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Abstract: This paper proposes a novel dynamic pricing scheme for demand response with individu-
alized tariffs by consumption profile, aiming to benefit both customers and utility. The proposed
method is based on the genetic algorithm, and a novel operator called mutagenic agent is proposed
to improve algorithm performance. The demand response model is set by using price elasticity
theory, and simulations are conducted based on elasticity, demand, and photovoltaic generation data
from Brazil. Results are evaluated considering the integration effects of renewable energy sources
and compared with other two pricing strategies currently adopted by Brazilian utilities: flat tariff
and time-of-use tariff. Simulation results show the proposed dynamic tariff brings benefits to both
utilities and consumers. It reduces the peak load and average cost of electricity and increases utility
profit and load factor without the undesirable rebound effect.

Keywords: dynamic pricing; demand response; electricity tariff; genetic algorithm; renewable energy

1. Introduction

The necessity to reduce greenhouse gas emissions combined with electricity consump-
tion growth and technology evolution is leading the energy sector to experience significant
changes, summarized in the concept of a smart grid [1]. A smart grid efficiently integrates
actions from all users, from generators to end-use consumers, using innovative tools and
technologies, such as renewable generation, electric vehicles, batteries, and smart meters
with bidirectional data flow, with advanced communication and information technology.
A key characteristic of a smart grid is the demand response (DR) program, which enables
end-users to actively participate in power system management rather than just act as
passive consumers. DR can influence end-user consumption according to energy suppliers’
interests. It can be an efficient strategy to properly integrate renewable energy sources
into the network, which have intermittent nature and can cause a significant imbalance
between generation and load [2].

DR strategies are gaining more attention in power system operations recently. Refer-
ence [3] presents a literature review of recent works on DR programs discussing techniques
and algorithms, their advantages, and disadvantages. Generally, there are two types of DR
programs: incentive-based demand response (IBDR) and price-based demand response
(PBDR) [4,5]. Incentive-based programs provide a financial incentive to consumers to
reduce their load. It includes direct load control, interruptible load service, and various
ancillary service markets. In price-based programs, consumers voluntarily reduce their
load by responding to time-varying electricity prices and typically includes time-of-use
pricing (ToU), critical peak pricing, real-time pricing, and dynamic pricing.

Dynamic pricing techniques have been widely adopted in the literature. In [6], the
authors propose a dynamic price scheme to minimize average system cost and rebound
peaks through load scheduling with individualized prices for each user and evaluate results
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considering the integration of renewable energy sources. Reference [7] proposes a day-
ahead dynamic pricing method to maximize economic, social welfare of both distribution
system operators and prosumers considering network constraints. Results are tested in
a radial test feeder with photovoltaic (PV) generators and batteries, scheduling flexible
loads. Both studies assume automated load scheduling, which requires modern equipment
capable of receiving price signals from utility to optimize consumer power usage in a smart
grid environment, a distant reality in underdeveloped countries such as Brazil. In [8],
two dynamic pricing techniques are proposed to minimize generation cost or maximize
utility profit using the particle swarm optimization (PSO) algorithm. In this paper, the
authors developed a model based on fuzzy logic to predict customer response to electricity
price changes. However, they do not consider individualized tariffs according to customer
behavior and do not provide economic benefits for both utility and consumer. Reference [9]
proposes dynamic pricing to maximize profit achieved by the retail electric provider
and considers mixed types of customers with different behavior. However, it assumes
customers have smart meters with an embedded home energy management system and
favors only utility interests. Reference [10] proposes a strategy based on game theory
and Nash equilibrium to generate a unique electricity tariff for all customers, optimizing
the interaction between utility and consumers. The objective is to maximize utility profit,
reduce demand fluctuation, and minimize the consumer’s electricity bill. However, the
authors propose a unique tariff for all customers and assume load can be automatically
scheduled.

Although several studies have been conducted in this area, some issues still need to
be addressed. The literature review shows that few papers proposed a day-ahead pricing
methodology aiming to obtain benefits for both utility and consumers with individualized
tariffs, especially without assuming the presence of home energy management systems
capable of scheduling loads.

To improve this limitation, this paper proposes a dynamic pricing scheme individ-
ualized by consumption profile, aiming to produce benefits for all participants (utilities
and consumers), considering the price elasticity concept to simulate a consumer’s response
to price signals. The methodology is based on the genetic algorithm (GA), and a novel
operator called mutagenic agent is proposed to improve the algorithm’s performance
considering three goals: mitigate demand fluctuation, reduce the average cost of energy,
and increase energy consumption. Simulations are performed using real data from Brazil,
and the applicability of the proposed model is also assessed in terms of renewable energy
integration.

The main contributions of this work can be summarized as follows:

• Develop a dynamic pricing methodology that benefits both customers and utilities;
• Construct individualized energy price tariffs according to consumption profile based

on energy price elasticity concept;
• Proposes a novel operator for the genetic algorithm called mutagenic agent, specifically

developed for the dynamic pricing problem;
• Conduct tests using elasticity, demand, and photovoltaic generation data from Brazil;
• Does not assume the daily energy consumption for each household is constant. In

contrast to the premise adopted in other studies, customers can increase or reduce
their daily energy consumption.

The remainder of this paper is organized as follows. The proposed methodology and
optimization problem are presented in Section 2. Section 3 shows test system modeling
and data, and Section 4 presents network configuration. In Section 5, simulation results are
presented and discussed, followed by conclusions presented in Section 6.

2. Proposed Methodology

The methodology proposed in this paper consists of an intelligent dynamic pricing
scheme for demand response, as shown by the flowchart in Figure 1. Based on day-
ahead forecast profiles of consumer’s demand and PV generation, the optimal electricity



Energies 2021, 14, 4839 3 of 16

tariff is obtained for each consumer group and day hour using the genetic algorithm.
The simulation time considered is 24 h with 1 h sampling periods, considering hourly
prices are announced 24 h in advance in the market. A population of candidate solutions
representing electricity tariffs is generated. Consumer’s demand response associated with
each electricity tariff is obtained through elasticity, and fitness function is evaluated to each
solution through load flow solutions. Details of the proposed methodology are as follows.
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Figure 1. Demand response methodology based on the genetic algorithm.

2.1. Mathematic Formulation

This section describes the mathematical formulation of the proposed methodology to
achieve optimal electricity price signals to customers at each time of the day, considering
the day-ahead market. A multi-objective optimization problem is proposed with the goals:
(i) minimize electricity demand fluctuation (F1), (ii) minimize total load reduction (F2),
and (iii) minimize the average cost of electricity (F3). The fitness function is formulated as
follows.

Min. f = w1F1 + w2F2 + w3F3 (1)

and each goal is weighted by w1, w2, and w3, respectively.
The term F1 represents demand fluctuation (DF), which is the deviation between

system electricity demand and system average demand as shown in Equations (2) and
(3). The minimization of demand fluctuation aims to obtain a flatter pattern of electricity
demand, reducing the discrepancy between peaks and valleys.

F1 = DF =
1
T

T

∑
t=1

√
(Lt − Lav)

2 (2)

Lt =
Nb

∑
k=1

Lt,k , Lt,k = Pt,k − PVt,k , Lav =
1
T

T

∑
t=1

Lt (3)

where Lt is the total residual load at time t obtained in response to the proposed dynamic
tariff, Lt,k is the residual load at time t at bus k obtained in response to the proposed dynamic
tariff, Pt,k is the load at time t at bus k obtained in response to the proposed dynamic tariff,
PVt,k is the renewable generation at time t at bus k, Lav is the total average load for the
entire simulation time horizon T, and Nb is the number of buses in the system.
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The term F2 represents total load reduction (TLR) and expresses the effect of dynamic
pricing on system demand curtailment as shown in Equations (4) and (5). The minimization
of TLR promotes solutions where consumers increase their consumption after dynamic
pricing, generating more profit for the utility. For underdeveloped countries, an energy
consumption increase is associated with a better quality of life since families can make
use of basic electrical equipment, such as electric showers, washing machines, and air
conditioning.

F2 = TLR = −
T

∑
t=1

(
Lt − Lt

o
Lt

o

)
× 100 (4)

Lt
o =

Nb

∑
k=1

Lt,k
o (5)

where Lo
t is the total nominal load at time t and Lo

t,k is the nominal load at time t at bus k.
The term F3 represents the average cost of electricity (AC), which should be minimized

to reduce customers’ energy bills, as shown in Equation (6). It is important to mention
that overall system improvement must be achieved by optimizing the electricity price, not
blindly trying to increase or reduce the electricity price.

F3 = AC =
1

Nb

T

∑
t=1

Nb

∑
k=1

Trt,k (6)

where Tr t,k is the electricity tariff at time t at bus k.
The minimization problem is subjected to equality and inequality constraints. Equality

constraints represent the non-linear power flow equations as shown in Equations (7) and
(8).

Pi = Vi ∑
i∈K

Vj
(
Gijcosθij + Bijsenθij

)
, ∀i = 1, 2 . . . Nb (7)

Qi = Vi ∑
i∈K

Vj
(
Gijsenθij − Bijcosθij

)
, ∀i = 1, 2 . . . Nb (8)

where K is the set of buses adjacent to bus i (including bus i), Nb is the total number of
buses in the distribution system, Pi and Qi are active and reactive power injected at bus i,
Gij and Bij are, respectively, the real and imaginary parts of the nodal admittance matrix.

Inequality constraints represent limits on busbar voltage magnitudes, as shown in
Equation (9).

Vmin
i ≤ Vi ≤ Vmax

i . (9)

where Vi
min and Vi

max are minimum and maximum allowable voltages, assumed to be,
respectively, 0.95 and 1.05 pu in this study.

It is important to mention that F1, F2, and F3 are normalized with respect to their
base values for preventing scaling problems when fitness is evaluated. Optimizations are
performed evaluating the fitness function with w1 = 0.25, w2 = 0.31, and w3 = 0.44.

2.2. Demand Response Modeling

Energy demand is a commodity sensitive to price variations. Price elasticity (ε)
measures energy demand changes relative to price changes, as shown in (10) [11].

ε =
∂d
d0

∂p
p0

(10)

where d is demand, d0 is the initial demand, p is the electricity tariff, and p0 is the initial
electricity tariff.

Commodities can be elastic or inelastic. The price elasticity of demand is said to be
elastic when consumers respond to price variations with a large change in demand. In this
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case, price elasticity assumes values greater than one. On the other hand, demand is said
to be inelastic when consumers almost do not respond to price variations, and in this case,
price elasticity values vary from zero to one. In matrix form, consumers’ sensitivity to price
variation can be represented as given below in Equation (11) [11].

∆D = E.∆P (11)

where ∆D is a vector with dimension n × 1 representing demand variation, E is elasticity
matrix with dimension n × n, and ∆P is a vector with dimension n × 1 representing price
variation for a pricing system with n tariff periods.

Demand variation elements are ∆di = di − d0
i, where d0

i is the initial demand at time i,
and di is the corresponding modified demand at time i (after consumers respond to price
signals). Price variation elements are ∆pi = pi − p0

i, where p0
i is the initial tariff at time i,

and pi is the new tariff at time i.
The elasticity matrix can be represented as shown in Equation (12).

E =


ε1,1
ε2,1

...
εn,1

ε1,2
ε2,2

...
εn,2

. . .

. . .
...

. . .

ε1,n
ε2,n

...
εn,n

 (12)

where matrix diagonal terms εi,i are the self-elasticity coefficients, and matrix off-diagonal
terms εi,j are the cross-elasticity coefficients.

The self-elasticity coefficients describe how consumers react, changing their demand
on time at instant i due to price variations occurring at the same instant i, and always
assume negative values. The cross-elasticity coefficients describe how consumers change
their demand at time instant i based on price variations occurring in another instant j, and
always assume positive values (multi-period sensitivity).

Applying a dynamic electricity price at time i, the responsive electricity demand at
time i can be evaluated as shown in Equation (13), considering its influence in other periods
j [12].

di = d0
i .

1 + εi,i.
(

pi − p0
i

)
+

n

∑
j = 1
j 6= i

εi,j.
(

pj − p0
i

)
 (13)

2.3. Genetic Algorithm (GA)

The genetic algorithm is a meta-heuristic optimization technique inspired in nature,
based on Darwin’s theory of natural evolution. GA is a widely used optimization algorithm
with many engineering applications, including power systems. It has been successively
used to solve complex, non-linear, and multi-objective optimization problems. As a popu-
lation algorithm, it can escape from local optima if parameters are properly adjusted due
to its exploration and exploitation characteristics. GA’s main steps are population initial-
ization, fitness evaluation, and new population generation using GA operators (selection,
crossover, and mutation) [13].

2.3.1. Initialization of Population

In the genetic algorithm, a chromosome (also known as an individual) is characterized
by a set of features called genes. The set of all individuals (solutions) is known as the
population. In this problem, each individual represents a matrix with Nb lines and T
columns, corresponding to the electricity tariff to each node of the system to each hour
of the day. These elements are decision variables of the problem and are represented in
their natural form (real numbers). To initialize the population, N individuals are randomly
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created within the feasible range of decision variables. To each individual (new electricity
tariffs), the new electricity demand is evaluated considering the cross and self-elasticity
effect, and the fitness function is calculated.

2.3.2. Selection

Selection is the procedure where the best individuals are selected based on their fitness
value for reproduction in order to produce successive generations. Individuals with high
fitness values have a higher probability of being selected. The selection rule used in this
paper is roulette-wheel. In roulette wheel selection, the wheel is divided into n pieces,
where n is the number of individuals in the population. Each individual gets a portion of
the circle that is proportional to its fitness value. Individuals with higher fitness are more
likely to be selected.

2.3.3. Crossover

Crossover is a genetic operator used to combine genetic information of two parents to
generate new offspring. This study applied single-point crossover. In this case, a random
crossover point is selected, and the tail of its two parents is swapped to get new offspring,
which belong to the next generation of possible solutions.

2.3.4. Mutagenic Agent

Since crossover replaces chromosomes from parents, new solutions will always present
genes from parents that can be future modified by mutation. If there are bad genes within
the parents, they will be transferred to their children after crossover. To overcome this
limitation, a novel operator called the mutagenic agent is applied. This operator is inspired
by the new gene-editing method CRISPR/Cas9 developed by Emmanuelle Charpentier
and Jennifer A. Doudna, winners of the 2020 Nobel Prize [14]. This genetic tool allows
scientists to modify DNA, cutting bad genes and replacing them with good ones.

In this study, good and bad genes are identified through empirical knowledge of
the problem. Bad genes are those electricity tariffs below the one currently applied (flat
tariff) when electricity consumption is higher than the daily average value, promoting an
increase in electricity consumption during this peak period. A bad gene could also be an
electricity tariff above the one currently applied when electricity consumption is lower
than the daily average value, promoting a reduction in electricity consumption during this
off-peak period. Good genes have the opposite behavior.

The mutagenic agent will identify bad genes and replace them with better ones. This
replacement is represented by a variation in the direction that best satisfies the goal or
will assume a new random value, with a chance of 50%. This agent is inserted into the
population following a geometric progression of ratio 2, starting at the 15th generation.
Thus, there is a strong exploration of the search space in the early generations, visiting new
regions and increasing population diversity. At the end of the evolutionary process, there is
more exploitation of the search space, reducing the necessity to apply the mutagenic agent.

2.3.5. Mutation

Mutation prevents premature stopping of the algorithm in a local solution. It intro-
duces diversity in the GA population. In this study, a conventional mutation operator is
applied with probability within the domain ε [0.1,1.7] to every gene of the chromosome.

Table 1 shows the values adopted for the set of parameters used in the GA in this
study after performing extensive statistical tests.
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Table 1. Genetic Algorithm Parameters.

Parameters Value

Population size 300
Number of iterations 300

Mutation rate 1%
Crossover rate 75%

3. Electricity Data in Brazil

In Brazil, the electricity generation matrix is dominated by large hydropower plants
with an installed capacity of 63.9%. Other energy sources are wind (10.9%), biomass (8.3%),
solar (2.3%), and nuclear (1.2%). Fossil fuel generation is dominated by coal, oil, and
gas power stations, which accounts for 13.4% of the total installed capacity, as shown in
Figure 2 [15]. The Brazilian system comprehends five geopolitical regions (North, North-
east, Central-West, Southeast, and South), and each region has a different participation
level in electricity consumption. The industrial electricity consumption corresponds to
34.2% of the total market, while residential and commercial correspond to 29.86% and
19.5%, respectively [16].
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3.1. Residential and Commercial Load Curve

Most households in Brazil consume less than 200 kWh/month, which is a relatively
low level of energy consumption when compared with other developed countries, such as
the USA, with 975 kWh/month [17]. In the commercial sector, air-conditioning, refrigera-
tion, and lighting represent the main share of energy consumption. In the residential sector,
the highest share of demand corresponds to cooling (refrigerator and freezer), followed
by an electric shower and air conditioning. Residential and commercial demand profiles
adopted in this work are presented in Figure 3, which represents electricity demand in a
typical day in the Brazilian system [17]. Residential and commercial demand have differ-
ent peak hours. For residential customers, peak demand occurs around 21:00 h, and for
commercial customers, peak demand occurs from 10:00 h to 16:00 h. During the rest of the
day, consumption is relatively constant.
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3.2. Flat and ToU Tariffs Adopted in Brazil

In Brazil, electricity tariffs are defined by the National Electric Energy Regulatory
Agency (ANEEL) and differ from each distribution company. Consumers connected to the
low-voltage level (named group B) with consumption above 500 kW have two options of
electricity tariff: the conventional one, which is a flat tariff, and the White tariff, which is
a ToU tariff available since 2018. The flat tariff establishes a fixed price for kilowatt-hour
consumed, valid for all days and times of the week. White tariff is a time-of-use tariff with
three load periods: peak, intermediary, and off-peak period. It has higher values for peak
and intermediate load periods and much lower values for off-peak periods. Figure 4 shows
flat and ToU tariffs used in this work during simulations, currently employed at a local
utility in Brazil given in the official currency named Real (BRL) [18].
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3.3. Elasticity Data

The elasticity data adopted in this paper for residential and commercial consumers
are based on [19,20]. The load curve is divided into three different periods according to its
behavior, namely off-peak, mid-peak, and on-peak periods, and elasticity data is assigned
to each period. For residential customers, the off-peak period is from 22:00 h to 8:00 h, the
mid-peak period is from 8:00 h to 18:00 h, and the on-peak period is from 18:00 h to 22:00 h.
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For commercial consumers, the off-peak period is from 22:00 h to 7:00 h, the mid-peak
period is from 7:00 h to 9:00 h and 18:00 h to 22:00 h, and the on-peak period is 9:00 h to
18:00 h. Table 2 shows self and cross elasticity data adopted for these periods.

Table 2. Self and Cross Elasticities for Different Type of Consumers.

Consumer On-Peak Mid-Peak Off-Peak

Residential On-peak −0.240 0.021 0.016
Mid-peak 0.021 −0.210 0.013
Off-peak 0.016 0.013 −0.160

Commercial On-peak −0.210 0.010 0.010
Mid-peak 0.010 −0.100 0.010
Off-peak 0.010 0.010 −0.100

4. Network Configuration

The test system used in this paper is a modified version of IEEE 33-bus. It is a radial
network with total peak demand of 3715 MW and 2.29 MVAr, 13.8 kV base voltage and
100 MVA base power [21]. To have a real situation, two consumer types are considered,
which are residential and commercial, as shown in the single-line diagram in Figure 5.
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Two equivalent photovoltaic generation systems with a total capacity of 792 KWp
are added at nodes 17 and 18 with a penetration level of 17% at each node to verify the
performance of the proposed methodology in a smart grid environment with renewable
sources. They are modeled with a unit power factor and inject only active power in the
system. Simulations are performed using real data collected from a PV system in operation
in the city of Belem, Brazil. Figure 6 shows PV generation and residential and commercial
load curves after its connection.
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5. Simulation Results

The performance of the proposed method is evaluated through simulations consider-
ing the following scenarios:

• Case 1: Flat tariff;
• Case 2: ToU tariff (White tariff);
• Case 3: Intelligent dynamic pricing (IDP).

Case 1 is the base case, which considers the conventional flat tariff and load curve of
Figure 3, where no DR program is implemented. In Case 2, energy demand is evaluated
in response to the White tariff combined with the price elasticity concept. In Case 3,
the proposed IDP method is applied to obtain a dynamic tariff, and energy demand is
evaluated in response to the new tariff considering price elasticity.

Simulations are conducted using MATLAB toolbox, and power flow simulations are
performed using MATPOWER toolbox [22,23]. The proposed methodology is applied
to the test system, and results are obtained considering both the original system and its
modified version with the integration of renewable energy sources. The demand response
is indicated separately, by the consumer side and by the utility side. Considering the
consumer side, the following technical aspects are analyzed: daily energy consumption
and average electricity cost. The utility side results are evaluated in terms of utility profit,
peak load reduction, and load factor (the average load divided by the peak load in a
specified period, indicating the efficiency of electrical energy usage).

5.1. Original System

Table 3 shows the results obtained for all three cases analyzed considering the original
test system. When consumers adhere to the ToU tariff (Case 2), the average electricity tariff
paid by customers slightly increases to BRL 0.7205, which is not favorable to them. On
the other side, energy consumption increases, indicating better quality of life for clients.
Utility profit increases to BRL 34,864.00, load factor increases to 0.74, and peak demand is
reduced by 5.28%. When the intelligent dynamic pricing method (Case 3) is applied, the
average electricity tariff paid by customers slightly reduces to BRL 0.6900, and the client’s
energy consumption increases. The utility also has advantages, such as greater profit (BRL
36,067.00), greater peak demand reduction (9.63%), and more efficient use of energy with a
greater increase in load factor (0.77). The proposed scheme is favorable for both utility and
consumers in all aspects, offering more attractive results when compared to flat and ToU
tariffs.
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Table 3. Simulations Results.

Case 1
(Flat Tariff)

Case 2
(ToU Tariff)

Case 3
(IDP)

Energy consumption (kWh) 47,125.67 48,170.00 47,391.28
Average tariff (BRL/kWh) 0.70 0.7205 0.6900

Load factor 0.69 0.74 0.77
Utility profit (BR:) 32,987.97 34,864.00 36,067.00

Peak load (kW) 2843.10 2692.80 2569.10

Figure 7 shows the impact of different tariffs on the total load curve. Results show
the ToU tariff (Case 2) causes the undesirable rebound effect, resulting in another peak
demand at 14:00 h. This effect is not observed with IPD, which only reduces peak demand.
Figure 8 shows electricity tariffs obtained applying the proposed method at buses 17 and 18,
which are residential and commercial customers, respectively. The proposed IDP scheme
generates electricity tariffs for each type of customer, commercial and residential. For
commercial consumers, electricity tariffs tend to be more expensive during peak hours,
which is around noon, differently from the ToU tariff, which has a fixed price for everyone.
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5.2. Renewable Energy Integration

In this section, the behavior of the proposed methodology is evaluated considering
the integration of renewable energy sources in the original system. Table 4 shows results
obtained for all three cases. Adopting the flat tariff, the connection of PV generation
reduces utility profit from 32,987.97 (see Table 1) to BRL 26,970.97, due to a decrease in
energy consumption from 47,125.67 (see Table 1) to 38,530.30 kWh. Since the availability
of PV generation does not coincide with demand peak hours, peak load is sustained at
2843.10 kW.

Table 4. Simulations Results with Renewable Energy.

Case 1
(Flat Tariff)

Case 2
(ToU Tariff)

Case 3
(IDP)

Energy consumption (kWh) 38,530.30 39,570.00 39,294.00
Average tariff (BRL/kWh) 0.70 0.7205 0.6857

Load factor 0.56 0.65 0.65
Utility profit (BRL) 26,970.97 30,084.00 31,067.00

Peak load (kW) 2843.10 2531.70 2520.70

The adoption of the ToU tariff reduces utility financial loss, increasing energy con-
sumption to 39,570.00 kWh and utility profit to BRL 30.084,00. The load factor increases
from 0.56 to 0.65, and peak demand is reduced by 10.95%. However, the average electricity
tariff paid by customers increases from 0.7 to BRL 0.7205. With the adoption of the proposed
dynamic tariff IDP, utility profits increase and peak demand reduction is more expressive,
achieving values of BRL 31,067.00 and 11.34%, respectively. The load factor increases to
0.65, equal to the ToU tariff, and energy consumption increases to 39,294.00 kWh. The
proposed solution offers customers an average electricity tariff cheaper than the flat tariff
and ToU tariff of BRL 0.6857.

Figure 9 shows the impact of different tariffs on the load curve when PV generation is
connected. The use of a dynamic tariff results in a flatter load curve profile without the
rebound effect. Figure 10 shows demand at nodes 17 and 18, in which PV generation was
installed in response to a dynamic tariff. Note that when PV generation is available (mostly
between 8:00 h and 15:00 h), the dynamic tariff is low for both commercial and residential
clients, acting as a consumption incentive during those hours. The dynamic tariff adapts
to the presence of PV generation and creates incentives to increase consumption when it
is available through cheaper tariffs, changing the costumer’s consumption profile. The
application of an intelligent dynamic tariff improves system performance and helps the
utility to postpone investments. Figure 11 shows active power flow is reduced in most
distribution lines, relieving congestion. Further, the system voltage profile is improved, as
shown in Figure 12.
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Figure 13 shows the boxplot of the proposed dynamic tariff, compared with flat and
ToU tariffs adopted in the Brazilian market. In the boxplot, the line dividing the box
indicates the median, the edges of the box show 25th and 75th percentiles of data, and the
‘whiskers’ extend to include all data. The variability of the dynamic tariff to each bus along
the day can be verified. Commercial customers have higher tariff variability during the
day when their demand is higher. This is caused by the predominance of flexible loads
(refrigeration) in these types of consumers [24]. These loads allow a bigger variation in
demand, which ends up influencing tariff values offered.

Energies 2021, 14, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 12. Voltage profile with PV generation. (a) Flat Tariff. (b) IDP. 

Figure 13 shows the boxplot of the proposed dynamic tariff, compared with flat and 
ToU tariffs adopted in the Brazilian market. In the boxplot, the line dividing the box indi-
cates the median, the edges of the box show 25th and 75th percentiles of data, and the 
‘whiskers’ extend to include all data. The variability of the dynamic tariff to each bus along 
the day can be verified. Commercial customers have higher tariff variability during the 
day when their demand is higher. This is caused by the predominance of flexible loads 
(refrigeration) in these types of consumers [24]. These loads allow a bigger variation in 
demand, which ends up influencing tariff values offered. 

 
Figure 13. Boxplot of an intelligent dynamic tariff with PV generation. (a) Residential. (b) Com-
mercial. 

5.3. Algorithm Convergence Discussion 
The proposed dynamic pricing uses a metaheuristic algorithm, and convergence is 

an especially relevant issue. It is important to conduct statistical performance evaluations 
to analyze the progress of the optimization process. Figure 14 shows the mean and vari-
ance of the best fitness function values over 300 generations for 100 experiments (10 trials 

Figure 13. Boxplot of an intelligent dynamic tariff with PV generation. (a) Residential. (b) Commercial.

5.3. Algorithm Convergence Discussion

The proposed dynamic pricing uses a metaheuristic algorithm, and convergence is an
especially relevant issue. It is important to conduct statistical performance evaluations to
analyze the progress of the optimization process. Figure 14 shows the mean and variance
of the best fitness function values over 300 generations for 100 experiments (10 trials of
each 10 different initial populations) obtained with the original GA and the proposed GA
with the mutagenic agent for comparison purposes. Both scenarios are considered: the
original system with and without the integration of PV generation.

Based on the simulation results, it is observed that the mutagenic agent has a strong
intensification effect that directs the population more quickly to the optimal solution,
introducing a bias in the population through good genes, reducing fitness function. The
proposed GA with the mutagenic agent reaches its optimal solution around the 250th
generation with a fitness function equal to 228, and further evolution of the population did
not show any significant improvement on the objective function, while the conventional
GA reaches fitness function equal to 314 after 250 evaluations. The proposed GA with
the mutagenic agent brings improvement on exploitation capability of conventional GA,
with positive results when applied to this problem, accelerating convergence and finding a
better solution.
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6. Conclusions

This paper proposed an intelligent dynamic pricing methodology for demand re-
sponse in distribution systems with the integration of renewable energy sources. An
elasticity concept is applied, and segmentation of the electricity market is performed based
on consumer type (residential and commercial). The proposed method was modeled as
a multi-objective problem, simultaneously optimizing demand fluctuation, the average
cost of electricity, and the client’s energy consumption. The genetic algorithm was applied
to solve the problem, and a novel operator called the mutagenic agent was proposed,
obtaining dynamic tariffs for each day hour and consumer type.

The results of the proposed dynamic pricing scheme are compared with two tariffs
adopted in Brazil: a flat tariff and a ToU tariff. Simulations were conducted in the IEEE
33-bus system, using demand and elasticity data from Brazil. According to the results, for
the supply side, the proposed dynamic tariff increased load factor and utility profit, and
peak demand reduced more significantly. A flatter demand curve was obtained without
the undesirable rebound effect. Further, the voltage profile was improved, and line flow
congestion was reduced. For the demand side, dynamic tariff resulted in a cheaper average
electricity tariff, increasing energy consumption. When PV generation was inserted in
the system, the results were favorable for both the utility and customer, indicating the
proposed dynamic tariff scheme facilitates the integration of renewable energy with a
win-win framework. Regarding the performance of the proposed algorithm, the results are
compared with the conventional GA and show the mutagenic agent significantly improves
the conventional GA, with better performance not only in terms of convergence but also in
terms of fitness function accuracy.
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