smart load in improving the distribution
network performance is compared with conventional network load with considering load
forecasting error. It is also necessary to use a powerful optimization method with high
optimization accuracy to achieve a global solution to determine the best location to install
the DGSCs so that accurate distribution network planning can be performed based on
it. Why, given the introduction of several optimization algorithms in the past, it is still
necessary to provide new algorithms to solve the optimization problem? The answer to
this question is in the No Free Lunch optimization theory [29,30], which states that no
algorithm has the best capability for all optimization problems solving. Therefore, using
an algorithm with optimal optimization capability is one of the goals to solve the problem
presented in this study.

In this paper, optimal allocation, and planning of power generation resources as
DGSCs is presented in distribution network with aim of minimizing the losses considering
enhancing the network voltage profile using manta ray foraging optimization (MRFO)
algorithm [31,32] as a 24-h study. Superiority of the MRFO method in DGSCs allocation
is compared with PSO method. The effect of using smart load compared to the estimated
three-level load is investigated in reducing network energy losses. Accordingly, optimal
management of DGSCs distribution in the smart network is implemented with objective of
loss of energy minimization. In this research effect of smart and conventional networks load
is compared in view of energy losses reduction via the MRFO. The suggested methodology
is implemented on 69-bus distribution network and the effect of load forecasting error is
evaluated on improving the network performance.

Research contributions are provided below:

• Optimal allocation and planning of DGSCs in distribution network
• Evaluating the effect of smart and estimated load on energy losses
• Undermining network performance due to load forecasting error
• More net saving with by moving networks towards smartening
• Superiority of the MRFO compared to PSO

In Section 2, problem formulation includes objective function of allocation and plan-
ning of DGSCs in the distribution network and also constraints are presented. The load
models of the network considering conventional and smart load are explained in Section 3.
The proposed optimization method is named manta ray foraging method and its applica-
tion steps to solve the problem are described in Section 4. The findings results are given in
Section 5. Finally, in Section 6 main findings are concluded.

2. Problem Formulation

In this study, the effect of smart network with the optimal allocation of DGSCs is
evaluated with objective of losses reduction and enhancing the voltage profile via the
MRFO. The objective function is presented along with the constraints. Load models for
conventional and smart distribution networks are also presented in different cases.
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2.1. Optimal Positioning Objective Function

The DGSCs reduce line power flow and reduce active power losses by installation
at the load consumption site. The non-optimal allocation in the network causes poor
performance of distribution networks. So, to improve the network performance based on
the DGSCs, the installation location should be determined optimally [1,6,11]. The total
objective function considering the goals of minimizing active power losses and enhancing
the voltage profile (minimization of the voltage deviations) is defined as follows:

min OF = Power_Loss&Voltage_Deviation =

Ptotal
Loss &Vtotal

D (x, Load)

S.T. g(x) = 0

h(x) ≤ 0

(1)

where, Ptotal
Loss and Vtotal

D are the total amounts of losses and voltage deviations of the network,
considering constraints of equality (g(x) = 0) and inequality (h(x) ≤ 0). x indicates problem
variables such as location and capacity of the DGSCs and Load refers to the cases defined
for the network load.

2.1.1. Power Losses

The amount of active power loss by passing current through network lines is obtained
as follows [1,6]:

PLoss =
NL

∑
k=1

Rk(
Vi −Vj

Rk + jXk
)

2

(2)

where Vi and Vj are the voltages of the buses i and j, respectively, Rk and Xk refer to the
ohmic resistance and reactance of line k and NL is the total line number.

2.1.2. Voltage Profile

Another important objective in the network operation is to minimize the voltage devi-
ations, which is also named as enhancing the voltage profile. The sum voltage deviations
is presented by [1,6,33]:

VD =

√√√√ 1
Nbus

×
Nbus

∑
i=1

(Vi −Vp)
2 (3)

Vp =
1

Nbus
×

nbus

∑
i=1

Vi (4)

where, Nbus refers to the bus numbers and Vp is the average voltage of the buses.

2.2. Objective Function of Optimal Planning

Distribution of the DGSCs is performed optimally according to the general conditions
of the network and in planning of the DGSCs, generation of these resources are managed
according to the conditions of the network. The objective function of the planning is
defined by [1,6]:

min OF = Energy_Loss =
T
∑
t

Ptotal
loss,t(xt, Loadt)× t

S.T. g(xt) = 0

h(xt) ≤ 0

(5)

where T indicates the study period as 24 h.
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2.3. Problem Constraints

The following constraints must be met in solving the problem [1,6]:

• Power capacity

The amount of DG generation in planning should not exceed the allowable amount:

PDGSC < Pmax
DGSC (6)

where, Pmax
DGSC is maximum power of the DGSC.

• Limit thermal limits

The amount of current passing through the network lines should not exceed the
maximum tolerable amount:

Fi < Limiti (7)

where, Limiti is maximum allowable current of line i.

• Voltage constraint

The voltage value of each network bus must be placed the allowable values:

Vmin
i < Vi < Vmax

i (8)

where, Vmin
i and Vmax

i are the lower and upper limits of the bus voltage of the network.
In the search space, the optimization program selects the optimization variables,

i.e., installation location and capacity of the DGSC for each population of the algorithm. By
randomly determining the variables, it then checks the mentioned operating constraints.
Thus, the allowable voltage range of the buses and the maximum current passing through
the network lines due to placing the DGSC in the selected location with the capacity
installed by the optimization program must be satisfied. Then the value of the objective
function resulting from these selected variables is calculated. If the operating conditions are
not met, this solution is infeasible and will be discarded. Then, the optimization program in
the search space selects the other random variables, randomly. Therefore, the optimization
program randomly examines the constraints after determining the variables.

2.4. Multi-Objective Optimization

In this research, the distribution of scattered products in the distribution network has
been done with the aim of minimizing the losses and voltage deviations with weighted
coefficient method [1]. The total objective function (OF) with normalization of each part of
the OF including losses and voltage deviations is defined by:

min imize OF = wLoss(
PLoss
Pmax

Loss
) + wVoltage(

VD
Vmax

D
)

s.t. g(x) = 0, h(x) ≤ 0
(9)

wLoss + wVoltage = 1 (10)

where, Pmax
Loss and Vmax

D are the maximum values of losses and voltage deviations, wLoss
and wVoltage are weighted coefficients related to functions of losses and voltage deviations,
respectively. The wLoss and wVoltage weight coefficients of each of the objectives of losses
and voltage deviations in the multi-objective function (Equation (9)) are based on the
weight coefficients method. These coefficients are presented to normalize the overall
objective function. Here and in many articles, these coefficients are determined based on
trial-and-error methods and user experience. However, in this study, in addition to the trial-
and-error method, we also used the optimization program to optimize these coefficients,
the approximate value of each to obtain the best solution is 0.5.
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3. Load Model of the Network

Most studies to locate and improve the performance of DGs have been done consider-
ing a load level, i.e., peak load, for the worst network conditions. In these conditions, the
operational point determined in the network under changing network conditions includ-
ing load changes weakens the network performance. Therefore, in case of network load
changes, the operational point must be determined optimally. To better plan of DGSCs
power distribution in the network, it is logical to choose a multi-level load model based on
the estimated load model in a conventional network. Moreover, in smart network based
on measuring devices, more accurate load profile can be achieved so that instantaneous
changes in load demand can be monitored. Therefore, a more accurate model of load
demand can be effective in improving the network performance [25,26].

In this study, six types of load models are considered. The first case represents the
real load extracted from the smart network and the other five types show the load of
conventional networks based on the estimated three-level load model. Different models of
the load are defined as follows:

Case (1) The first case is a 24-h load extracted from the smart network based on smart
measuring devices (Figure 1).
Case (2) In this case (Figure 1) load of each level (8 h) is equal to average of the smart load
demand (accurate forecast).
Case (3) In this case, the load value of each level is considered equal to actual peak load
value at that level and is shown in Figure 2 (correct forecasting with covering the worst
load condition). Case 3 is more logical than the Case 2.
Case (4) The estimated demand is 10% more than the three-level demand model in case 3
(Case 4 has a forecasting error).
Case (5) The estimated load is 10% less than in the three-level load demand in case 3. (Case
5 has a forecasting error).
Case (6) This case is a combination of different modes so that in the first level the load
forecast is equal to 10% less than the lowest demand value, in the second level the load
forecast is equal to the peak load value and in the third level the load forecast is 25% more
than the maximum. This case is illustrated in Figure 3.

Figure 1. Load model of Cases 1 and 2.
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Figure 2. Load model of Cases 1 and 3.

Figure 3. Load model of Cases 1 and 6.

4. Proposed Optimization Method
4.1. Introduction of MRFO Method

The MRFO algorithm is inspired by foraging strategies of manta ray, including chained,
spinning, and turning. Figure 4 shows the chained, spinning and turning strategies in the
MRFO algorithm [31,32]. The mathematical model of each strategy is described.
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Figure 4. Strategies of MRFO algorithm (a) chain (b) cyclone and (c) somersault [31].
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4.1.1. Foraging with Chain Strategy

In the MRFO algorithm, manta rays follow plankton by tracking its position. A better
position indicates more plankton in that position. In each iteration, each manta ray is
updated based on the best current solution and the solution before it is updated. The
mathematical model of chained search strategy is defined as follows [31,32]:

xd
i (t + 1) =

{
xd

i (t) + r · (xd
best(t)− xd

i (t)) + α·(xd
best(t)− xd

i (t)) i = 1
xd

i (t) + r · (xd
i−1(t)− xd

i (t)) + α·(xd
best(t)− xd

i (t)) i = 2, . . . , N
(11)

α = 2·r·
√
|log(r)| (12)

where, xd
i (t) indicates ith manta ray position in dth dimension at t, r is a vector in the

distance [0, 1] randomly, a refers to a weight coefficient, and xd
best(t) is the plankton with

the largest density.

4.1.2. Foraging with Cyclone Strategy

In the cyclone strategy, the manta rays, in addition to the spinning movement towards
the food, also move towards one of the manta rays in front of it. That is, the manta ray
groups have a spiral motion toward the food. The spinning strategy in an n-dimensional
space is mathematically defined as follows [31,32]:

xd
i (t + 1) =

{
xd

best(t) + r · (xd
best(t)− xd

i (t)) + β·(xd
best(t)− xd

i (t)) i = 1
xd

best(t) + r · (xd
i−1(t)− xd

i (t)) + β·(xd
best(t)− xd

i (t)) i = 2, . . . , N
(13)

β = 2er1
T−t+1

T · sin(2πr1) (14)

where, β is the weighting factor, T refers to the maximum iteration number and r1 is a
random number in the distance [1, 0].

All manta rays randomly perform a search for food according to their reference
position, so the spinning search represents a desirable exploration for the area with best
solution. This advantage allows the the MRFO to have access to a wide global search, which
is presented as follows [31,32]:

xd
rand = Lbd + r·

(
Ubd − Lbd

)
(15)

xd
i (t + 1) =

{
xd

rand + r · (xd
rand − xd

i (t)) + β·(xd
rand − xd

i (t)) i = 1
xd

rand(t) + r · (xd
i−1(t)− xd

i (t)) + β·(xd
rand − xd

i (t)) i = 2, . . . , N
(16)

where, xd
rand is random position, Lbd and Ubd are the minimum and maximum bounds for

dimension d, respectively.

4.1.3. Foraging with Somersault Strategy

In this strategy, the food position is a pivot. Each manta ray tries swimming around
the axis and back to a new position, so the manta rays always maintain their position
around the current best position. This strategy is defined by [31,32]:

xd
i (t + 1) = xd

i (t) + S·
(

r2·xd
best − r3·xd

i (t)
)

, i = 1, . . . , N (17)

where, S is the somersault factor (equal to 2), r2, r3 represent random numbers in the range
[0, 1].

In each iteration, each manta ray updates its position relative to the two manta rays in
front of it, as well as to the reference position. To perform the exploration and exploitation
search, the t/T value reduces from 1/T to 1. In the case of t/T < rand, the best current
position is selected as the reference position in exploitation phase, for t/T > rand a position
is considered randomly as the reference position in the search space for the exploration
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phase. The MRFO method has the ability to switch between chain and cyclone strategies.
The position of the manta ray can also be updated to the current best position based on the
somersault strategy. The proposed steps and the update step are continued to establish
the convergence conditions of the MRFO method, and finally the best position and the
corresponding amount of fitness are determined. Flowchart of the MRFO algorithm is
presented in Figure 5.

Figure 5. Flowchart of the MRFO algorithm [31].
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4.2. MRFO Based Planning

After the optimal allocation of DGSCs in the network and the optimal distribution of
their power, using the backward-forward load flow, the current of lines and the voltage
deviations of the network buses are obtained. Therefore, the program easily calculates the
amount of reduction of network losses and also the reduction of voltage deviations of the
buses and finally, effect of improving the optimal application of the DGSCs in the total
objective function value can be determined. Moreover, in the problem-solving procedure,
the program constantly checks the network operation constraints so that the voltage and
current are within the allowable range. It should be noted that when executing the planning
problem in case of violation of the constraints, the program keeps the constraints within
its permissible range by changing the size of the DGSCs in the planning problem. So, the
optimization program in solving the planning problem determines the optimal distribution
of the DGSCs power in such a way that the energy losses of the study period is minimized
and of course the operating constraints are also met.

The flowchart of the implementation of the MRFO in allocation of the DGSCS in the
network is depicted in Figure 6. After allocation of the DGSCs in the network, after finding
the installation location of the DGSCs using the planning program the optimal distribution
of the DGSCs power is found. The steps for using DGSCs based on the MRFO in planning
problem are as follows:

(Step 1) The data of the distribution network including loads and lines data, location and
maximum size of DGSCs (obtained from the DGSCs allocation problem) as well as the
load model are applied to the program based on the MRFO method. The parameters of the
MRFO are also set. The population, maximum iteration and also repetition are considered
50, 100 and 30, respectively based on trial-and-error method.
(Step 2) Based on the provided load cases, a load level is evaluated.
(Step 3) In this step, the optimal planning of DGSCs is implemented. After evaluating the
operating constraints, the objective function as energy losses (Equation (5)) is calculated
based on the optimal operating point according to the load level considering the constraints
(Equations (6)–(8)) in step 2.
(Step 4) All the load levels are checked. In this case, go to next step, otherwise step 2 must
be performed.
(Step 5) The objective function as energy losses (Equation (5)) is determined for 24-h for
the network.
(Step 6) The optimal distribution of the DGSCs power is determined and stop the algorithm.
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Figure 6. Implementation of the MRFO in allocation of the DGSCS in the network.

5. Simulation Results
5.1. Network Data

In this study, the optimal allocation and planning of power generation resources the
DGSCs is presented in smart environment with objective of reducing losses and considering
the voltage deviations minimization via the MRFO. Figure 7 shows the IEEE 69-bus network.
Load data and network lines are derived from [34]. The network power loss in peak
load conditions is equal to 224.97 kW. In this research, MATLAB (R2015a) is applied to
implement the methodology based on a personal computer with a Core i7, 3.1 GHz CPU,
8 GB memory, 1 T HDD and the Windows 7 operating system.
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Figure 7. Schematic of IEEE 69-bus distribution network.

5.2. Optimal Allocation of the DGSCs

Allocation of the DGSCs is implemented based on peak load conditions via the MRFO.
In this study optimal allocation of one and two DGSCs are considered. The allocation
problem is performed using the MRFO algorithm and its capability is investigated with PSO.
In this study, the PSO with variant inertia weight is used with cognitive component c1 = 1.5,
social component c2 = 1.5, minimum inertia weight wmin = 0.4 and maximum inertia weight
wmin = 0.9. The optimization results are presented first as a single objective with objective
of losses minimization and then as a multi-objective method with objective of losses and
voltage deviations minimization. The convergence curves of both methods are presented
in Figure 8, which confirms the superiority of the MRFO with lower convergence tolerance
and lower objective function. The results of single-objective allocation are presented in
Table 1. As can be seen, in the case of using one DGSC, the performance of the MRFO and
PSO methods is the same in terms of objective function value or the amount of power losses.
In single-objective optimization with a DGSC, both methods have chosen bus 50 DGSC
installation and for two DGSCs allocation, the proposed methods have also selected buses
50 and 51 for installation of two DGSCs.
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Figure 8. Convergence curve of MFRO and PSO methods for single-objective allocation of (a) one
DGSC (b) two DGSCs.

Table 1. Optimal allocation of DGSCs in IEEE 69-bus network as single-objective optimization.

One DGSC Without DGSC With DGSC (PSO) With DGSC (MRFO)

Item/Value PSO MRFO

Location (Bus) – 50 50
Size (kW) – 998.96 1000

Power Loss (kW) 202.67 111.59 111.58
Minimum Voltage (p.u) 0.9038 0.948 0.9482

Two DGSC Without DGSC With DGSC (PSO) With DGSC (MRFO)

Item/Value PSO MRFO

Location (Buses) – 50, 51 50, 51
Sizes (kW) – 1000, 860 1000, 865

Power Loss (kW) 202.67 83.370 83.330

Minimum Voltage (p.u) 0.9038 0.9681 0.9683
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It should be noted that the results obtained from the allocation of the DGSCs including
selected buses in single-objective optimization based on the MRFO method are similar to
the PSO results. Moreover, the losses value for one DGSC allocation is obtained 111.58 kW
and 11.59 kW, also the minimum voltage is achieved 0.9482 p.u and 0.9480 p.u, respectively
using the MRFO and PSO methods. Also, the losses value for two DGSCs allocation is
achieved 83.34 kW and 83.37 kW, and the minimum voltage is obtained 0.9683 p.u and
0.9681 p.u, respectively using the MRFO and PSO methods, so the results prove the better
performance of the MRFO in achieving to lower losses and better voltage profile with lower
convergence tolerance and more convergence rate than the PSO.

Also, the voltage profile for one and two DGSCs is shown in Figure 9, which shows that
increasing the number of DGSCs improves the voltage profile or reduces the in the network.

Figure 9. Voltage profile of the 69-bus network for one and two DGSCs using MRFO.

In Figure 10, the convergence process of problem solving is presented as multi-
objective allocation for one and two DGSCs.

According to Figure 10, in multi-objective allocation, the MRFO method obtained
the same power loss value for one DGSC allocation with the PSO and also lower losses
value for two DGSCs allocation than the PSO. Statistical analysis of the MRFO and PSO
performance in multi-objective allocation problem solving in view of the best, mean and
worst values of the objective function based weighted coefficients method is presented in
Table 2. As we know, the value of the objective function is normalized and is in the range of
0 to 1. The results of Table 2, showed the better performance of the MRFO in achieving to
lowest value of the objective function in 30 repetitions of the optimization algorithms with
better results of the best, mean, worst and standard deviation (St. D.) values in allocation
of one and two DGSCs allocation than the PSO.
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Figure 10. Convergence curve of MFRO and PSO methods for multi-objective allocation of (a) one
DGSC (b) two DGSCs.

Table 2. Statistical analysis of the MRFO and PSO performance in allocation problem solving.

Allocation Problem Method Best (MUS$) Mean (MUS$) Worst (MUS$) St. D. ($)

One DGSC
MRFO 0.6015 0.6033 0.6076 0.247

PSO 0.6027 0.6048 0.6090 0.261

Two DGSCs
MRFO 0.3511 0.3519 0.3527 0.118

PSO 0.3523 0.3530 0.3538 0.126

The multi-objective optimization results are given in Table 3. In the allocation of one
DGSC, both methods chose bus 54 for installation, while in single-objective optimization,
both methods determined bus 50 for DGSC installation. In the optimal allocation of two
DGSCs, the MRFO selected buses 50 and 52 and the PSO method selected buses 50 and
12 to install the DGSCs. The voltage profile for multi-objective allocation of one and two
DGSCs is shown in Figure 11. The voltage profiles for single and multi-objective location
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of one and two DGSC are also shown in Figures 11 and 12, respectively. Here, according
to Figures 11–13, it can be concluded that increasing the number of DGSCs improves the
voltage profile. Also, in multi-objective allocation, the network voltage is more improved
that the single-objective allocation, which makes it important to use multiple indices.

Table 3. Results of multi-objective allocation and sizing of one and two DGSCs in a 69-bus network.

One DGSC Without DGSC With DGSC (PSO) With DGSC (MRFO)

Item/Value PSO MRFO

Location (Bus) – 54 54
Size (kW) – 1000 1000

Power Loss (kW) 202.67 121.539 121.539
Minimum Voltage (p.u) 0.9038 0.9500 0.9500

Two DGSC Withoud DGSC With DGSC (PSO) With DGSC (MRFO)

Item/Value PSO MRFO

Location (Buses) – 50, 12 50, 52
Sizes (kW) – 1000, 1000 1000, 965

Power Loss (kW) 202.67 85.493 83.603
Minimum Voltage (p.u) 0.9038 0.9691 0.9694

Figure 11. Voltage profile of 69-bus network for multi-objective optimization of one and two DGSCs
using MRFO.

Figure 12. Voltage profile of 69-bus network for single and multi-objective optimization of one DGSC
using MRFO.
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Figure 13. The voltage profile of the network considering two DGSCs via MRFO.

5.3. Optimal DGSC Planning
Planning One DGSC (Case 1)

The optimal planning of one DGSC using the MRFO is presented in the first load
case considering smart load in Figure 14. The base results of the 69-bus network demand
show that loss of energy for the 24-h is obtained 2023 kWh. By installing one DGSC in
bus 54 (obtained from the allocation problem) and by implementing the optimal planning
of DGSC generation in the smart network, the total energy loss is reduced to 1259.39 kW
(37.74% reduction). A comparison of system hourly energy losses before and after DGSC
installation is depicted in Figure 15. Given this figure, it can be argued that the reduction
of energy losses is significant, especially during peak times.

Figure 14. Optimal generation of one DGSC in the case 1.
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Figure 15. Comparison between network hourly energy losses before and after optimal planning of
one DGSC in case 1.

In Case 2, the loss of energy during a day is equal to 1267.52 kWh and this value is
0.64% more than the value obtained in the smart network. The achieved results are clear in
that with the correct data on the demand in the smart network, compared to the normal grid
with more accurate load forecasting, the reduction in daily losses is 0.63% more. With such
a large estimate, there is not much difference between the network performance in smart
environments and conventional networks. In Case 3, using the MRFO, total daily energy
losses are calculated 1645.61 kWh and this value is 382 kWh more than the network with
smart demand, so considering this case leads to 30.65% more loss of energy. In Case 4, the
effect of demand estimation is incorrectly estimated. In this case, the demand is 10% more
compared to Case 3. The optimal DGSC distribution based on this case is presented using
MRFO. The loss of energy is computed 2032.79 kWh. The loss of energy is approximately
61.39% more compared to this value in smart network, so the demand forecasting error led
to an increase of the loss of energy in this case. In Case 5, the effect of incorrect estimation
of the demand as 10% less than the demand in Case 3, as evaluated in the loss of energy
during a day. The results of one DGSC scheduling using the MRFO method show that the
daily energy losses are reduced to 1285.40 kWh and this value is 2% more than the loss of
energy in the smart network.

In Case 6, the forecasted demand is defined as multi-level. The energy losses of this
case with optimal management of one DGSC using MRFO method is equal to 1759.10 MW,
which is 39.68% more than the loss of energy during a day in the smart network case.
Therefore, having more accurate demand information has improved network performance.
The output difference of DGSC generation in different cases compared with generation
with smart demand is shown in Figure 16. The worst case is related to cases 4 and 6 when
the demand forecasting error is higher than the smart demand. The higher difference is
related to Case 4 and the lowest value is obtained in Case 2. A 10% load estimation error
leads to a 100% difference from the optimal operational point. The greater difference from
the optimum point, the less reduction in losses occurs. Therefore, any deviation from
the actual load leads to the occurrence of non-optimal operational point and more energy
losses. The energy losses and its deviation percentage in different cases with one DGSC is
given in Table 4.
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Figure 16. The difference of DGSC generation in conventional network cases from the smart network as optimal point.

Table 4. The energy losses and its deviation percentage in different cases with one DGSC.

Item Base Network Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Energy losses
value 2023 1259.39 1267.52 1645.61 2032.79 1285.4 1759.1

Maximum
deviation (%) – – 0.64 30.66 61.42 2.06 39.68

In this section, the optimal planning of two DGSCs in six different cases is performed
using the MRFO method. The optimal generation of DGSCs is shown in Figure 17. The
first DGSC is placed at bus 50 with size of 1000 kW and the second DGSC is located at
bus 52 with size of 965 kW in the network. In allocation of two DGSCs considering smart
load case, the energy loss is obtained 771.77 kW, which is reduced by 63.3% compared
to the energy losses with allocation of one DGSC (1259.39 kW). The daily energy losses
considering smart load is illustrated without DGSCs and with one and two DGSCs in
Figure 18. This figure proved that effective impact of increasing the number of DGSCs in
loss of energy reduction.

Figure 17. Optimal generation of the DGSCs in smart network.
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Figure 18. Comparison between hourly energy losses before and after optimal installation of one
and two DGSCs in smart network.

In Table 5, loss of energy and the losses reduction percentage of different cases are
given. The loss of energy as well as deviation of output power of DGSCs from the optimal
value with two DGSCs is presented in Figures 19 and 20. As is clear, the loss of energy
during considering smart demand is obtained less than the other cases (estimated demand).
Case 2 is closer to the optimal case in view of lower energy losses. The worst case is related
to Case 4, where the loss of energy related to conventional demand is more than the value
obtained considering the smart demand.

Table 5. The energy losses and its deviation percentage in different cases with two DGSCs.

Item Base Network Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Energy losses
value 2023 771.77 794.37 1140.6 1387.6 819.42 1175.4

Maximum
deviation of

generation (%)
– – 0.33 47.63 79.80 6.17 52.30

Figure 19. Daily energy loss with two DGSCs for different cases.
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Figure 20. Curve of daily energy losses for different cases with two DGSCs.

6. Conclusions

In this study, multi-objective allocation of power generation resources as DGSCs in
a smart network is investigated with objective of minimizing the losses and enhancing
the voltage profile using the MRFO algorithm. Then, the effect of considering smart loads
in planning of DGSCs on the optimal distribution of DGSCs generation is compared to
the estimated load in a conventional network with objective of minimizing the loss of
energy. The proposed method is implemented on IEEE 69-bus network considering one
and two DGSCs using the MRFO. The results obtained from the MRFO are compared
with the PSO to evaluate the capability of the MRFO. The results showed that the best
solution as minimum loss of energy is obtained considering exact data as smart demand
in Case 1. The worst situation occurred in cases 4 and 6 because the estimated loads are
higher than the smart demand. The highest difference in the energy losses occurred in
Case 4 and the lowest in Case 2, so the results clarified that any error in load forecasting
leads to non-optimal operating points and more energy losses. Moreover, the results
showed that increasing the DGSC number significantly reduced daily energy losses. In the
multi-objective allocation and planning of one and two DGSCs, the computational time
obtained is 480 and 570 s.

Access to accurate network load data in a conventional network as well as load
uncertainty are the main research limitations. The optimal allocation and planning of power
generation resources as distributed generation with scheduling capability with objective of
reliability improvement considering load uncertainty is suggested for future work.
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