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Abstract: High-voltage direct current (HVDC) has received considerable attention due to several
advantageous features such as minimum transmission losses, enhanced stability, and control opera-
tion. An appropriate model of HVDC is necessary to assess the operating conditions as well as to
analyze the transient and steady-state stabilities integrated with the AC networks. Nevertheless, the
construction of an HVDC model is challenging due to the high computational cost, which needs
huge ranges of modeling experience. Therefore, advanced dynamic modeling of HVDC is neces-
sary to improve stability with minimum power loss. This paper presents a comprehensive review
of the various dynamic modeling of the HVDC transmission system. In line with this matter, an
in-depth investigation of various HVDC mathematical models is carried out including average-value
modeling (AVM), voltage source converter (VSC), and line-commutated converter (LCC). Moreover,
numerous stability assessment models of HVDC are outlined with regard to stability improvement
models, current-source system stability, HVDC link stability, and steady-state rotor angle stability.
In addition, the various control schemes of LCC-HVDC systems and modular multilevel converter-
multi-terminal direct current (MMC-MTDC) are highlighted. This paper also identifies the key issues,
the problems of the existing HVDC models as well as providing some selective suggestions for future
improvement. All the highlighted insights in this review will hopefully lead to increased efforts
toward the enhancement of the modeling for the HVDC system.

Keywords: dynamic modeling; VSC-HVDC; multilevel HVDC; stability; modular multilevel con-
verter; line commuted converter; control strategies

1. Introduction

The subject of power system dynamics and stability is a hot topic with a large volume
of documented literature [1–5]. In current years, the stability of power systems and energy
usage has stepped forward using a high-voltage DC (HVDC) energy transmission approach.
Since high-voltage AC (HVAC) has shortcomings related to high transmission loss, the
development of HVDC modeling and control methods can be employed in the power
transmission system to enhance the entire power system stability [6–9]. The advancements
in power electronics (PE) interfaced devices incorporated into energy systems support
the HVDC system with regard to efficient operations and control [10,11]. The modeling
of a PE-interfaced HVDC system decreases the modeling complexity and computational
burden in simulations. Moreover, HVDC is a regularly used technique containing lots of
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huge-scale power system components [12]. The traditional line-commutated converter–
high-voltage direct current (LCC–HVDC) transmission structures are broadly utilized in
the energy transmission because of the benefits of having the asynchronous AC grid link
and the ability of bulk energy transmission over an extended distance [13,14].

The various control schemes of VSC-HVDC and LCC-HVDC structures on small-
sign durability are explored in [15,16]. In line with that, the performance of control
techniques of VSC-HVDC is enhanced with multi-objective optimization [17,18]. The
control techniques on the inverter station of the LCC-HVDC system along with the effects
of a phase-locked loop (PLL) on small-signal stability are studied in [19]. The VSC-HVDC
system, with the impact of different reactive power control techniques on a small signal,
is analyzed [20]. It is reported that the stability of P-Vac command-based VSC-HVDC
illustrates high stability under vulnerable AC grids in comparison to the P-Q control
when reactive power is adjusted so that it will hold the preferred voltage [21]. A more
recent unique and encouraging technique is the dynamic phasor model, which includes
facts controllers and HVDC transmission structures [22]. The dynamic phasor design
can preserve the dynamic functions of power electronics devices (PEDs) by trimming
unnecessary higher-order elements and retaining just the considerable elements [23]. The
modular multilevel converter (MMC) has grown to be an attractive converter that is widely
applied in excessive energy storage as well as excessive voltage applications, especially for
VSC-HVDC systems [24]. The VSC (especially MMC) is more appropriate for constructing
DC grids through supplying more grid services [25] even though the line-commutated
converter (LCC)-based HVDC technology dominates in providing long-distance energy and
bulk electricity transmission [26,27]. Several LCC-based MTDC structures were explored
and analyzed in [14,28,29].

The HVDC transmission integrated with VSC has proven to be efficient in the power
transmission system; nevertheless, it has a shortcoming when a very weak AC signal is
interfaced with the DC system [30,31]. When a fault takes place in an HVDC transmission
system connected to the AC grid with a weak signal, it is challenging to deliver the reactive
power at the required level, resulting in a serious problem such as voltage distortion [32].
Additionally, the converter cannot work satisfactorily and hence exhibits slow recovery
and commutation failure. To overcome the aforesaid issues, numerous control schemes
of VSC-based HVDC systems have been reported in the literature. However, the control
operation of VSC-HVDC needs to be performed effectively to achieve accurate results
including converter output frequency, reactive power, and active power. Thus, several
HVDC models are introduced to improve the stability, reliability, and controllability under
different possible scenarios that might happen in the power system.

This article represents the diversity of models that are possible for HVDC systems and
applied to VSC HVDC system type studies. The multi-level form utilized in VSC valves
extends the amount of switching components in electromagnetic transient (EMT) studies
and makes the standard simulation methods ineffective [33]. From a DC Grid perspective,
full physics models, full detailed models, and models based on simplified switchable
resistance are not appropriate for DC grid operation studies. Full detailed models and
models based on simplified switchable resistance EMT models are utilized for HVDC LCC
system studies. Unique EMT simulation approaches (the detailed equivalent model) have
been promoted to support VSC MMC advancements [34]. The average value model and
phasor simulation models have advanced applications for VSC MMC valve arrangements.
However, in the diversity of MMC VSC converter topologies, the consistent control, and
power electronic interface can solve the simulation trouble into functional levels [35]. This
control hierarchy policy is already utilized in power electronic building blocks [36] and
may be extended to HVDC VSC. Table 1 shows several HVDC configurations with their
topology in addition to merits and demerits.
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Table 1. Summary of different HVDC models configurations and merits and demerits.

Types of
Models

MPWM
VSC HBMMC

HBMMC
&

PSPWM
FBMMC HHFB Merits Demerits

Full detailed
models and

models based
simplified
switchable
resistance

YES NO (EMT is almost negligible) NO

Computer capabilities
and numerical

techniques. Used to
validate simplified

models. Reduce
simulation time.

Simulation takes
several days to

simulate an event of
only a few seconds.
Cannot accurately
handle switching

losses. Large number
of electrical nodes to

solve.
Detailed

Equivalent
model

NA YES YES YES NO
Less computational

time; Limit number of
nodes

Drastically reduce the
time required to
simulate MMCs

Discretized
Average

value model
YES YES YES YES YES

This model is quite
fast because switching

need not to be
modeled.

N/A

Average
value model YES YES YES YES NO Switching harmonic

improves the accuracy.

Fundamental
frequency might be

sufficient.

Phasor
model YES YES YES YES YES

Performed with
time-domain or

frequency-domain.
All harmonics are

neglected.

Develop unbalanced
configurations due to
the dynamic behavior
after unsymmetrical

faults.

MLPWM: Multi-level PWM; HBMMC: Half bridge MMC; PSPWM: Phase shifted PWM; FBMMC: Full bridge MMC; HHFB: Hybrid half
and full bridge.

This paper aims to offer a detailed presentation of HVDC modeling, various assess-
ment models, control schemes, and related issues and limitations. The key contributions of
this paper are listed below.

• The model of HVDC models developed with VSC application and their precise control
strategies with numerous characteristics are explained in Table 2. Various kinds of
computational models for the simulation of VSC are described with their applicability
as it is the building block of future grids.

• In this paper, distinguished levels of dynamic HVDC models are explained thoroughly
to deliver a reliable stability estimation in complex mixed AC or DC systems. This
exhibits the trade-off between the correctness of dynamic responses and the complexity
of the HVDC dynamic models.

• Various control models have been studied in both single and multi-infeed including
LCC-HVDC and MMC-MTDC highlighting the execution process, strengths, and
weaknesses. Nevertheless, there are some methodological difficulties while imple-
menting the MMC to DC transmission system.

• Existing issues and limitations of HVDC modeling with regard to inverter, reactive
power, frequency, harmonics, and switching issues are highlighted.

• Based on existing constraints, future recommendations are provided for the devel-
opment of advanced HVDC modeling as well as further investigation of HVDC
preference in different levels of power and voltage applications.
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Table 2. Summary of various VSC models.

Type of
Model

Relative
Computing

Times
Type of Simulation Tools Type of Studies

Full Physics-Based Models N/A Circuit simulation tools Not suitable for grid studies

Full Detailed Models 1000 EMT
Comprehensive examinations of faults

in submodules; Applied to verify
simplified models

Models based on simplified
switchable resistances 900 EMT

Comprehensive examinations of faults
in submodules; Applied to verify

simplified models
Detailed Equivalent Circuit

Models 30 EMT Detailed studies of AC and DC fault
close to the converter

Detailed Equivalent Circuit
Models 2 EMT

Studies of AC and DC
transients—high-level control system

design-harmonic studies
Simplified Average Value

Models
1.5
0.1

EMT
Phasor domain Studies of AC and DC transients

RMS Load-Flow Models 0.01 Load-flow tools Power-flow

The article is arranged into six sections. The reviewing methodology is outlined in
Section 2. The overview of the modeling of the HVDC system is presented in Section 3. The
stability assessment models in HVDC are described in Section 4. The existing issues and
challenges are explored in Section 5. The concluding remarks and valuable suggestions are
highlighted in Section 6.

2. Reviewing Methodology

This review paper was written based on content analysis. The suitable articles related
to HVDC modeling were chosen using the three screening steps. The first screening and
evaluation was the literature survey where the related articles were selected using different
platforms such as Web of Science, Google Scholar, Scopus databases, IEEE Xplore, and
ScienceDirect. The results revealed that a total of 428 articles were found in the first
screening. The second screening was carried out using important keywords. Six keywords
were selected to search for suitable literature, which were high-voltage direct current,
average-value modeling, line commutated converter, Voltage Source Converter, Modular
multilevel converter, and multi-terminal direct current. In addition to keywords, we
considered article title, contents, abstracts, and novelty to find the relevant works. The
results indicated that a total of 284 articles were identified through the second screening.
The third screening was conducted based on the citations, impact factors, and the review
process. A total of 130 articles were found and analyzed, which were published in notable
journals, conference proceedings, books, and reports. These 130 articles were examined
in detail to deliver a critical review, analysis, and discussion relating to HVDC modeling,
stability assessment, control strategies, issues, and challenges. The schematic illustration of
the reviewing methodology is shown Figure 1.

The key analysis and results achieved are arranged through the three-screening process
into five groups. Firstly, various HVDC models were reviewed in detail. Secondly, the
stability assessment models of HVDC were highlighted. Thirdly, control schemes of
HVDC modeling were explored. Fourthly, numerous open issues of HVDC modeling were
identified. Lastly, the review offered some important proposals for future improvement of
HVDC modeling towards efficient energy transmission and management.
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3. Overview of Modeling of HVDC System

This section presents the various modeling concept of HVDC systems including
simplified HVDC modeling, the dynamic average-value modeling (AVM)-based HVDC
system, and the VSC-based HVDC model.

3.1. Simplified Modeling of HVDC Systems

Usually, various power electronic devices are utilized to operate the grid-integrated
offshore wind energy system. The wind technology is taken into consideration as a negative
load with a massive range of energy while in HVDC structures, each LCC and VSC is
considered as the constant energy loads associated with the rectifier and inverter [37]. The
sending end, the bus i, links the positive energy load where the electricity is transferred
for DC operation from the grid. In contrast, the receiving end, bus j, connects the negative
energy load where the energy is converted to AC mode from DC mode. The connection
among active energy at the transmitting and receiving end may be defined as pi = − pj.
Figure 2 presents a simplified injection model of an HVDC system where indexes i and
j stand for transmitting and receiving end buses [38]. The AC voltage value and voltage
angle are denoted by U and θ, respectively. The active energy and reactive energy are
characterized by P and Q, respectively, at every bus.
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3.2. Dynamic AVM of HVDC Systems

This section narrates the dynamic modeling of HVDC structures, features including
LCC-HVDC and VSC-HVDC. Figure 3 presents the dynamic modeling of the HVDC
structure, which is used to describe the steady-state and transient characteristics of various
currents [39]. The inverter current control is used to control the energy based on the current
margin (Idc_ref–Imargin), which is assigned to 0.1–0.15 pu. The control operation between DC
current and DC voltage is functioned using a current error control (CEC), which is further
used to inject the extinction angle control and DC current control [40,41]. The inverter
operation at the minimal extinction angle is performed by the inverter control mode to
reduce the reactive energy dissipation and harmonic level [42].
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(1) VSC-HVDC MODEL
The VSC-based HVDC system has provided numerous benefits in comparison to LCC-

HVDC including harmonic content material, impartial control of active and reactive power,
and limited black-start functionality [43–46]. The functional capability of VSC-HVDC is
explained using a half-bridge modular multilevel converter (MMC) [47–49]. Generally,
an array of sub-modules (SMs) is used to design a half-bridge MMC-based VSC-HVDC
system, which is connected in series to every converter arm, as depicted in Figure 4 [50].
Every SM is designed using a half-bridge converter with insulated-gate bipolar transistors
(IGBTs) and one parallel capacitor. The CIGRE recommendations are used to build the
dynamic version of a half-bridge MMC-HVDC system [51]. The VSC-HVDC under the
dynamic AVM exhibits advantages such as it does not include switching consequences,
harmonics, and power stability [52]. The operation in every SM follows the executions of
the stage half-bride converter. The output voltage (Vsm) equals capacitor voltage when the
SM is attached or bypassed. However, the output voltage is 0 when SM is passed. The AC
voltage waveform is generated with the support of sequentially switching series-linked
SMs [53,54]. The AC voltage at the converter terminal is controlled by varying the voltages,
which is expressed using (1).

Va =
Vla −Vua

2
− Larm

dIa

dt
− Rarm

2
Ia (1)

• Mathematical modeling of VSC HVDC

The mathematical modeling of VSC HVDC is shown in Figure 5 [55]. The dynamic
equations of the inverter in per unit (pu) are expressed in (2) and (3). The inverter filter and
grid are shown in (4) and (5), respectively, in whichωb andωg denote the base angular
grid frequency and grid frequency in pu, respectively.

diL
dt

=
ωb
LC
− vCV −

ωb
LC

v0 −
(

RC
LC

+ jwg

)
iL (2)

dvdc
dt

=
ωb
Cdc

idc,line −
ωb
Cdc

idc (3)
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dv0

dt
=

ωb
C f

iL −
ωb
C f

i0 − jωbωgv0 (4)

di0
dt

=
ωb
Lg

v0 −
ωb
Lg

Vg −ωb

(
Rg

Lg
+ jωg

)
ig (5)
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Figure 5. Structure of the VSC-based HVDC converter connected to the AC system.

The modeling, evaluation, and control operation can be provided in a synchronous
reference frame (SRF). The transformation of the three-section quantity from the stationary
reference frame to SRF is primarily based on the amplitude-invariant Park transformation,
with the d-axis aligned with the voltage vector v0 and q-axis main the d-axis through
90 degrees. Accordingly, energy stability constraints among DC and AC links can be
performed using the following formula.

idcvdc = iLdvcvd + iLqvcvq (6)

• Types of VSC HVDC Models

This section focuses on the description of different types of computational models
for the simulation of VSC for future DC grids. Several types of electromagnetic-transients
(EMT) and phasor models can be designed depending upon the time frame of aspects being
investigated on the DC grid. A summary of the character of those models is illustrated
beside their applicability.

Type 1: Type 1 refers to the full physics-based models that uses the incomplete
differential mathematical expressions that can be applied to design a lumped in IGBT
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applications. In [56], a complicated IGBT sub-circuit is recommended and analyzed toward
a limited component design. Those complicated designs can correctly signify switching
losses; nevertheless, they need notably small-time steps for the reason that the switching
function happens across a remarkably precise duration. Although Type 1 models might
also allow excellent correctness, these models are not normally utilized for simulations in
energy system because of extreme computing duration demands.

Type 2: Type 2 denoted the detailed nonlinear IGBT-based model that forms the
IGBT valves by utilizing a perfect controlled switch, two imperfect diodes, and a snubber
circuit, as displayed in Figure 6 [57]. The imperfect diodes are represented with nonlinear
resistances applying the standard V-I curvature of a diode. The nonlinear component can
be modified in step with the manufacturer record.
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Type 3: Type 3 presents the simplified IGBT-based model that integrates the IGBT 
device and its anti-parallel diode. This structure operates under a bidirectional switch 
with the aid of two-state resistances RON and ROFF. Therefore, R1 and R2 values rely upon 
signals, the current path, and the capacitor voltage, as shown in Figure 7 [57]. 

Figure 6. (a) Illustration of a nonlinear IGBT valve. (b) Diode V-I characteristics.

Type 3: Type 3 presents the simplified IGBT-based model that integrates the IGBT
device and its anti-parallel diode. This structure operates under a bidirectional switch
with the aid of two-state resistances RON and ROFF. Therefore, R1 and R2 values rely upon
signals, the current path, and the capacitor voltage, as shown in Figure 7 [57].
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Type 4: Type 4 depicts the detailed equivalent-circuit-based model that uses the simple
circuit with the required modification. This type of configuration is built using a Thevenin
equivalent for every arm of the converter without considering the inner central nodes [58].
The equivalent circuit supports decreasing the computational execution of the model.

Type 5: Type 5 presents the AVM based on switching functions that applies the MMC
function to control voltage and current supply. In this layout, the IGBT is not perfectly
expressed. The current possible AVM pretends that each one of the inner variables inside
the MMC is correctly managed, every SMs capacitor voltage is stable, and the circulating
currents in the second harmonic under every phase are contained. Consequently, the
balancing control algorithm (BCA) and circulating current suppression control (CCSC)
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blocks are eliminated. Depending on the procedure [37], the resulting equalizations are
determined for every phase j, as expressed in the following equations

vuj =
vdc
2
− Larm

diuj
dt
− vj (7)

vl j =
vdc
2
− Larm

diuj
dt

+ vj (8)

where j = a, b, c. The higher and lower arm currents can be written in the following equation
considering the value of circulating current is predicted to be zero,

iuj =
Idc
3
−

ij

2
, il j =

Idc
3

+
ij

2
(9)

The combination of (7) and (8) results in

vuj = econvj +
vdc
2

, vl j = −econvj +
vdc
2

(10)

where econvj =
(

vuj − vl j

)
/2.

The current representing the converter loss is expressed as follows,

Iloss = Ploss/Vdc = Rloss
(

I′dc
)2/Vdc (11)

The equivalent resistance of MMC is denoted by Rloss, which includes resistive and
switching losses. The equivalent DC current is indicated by I′dc, which contains converter
losses. The expression for DC current is determined from (12),

Idc = I′dc − Iloss (12)

A series diode is connected on the DC-side design of the AVM to force the DC current
flow route.

Type 6—RMS Load-Flow Models—Load flow models will apply steady-state con-
verter outputs. The specific transients are not modeled and the HVDC system lessens to a
model of its steady-state output values [59,60].

Table 2 summarizes calculation speed performances of various VSC models and the
types of studies and the corresponding tools.

(2) Line-Commutated Converter-Based HVDC
The design of a monopolar LCC-HVDC system, related to the primary CIGRE HVDC

system, is presented in Figure 8 [22]. Filter banks and associated transformers are interfaced
with the HVDC converter blocks to the AC side at the inverter and rectifier. The AC side
operations are executed by Thevenin circuits, which are defined using the useful short-
circuit ratio (ESCR). The harmonized (11th and 13th harmonics) and high-pass filters
eliminate more leading frequency components as well as provide the expected reactive
power of the converters, leading to a lagging power factor at each end.

• Control Strategies Of LCC-HVDC Systems

The various control variables blocks are applied, such as the inverter current con-
troller, the inverter, the gamma controller, and the rectifier current controller as denoted
in Figure 9 [22]. Generally, the rectifier controls the DC side current, while the inverter
controls the extinction-angle [39,61,62]. The rectifier and inverter control operations are
defined by proportional-integral (PI) controllers running upon the DC current and the
inverter extinction angle. The voltage-dependent current order limit (VDCOL) decreases
the DC current order while AC voltage is used to defend the valves. Although HVDC
models include active power and reactive power, the control procedures within the HVDC
models are diverse and complicated. The various control schemes of the HVDC model are
presented in Table 3.
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Table 3. Comparative study of various control strategies of HVDC.

No Control
Classification Execution Merits Demerits Ref

1. Voltage Controller
Straight control power

angle, overactive power,
as well as reactive power.

Manageable and simple
method.

Reactive and active power
cannot be managed

autonomously.
[63,64]

2. Vector Current
Controller

The d-q axis based
steady-state method to

manage active and
reactive power.

Active dynamic reaction.
Performs more reliable
energy features under

harmonics and grid
disruptions. Defends

toward overcurrent fault.
Can repay grid harmonics.

Cannot limit the converter
current leading to poor

execution under a
vulnerable AC side.

[65,66]

3. Advanced Vector
Current Controller

Outer loop control
operation including four

decoupling
parameter-varying

operation and subdued
system non-linearity.

More reliable
handleability to

communicate with very
vulnerable AC grids.

Neglects the asymmetrical
fault as well as any

unexpected turn while
grid regulation.

[67,68]
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Table 3. Cont.

No Control
Classification Execution Merits Demerits Ref

4.
Power

Synchronization
Controller

Uses a phase angle and
voltage value to manage

active power and reactive
power, respectively

without PLL to manage
the energy

synchronization.

Can support synchronism
among VSC and AC
systems. Reduces the

viable instability due to
PLL whilst correlated to a
vulnerable AC system. No

requirement to have a
pre-set current system as

well as rely upon an
internal current loop.

Higher current at the
converter valves at some
point of the extreme AC

side fault incidence.
Massive load angles

whilst it is far internally
connected to an ineffective

AC side.

[69,70]

5. ABC Frame
Controller

ABC block base VSC is
assigned without a PLL

system. The point of
coupling (PCC) is

employed to control active
and reactive power.

VSC-HVDC provides
excellent synchronization

without the reference
output current, feedback
currents lag and adaptive

filter under inadequate
AC networks and the grid

voltage frequency
variation.

Complex formation and
regulation to regulate

active and reactive power.
[71,72]

6. Voltage Droop
Controller

Employs the droop
parameters to examine the

steady-state operation
using the inner loop
controls current and
external loop voltage
controls DC voltage.

Lessen the impact of DC
voltage disturbances.

Reference current control
ought to differ in an

immediate shift at some
stage in grid procedure.

[73,74]

7.
Adaptive Back

Stepping
Controller

The DC cable dynamics
are used to obtain a fixed

rate DC bus voltage.

The voltage overshoot in
grid integrated wind farm
is reduced resulting in an
improvement in the DC

voltage controller
performance.

Does not consider
uncertainties that

influence the whole
operation execution.

[75–77]

8. Flexible Power
Controller Method

Manage the active and
reactive power

autonomously. Standard
adaptive current limiter to
approach the pre-placing

current obstacle.

Steady voltage inside the
HMIDC operations by

means of the adjustable
power control at the

VSC-HVDC connection.

No count of AC side
dynamics as well as load

effect.
[78,79]

9.
Proportional

Integral Decoupled
Control

Utilizes most effective
parameters in the PI
compensators within
several handle loops.

Improves dynamic
performance significantly.

Does not reflect the energy
failures of the transformer,

the grid filter, as well as
the converter.

[80,81]

3.3. Dynamic Phasor Model of HVDC System

The HVDC transmission power system is structured using the inverter, rectifier,
and DC transmission line. The design of a single-pole HVDC system is depicted in
Figure 10 [82]. The switching functions under switching OFF and switching ON describe
the three forms of valves in HVDC converters. The time-domain representations of the
rectifier of the HVDC operation are expressed in the following equations,

Vmn = Vdr = (VraSrv1 + VrbSrv3 + VrcSrv5)− (VraSrv4 + VrbSrv6 + VrcSrv2) (13)

ira = i1 − i4 = idSri1 − idSri4 (14)

irb = i3 − i6 = idSri3 − idSri6 (15)
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irc = i5 − i2 = idSri5 − idSri2 (16)

(2Ld)
did
dt

+ rdid = vdr − vdi (17)

Svr1 =

∣∣∣∣∣∣∣∣∣
1/2[α + 2kπ, α + γ + 2kπ]

1[α + δ + 2kτ, α + 2π3 + 2kπ]
1/2[α + 2π3 + 2kπ, α + γ + 2π3 + 2kπ]

0[α + γ + 2π3 + 2kπ, α + 2(k + 1)π]

(18)

Sri1 =

∣∣∣∣∣∣∣∣∣∣
θ − α/

γ
[α + 2kπ, α + γ + 2kπ]

1[α + γ + 2kτ, α + 2π3 + 2kπ]

1−
θ−α−2π/

3
γ [α + 2π3 + 2kπ, α + γ + 2π3 + 2kπ]

0[α + γ + 2π3 + 2kπ, α + 2(k + 1)π]

(19)
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Figure 10. Dynamic phasor diagram of the HVDC system.

4. Stability Assessment Models in HVDC

The voltage regulation within the V-F control loop to improve the stability in the
HVDC system is shown in Figure 11 [83]. A digital control of VSC-HVDC is employed to
reduce the uncertainty of the potential oscillation without improving the advance of the
basic material [84].
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Figure 11. The voltage regulation in the V-F control loop.

The circulating current suppressor, PLL, and the current vector controller in the outside
loop have substantial influences on the impedance feature within the low-frequency band.
The improved proportional accretion kpv of the AC voltage regulator in the external loop
decreases the impedance peak value of the VSC-HVDC operation, resulting in a reduction
of the impedance peak value of the impedance ratio.
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4.1. Control Strategies of MMC-MTDC

Two control tasks are considered to control the VSC-MTDC systems properly and
efficiently. The first one is the DC voltage control and the second one is the AC-side
auxiliary control. DC voltage control is utilized to maintain the DC grid system. The DC
voltage of the converter can balance the active power and manage the power flow in the
DC networks [85,86]. The existing control strategies of the VSC-MTDC systems are suitable
for MMC-MTDC operation.

(a) DC Voltage Control—the commonly used control architecture of a VSC in the MTDC
systems is shown in Figure 12, which consists of inner and outer control loops [87].
This control scheme is also applicable to the MMC-based converter station. The DC
voltage control is implemented through the outer control loop. Unlike the frequency
of the AC system as a global control parameter, the DC voltage varies in the DC
grid due to the power flow regulated among bus voltages of the DC network [88].
Currently, there are three primary methods for DC voltage control: Voltage margin
control, master–slave control, and voltage droop control [89,90].

(b) Power flow—the power flow and sharing of the VSC-MTDC systems is controlled
by the DC voltage of each terminal, as shown in Figure 13 [87]. It is essential to
consider the stability region, the limitation, and the optimal parameter determination
of voltage control approaches to calculate the power flow and sharing. In [91], a power-
sharing control strategy and DC voltage are introduced based on a combination of an
optimal DC power flow algorithm and a voltage-droop method for the most effective
execution of the MTDC grids. Work by [73] proposes an improved analytic model
for the steady-state analysis of droop-controlled VSC-MTDC operations. The authors
in [92] suggested a generalized algorithm to solve the DC-power flow of the MTDC
operations with various nonlinear voltage droops.

(c) Power Oscillation Damping—MTDC systems can also allow further control func-
tions to develop system dynamic execution, such as transient stability and fault
recovery [25], power oscillation damping [93], and sub-synchronous damping im-
provement [94]. The occurrence of low-frequency inter-area power oscillations is
common in energy systems [95], which has resulted in some extensive-scale black-
outs [96]. The inner-vicinity oscillation is one of the central causes of power system
failure [97–99]. The damper windings of the synchronous machines, as well as digital
electro-hydro structures without global signal computation, can reduce the inner-
vicinity oscillations efficiently [68,100]. Thus, the attenuation of the inner-area power
oscillations is important and has remained a challenge for a long time. Table 4 lists
the details of some multi-terminal HVDC projects.

Table 4. Multi-terminal HVDC systems throughout the arena.

Systems Name Terminal Investing Year Estimated
Potential (MW)

Estimated DC
Voltage (kV) Converter Sample

Quebec-New
England 5 1990–1992, 2016 138/690/690/1,250/2,

800, 2, ±450 LCC

Nan’ao 3 2015 50/100/200 ±160 MMC
Zhoushan 5 2016 100/100/100/400/300 ±200 MMC

North-East Agra 4 Under planning 6000 ±800 LCC
Zhangbei 4 Under planning 3000/3000/1500 ±500 MMC

Italy Corsica
Sardinia (SACOI) 3 1967, 1988, 1992 200/50/200 +200 LCC
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4.2. Small Signal Stability

The small-signal stability of the dynamic power system can be described properly
through the utilization of the eigen analysis under the eigenvectors and eigenvalues of the
system state matrix. The differential-algebraic equations (DAEs) of energy usage can be
expressed as follows.

The small-signal stability of the dynamic power system can be described properly
through the utilization of the eigen analysis under the eigenvectors and eigenvalues of the
system state matrix. The differential-algebraic equations (DAEs) of energy usage can be
expressed as follows:

.
x = f (x, y) (20)
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0 = g(x, y) (21)

The state variables and algebraic variables are denoted by x and y, respectively. The
steady-state balance operation with the equilibrium factor is defined using the primary
linearization as written in Equations in (22) and (23).[

∆
.
x

0

]
=

[
A B
C D

][
∆X
∆Y

]
(22)

After excluding the algebraic variables, Equation (21) becomes

∆
.
x =

(
A− BD−1C

)
∆X = Ã (23)

Equation (22) is the representation of the damping of the oscillatory forms, the fre-
quency, and the actual eigenvalues resemble non-oscillatory methods. The proper eigen-
vector of a specific style provides the mode configuration, which gives the corresponding
action of the state variables. If one of the eigenvalues has a positive real part, the method is
unbalanced [101].

4.3. Stability Improvement Models

With the advancement of HVDC transmission technology, two or more HVDC systems
can be fed into one AC side with the converters located nearby. Due to the diversification
of the DC system control and operation, the difficulties of various multi-infeed HVDC
systems are required to be investigated [102–105].

(1) Voltage Stability
For the investigation of voltage stability in the HVDC system, the slip of the dy-

namic load equivalent induction motor and the change ratio of the on-load tap switching
transformer is required [85]. The voltage stability relationship ratio is shown in (23)

ρi =

∣∣∣∣∣∣∣∣∣
∑ Pki

Xk ∈ (∆S, ∆T)

∑ Pki
Xk /∈ (∆S, ∆T)

∣∣∣∣∣∣∣∣∣ (24)

where T is the conversion ratio of the transformer and s is the slip of the induction mo-
tor load.

The equipment of HVDC converter stations needs considerable measures of reactive
power in the replacement process. In a typical situation, the specified reactive power on the
rectifier side is 30–50% DC transmission power, in comparison to 40–60% on the inverter
side. The voltage instability could take place due to the absence of reactive power, thus the
HVDC system with vulnerable AC operation is one of the issues that can cause voltage
instability [106–108]. The mathematical representation of the voltage stability correlation
ratio (VSCR), without recognizing the dynamics of the on-load tap changer (OLTC), can be
written as follows,

ρi =

∣∣∣∣∣∣∣∣∣
∑ Pki

Xk ∈ (∆S, ∆α, ∆γ)

∑ Pki
Xk /∈ (∆S, ∆α, ∆γ)

∣∣∣∣∣∣∣∣∣ (25)

where γ denotes the extinction angle of an inverter and α presents the conduction angle of
the rectifier.

In the real energy operation, if the eigenvalue λi converges ρi > 1, where the λi has a
meaningful relationship with voltage stability, then Pki is a means of the support of the state
variable Xk in the ith voltage variation mode. The Pki by magnitude is a crucial component,
which influences the voltage balance of the multi-infeed HVDC scheme.

(2) Harmonic Stability
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MMC energy frame is built primarily based on the harmonic linearization technique
that is connected to the AC link with sinusoidal voltage perturbation at frequency fp as
displayed in Figure 14 [109].
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Here, phases are the voltage beside a meager voltage perturbation at frequency fp
formulated as [110],

va(t) = Va cos(2π f1t) + V̂p cos
(
2π fpt + ϕp

)
(26)

The harmonic linearization approach is employed to obtain the converter impedance
and exhibits numerous benefits, especially related to forming the dq-coordinate system.
The steady-state operation trajectory can add the number of harmonics that it wants. The
estimated impedance has visible versions and is instantly regulated [111] considering that
the comparable switching frequency is large, while the capacitor voltages of submodules
are always adjusted [112,113]. The small-signal design of the MMC energy level is achieved
through the harmonic linearization using the higher arm of the phase [114].

Z1 l̂au = −v̂p −Mauûau − m̂auuau (27)

Ycûau = Mau l̂au + Iaum̂au (28)

The delivered voltage perturbation will head to a sequence of small-signal harmonic
elements at frequency fp ± kf1, where k = 1, 2 . . . n. Though it is hypothesized that the
infinite harmonics are produced, the harmonics at fp± kf1 will decrease drastically with
the increment of k. The third harmonics frequency in the MMC model f1 is enough to
examine the dynamic characteristics [115,116]. Accordingly, the harmonics up to fp ±
3f1 are analyzed in all variables to adjust the precision of the model and the difficulty of
the analytical performance. The small-signal harmonics elements such as frequency level,
order, and functional mode under the negative-sequence and positive-sequence voltage
perturbation integrated with the MMC AC link are presented in Table 5.
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Table 5. Small-signal harmonics elements including frequency, order, mode of operation, and voltage perturbation sequence.

Frequency Order Mode Voltage Sequence in MMC AC Link

fp − 3f1 positive Common Mode

Positive Sequence

fp − 2f1 Negative Differential Mode
fp − f1 zero Common Mode

fp positive Differential Mode
fp + f1 Negative Common Mode
fp + 2f1 zero Differential Mode
fp + 3f1 positive Common Mode

fp − 3f1 Negative Common Mode

Negative Sequence

fp − 2f1 zero Differential Mode
fp − f1 positive Common Mode

fp Negative Differential Mode
fp + f1 zero Common Mode
fp + 2f1 positive Differential Mode
fp + 3f1 Negative Common Mode

(3) Current-Source System Stability
The voltage-supply operation durability hypothesizes that the reference is a voltage

supply with constant voltage control within the open-circuit states without any load
connected. Nevertheless, for grid-integrated inverters, they may usually be regulated to
include specific current inside the grid, thus the voltage supply hypothesis will no longer
be accurate. Accordingly, the current supply operation durability is introduced in [111]
wherever the supply subsystem is presented as a current supply in correspondence with
its output impedance. In Figure 15 [117], the current supply subsystem is presented as a
current supply in correspondence with its output admittance Ys and the load is formed
through its input admittance Yl. The balance of such a system needs the admittance ratio
Ys/Yl that meets the Nyquist stability criterion [111]. One utilization for such a balance
criterion is grid-linked inverter structures, wherein the load impedance is substituted by a
voltage supply in series within the grid impedance [118].
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(4) HVDC Link Stability
The rectifiers and inverters control the current and voltage of the DC side under HVDC

operations. Usually, the rectifier functions in the DC command mode and the inverter
control operation in DC bus voltage are executed simultaneously. The traditional phasor-
based state-space systems are accurate under the fundamental frequency that is utilized
in the aforementioned impedance-primary-based stability study. The logical impedance
standards are applied for the rectifier and inverter, as explained in [119]. The voltage-
supply method stability evaluation might be utilized using the DC bus impedance and the
rectifier output impedance.

(5) Steady-State Rotor Angle Stability
The reactive power compensators are installed at the mid-point of a lengthy transmis-

sion line to develop the power transfer capacity. The name transfer capacity here indicates
the maximum power transfer among two AC systems, which is restrained by steady-state
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rotor angle stability. Figure 16 shows the simple two-machine system where the reactive
power compensator is placed on the mid-point of the transmission line [120]. The voltage
phasor at the sending end and the receiving end are assigned to be V/(δ/2) and V/(−δ/2),
respectively.
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When there is no compensation, the power transfer is,

P0 =
(

V2/X
)

sin δ (29)

The maximum power transfer without compensation is,

Pmax0 =
(

V2/X
)

(30)

When a dynamic reactive compensator is installed, the mid-point voltage can be
controlled and then the power flow on the transmission line becomes,

Pc =
(

V2/X
)

sin(δ/2) (31)

The transfer limit discussed above is the background of a steady-state condition.
Before the reactive power reaches the maximum value, the maximum power transfers are
identical for all kinds of reactive power compensators, as shown in Equation (30). When the
reactive power requirement exceeds the limit of the compensators, the mid-point voltage
can no longer be maintained as a constant. The different compensators have different
amounts of reactive power according to the reduced voltage. Therefore, the maximum
power transfers will be different when different compensators are used.

5. Issues and Challenges

Although HVDC has received widespread attention in the power transmission system,
various issues could hamper the grid operation including various faults, harmonics, reac-
tive power, switching frequency, and voltage stability limitations. Moreover, the converter
has some issues related to current and voltage stress and power dissipation. Furthermore,
the choice of appropriate parameters in the controller is crucial because inappropriate
parameters may lead to an imbalance that may influence operational performance and
efficiency. Besides, many difficulties could happen whilst VSC-HVDC is integrated into a
vulnerable AC system. Therefore, the abovementioned constraints need to be addressed in
designing an effective model of the controller in the HVDC system. Some of the key issues
and limitations of HVDC are outlined below.
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• When the obstruction in DC energy transfer takes place, reactive power consumption
through the converter will fall to 0. Therefore, the AC voltage might be developed
because of the shunt capacitor and harmonic filter. These phenomena can demand
excessive insulation of material within the operation, otherwise this material could
probably be destroyed due to the overvoltage [108,121].

• The direct current may be raised to revive the method to register energy. Therefore,
the firing angle on the inverter may even improve to sustain the commutation edge.
Reactive power by the inverter is improved by the shunt capacitor leading to a drop
in AC voltage [122,123].

• Since harmonics are produced by the converter current at the AC link as well as
the converter voltage at the DC link, harmonics generated through the DC side
are enhanced whilst the DC energy release is improved [124]. Having said that,
the energy transfer between AC and DC within the converter produces unusual
harmonics although the pulse firing system is under control. It becomes a more
serious issue when those unrepresentative harmonics damage the resonant networks,
causing the operating status of the HV DC/AC operation to become complex [125,126].
The moderate harmonic resonance at the AC link would possibly generate further
due to the DC link series resonance on the primary frequency, leading to critical
difficulties [127,128].

• Due to the switching among the shunt capacitor, the shunt reactor is rapidly under
varying load conditions, and voltage variations may appear, which result in AC
voltage flicker [129]. Moreover, voltage flicker takes place due to the inner harmonic
generation through the change in loads. The influence of inner harmonics is more
complex than harmonics. The inner harmonics frequencies are not integer multiples of
the primary frequency, and the value of the voltage waveform would possibly swing
even within the position of waveform distortions [130].

6. Conclusions and Recommendations

This review presents comprehensive information and analysis of HVDC modeling
concentrating on the dynamic models, assessment models, control schemes, and limita-
tions. As a first contribution, the review discusses the detailed insight into various HVDC
models, emphasizing simplified modeling, the dynamic AVM, the VSC-based HVDC, the
line-commutated converter, and the dynamic phasor model. The types, configurations,
mathematical representation, computing times, simulation, and various tools are high-
lighted. As a second contribution, this review narrates the different HVDC assessment
models focusing on stability analysis, HVDC link stability, and steady-state rotor angle
stability. The voltage stability, harmonic stability, and current-source system under stability
improvement models are also discussed. As a third contribution, the control strategies of
LCC-HVDC and MMC-MTDC are explored denoting operations, benefits, and shortcom-
ings. As a fourth contribution, the key issues and problems that are identified related to
the inverter, reactive power, harmonics, switching, and frequency are discussed. As the
fifth contribution, this review proposes some recommendations for the advancement of
HDC modeling, as follows:

• The VSC-HVDC has synchronization issues while connected to a vulnerable AC
system. Aside from interfacing with a limited AC operation, the VSC-HVDC-based
adaptive backstepping controller is applied to handle voltage droop in the offshore
wind farm. The adaptive back-stepping controller is employed to decrease the voltage
rise as well as the minimal voltage drop at some point of a fault situation, leading to
an improvement in voltage output with the diminished settling period. To address the
aforesaid concerns, a PI controller and a fuzzy controller can be employed to stabilize
the network operation.

• The selection of appropriate controller parameters is crucial to enhance the stability
performance of the VSC-HVDC transmission system. Hence, the different optimization
algorithms can be integrated with controllers such as PI and fuzzy logic. Nevertheless,
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the inclusion of optimization may increase the installation cost as well as commutation
loss. Since the operation of VSC is constrained under limited voltage and power
levels, further studies are required on VSC-HVDC under different levels of voltage
and power.

• The very specific DC operations still pose various severe restrictions to the scope of
the network. Thus, the advancement of hybrid models can be suggested including a
complete EMT design of the DC operation and the AC operation within the era of the
converter, connected to a preferred electromechanical version for the remainder of the
AC system. Such connected methods are in a situation of continuous study and will
operate an influential part of incoming energy system modeling for dynamic AC/DC
operation.

• For large-scale power systems, further effective models need to be improved with
active simulation acceleration. Nevertheless, the models are required to simulate state
variables correctly with a small-time step under dynamic responses leading to a high
computational load. Consequently, there is a tradeoff between precision and effec-
tiveness. The future control strategy of the MMC-MTDC systems can be developed
using droop control to improve the performance in both AC and DC structures by
addressing the converter outages and power oscillations. Multi-functional control
configurations could assure an effective control plan of the MMC-MTDC systems.

• The abovementioned recommendations could play remarkable roles in developing
and executing advanced HVDC models. Moreover, the information and analysis of
this review can deliver a clear idea and information to power system engineers and
researchers on the HVDC model structure, assessment models, and control schemes.
Overall, this review helps to pave a pathway for future sustainable power transmis-
sion systems.
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