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Abstract: This paper presents a statistical model for predicting the time-averaged total power
consumption of an indoor swimming facility. The model can be a powerful tool for continuous
supervision of the facility’s energy performance that can quickly disclose possible operational
disruptions/irregularities and thus minimize annual energy use. Multiple linear regression analysis
is used to analyze data collected in a swimming facility in Norway. The resolution of the original
training dataset was in 1 min time steps and during the investigation was transposed both by
time-averaging the data, and by treating part of the dataset exclusively. The statistically significant
independent variables were found to be the outdoor dry-bulb temperature and the relative pool
usage factor. The model accurately predicted the power consumption in the validation process,
and also succeeded in disclosing all the critical operational disruptions in the validation dataset
correctly. The model can therefore be applied as a dynamic energy benchmark for fault detection in
swimming facilities. The final energy prediction model is relatively simple and can be deployed either
in a spreadsheet or in the building automation reporting system, thus the method can contribute
instantly to keep the operation of any swimming facility within the optimal individual energy
performance range.

Keywords: swimming facilities; energy prediction; fault detection; multiple linear regression analysis

1. Introduction
1.1. Background

The EU has defined a target for reducing GHG emissions by at least 40% by 2030
compared to 1990 levels [1]. Their long-term goal is defined as “no GHG emissions” by
2050 [2]. Increased energy efficiency in buildings is defined as an important tool for both
the short term and long term [3]. One of the “key actions” in the Action Plan related to the
2030 framework is a “renovation wave” of the existing building stock [2].

Within the “renovation wave”, the European Commission recommends paying par-
ticular attention to energy-reducing refurbishment in types of buildings that support
education and public health, such as schools and hospitals [2]. In swimming facilities,
which support education and public health, the potential for energy reduction is consider-
able [4] and the literature associates these facilities with high specific energy use [5] and a
large dispersion in energy use. The specific energy use ranges from 400 kWh/(m2·a) to
almost 1600 kWh/(m2·a) [6–9]. This can be partially explained by the variations in age,
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technology and the different maintenance routines [7], but the numbers also represent
a large energy saving potential [7]. Regarding the building stock of swimming facilities
in Norway [6], the overall excessive energy use is estimated to be 28%. This provides a
considerable incentive for improvement initiatives.

1.2. Motivation

Since the energy consumption of any building is highly dependent on the operational
phase [10], particular attention has to be given to providing optimal operation [11]. Here,
both behavioral and operational management are important [12]. It is crucial to emphasize
the importance of well-trained and qualified operating personnel [13], especially in build-
ings with extensive technical installations like swimming facilities [13]. However, this is
not always the case [14], and even with skilled operating staff, it is a considerable task to
run a facility that has satisfactory performance. In the case of non-skilled operating staff,
the performance of the facility is vulnerable if there is improper operation and possible ex-
cessive energy use and low indoor environmental quality. The complexity of the operation
increases if there are more and more technical components [15]. In addition, during the
operation phase, such factors will degrade the building and the technical systems, and the
performance of the building will be lower than when it was commissioned [16]. This
may lead to a poor indoor environment and increase the energy use. For buildings with
extensive technical systems, such as swimming facilities, multiple operational interrup-
tions may conceal other malfunctions and make it difficult for the operating staff to find
them. The result is a building with low overall performance compared to the design level.
This means that there is a need for strict holistic control and a supervision system for the
performance of the building.

Ruparathna et al. [17] proposed a rating system for public buildings based on a level
of service (LOS) index. This index is a qualitative measure that is traditionally used to
compare the quality of motor vehicle traffic services. When applied to public buildings, the
LOS index indicates the level of operational performance provided to building users, society
and the environment, based on the assessment of the defined performance indicators in the
building. For the operating staff, this kind of rating system can be applied as a useful tool
if it is used as a continuous reporting system for the performance of the building. With the
implementation of adequate performance indicators, this kind of system will contribute to
keeping the technical installations “on track” as a lifetime commissioning system and a
tool for fault diagnosis.

For swimming facilities, the number of performance indicators may be considerable
and some are impossible to track directly in real time, for example, the level of some air-
borne disinfection by-products. Ruparathna et al. [17] implemented a set of 22 performance
indicators in their case study, including measures like user satisfaction, indoor environ-
mental quality, water quality and energy use, among others. Saleem et al. [18] investigated
the choice of performance indicators for aquatic centers in Canada, and proposed a set of
63 indices, including water quality, indoor environmental quality, energy efficiency and
user satisfaction.

Energy efficiency is an important aspect in these rating systems and is considered the
most important criterion in sustainability rating systems as well as the least achieved [19].
This underlines the importance of a strict system for monitoring the energy performance
along with the main functions of the building. Due to the large internal energy flow in
swimming facilities, this is even more important because of the increased probability of
operational faults and increased energy use.

1.3. Theoretical Background

Continuous assessment of building energy performance is a process of analyzing
residuals. Here, the residual is the difference between the monitored energy use and the
prediction of the expected energy use of a dynamic benchmarking system. Contrary to
“snapshot” rating systems, such as energy labeling of buildings [20] or documentation for
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fulfilling the passive house standard [21,22], a dynamic benchmarking system depicts the
continuous energy performance of the facility.

The prediction of the expected energy use is a complex task which depends on a large
set of variables and parameters. The task should preferably be solved in a way which could
easily be implemented in existing facilities and control systems. It should also be easy to
adapt and be transparent for the operating staff. The importance of easy implementation
is related to the increasing climate threat which can also be found in the short-term goal
defined as the EU 2030 GHG reduction goal [1].

As they are different from other building types, swimming facilities are characterized
by complex energy systems required to maintain appropriate conditions in the swimming
hall and pool(s) and provide suitable water quality. Swimming halls are facilities with
complex and energy-intensive technical systems [23], with several interacting subsystems.
Figure 1 illustrates the extent of the technical systems and how they are connected inter-
nally and to external variables. These systems provide functions like fresh air supply, air
heating, dehumidification, water heating and water treatment. The thermal and electric
power/energy consumption levels of the different systems are logged in the building
automation system.

Figure 1. An overview of the extent of the technical systems in a typical swimming pool facility.

The task of predicting the energy use in swimming facilities is complex due to con-
stantly fluctuating variables such as evaporation of water from the pool and surrounding
surfaces, the required amount of makeup water and the filter flushing intervals. Energy
prediction has been treated in several studies where methods regarding outdoor and indoor
swimming facilities have been presented.

1.4. Energy Prediction Methods

The energy prediction methods include physical/engineering methods as well as
statistical and artificial intelligence methods [24]. Lu et al. [25] addressed the design and
analysis stage and proposed a physical model for a sports facility. Despite the challenge
related to the required numbers of parameters, the model performed with a coefficient
of correlation (R2) of 0.934. Westerlund et al. [26] showed that the engineering approach
for estimating annual energy use gave satisfactory results in swimming facilities as well.
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The results from this study, with a prosaic and simple technical structure, illustrates the
importance of heat recovery, where evaporation dominates the energy demand. The same
observation was also revealed in the study by Lovell et al. [27] where an engineering
model for the prediction of thermal performance for an outdoor Olympic swimming pool
in Australia was developed. The model was based on the heat balance and performed
with an accuracy of 67% of the predicted heating capacities. This was within a range
of ±100 kW, which proved to be the most accurate model compared to other equivalent
models. The study confirmed that evaporation dominated the energy demand of an
outdoor swimming facility. The same physical and empirical equations are also applied in
building performance simulation tools such as TRNSYS [28], ESP-R [29] and IDA ICE [30],
among others. Mančić et al. [31] determined the energy losses for a pool hall and pool,
and later the optimal configuration of a polygeneration system [32], by modeling the system
via physical and empirical equations in TRNSYS. Moreover, Duverge and Rajagopalan [33]
investigated the energy and water performance of an aquatic center in Australia. They
modeled the facility with the BPS tool EnergyPlus and recommended both solar heating
and the use of vacuum filters in their study.

Yuce et al. [34] presented an artificial neural network approach for predicting the energy
consumption and thermal comfort in an indoor swimming facility. The prediction was an
application for an optimization-based control system for swimming facilities. Kampel et al. [35]
proposed a statistical model for predicting the annual energy use of swimming facilities.
It was developed through a multiple linear regression (MLR) analysis, and its purpose
was to establish a tool for calculating energy performance indicators for the benchmarking
of swimming facilities. In addition, the MLR method was also applied in the study by
Duverge et al. [36]. One of the outcomes was that the usable floor area and the number of
visitors were among the most influential variables for annual energy use.

While the simulation tools based on physical models and artificial neural networks,
with different topologies and learning algorithms, can provide useful insights and effi-
ciently predict target values, both frameworks are computationally costly and need case
base adaptation. In the context of the practical use and implementation of energy prediction
features among existing buildings, MLR has the potential to be in the middle ground with
respect to computational cost and the opportunity to adapt it to the different target cases.
MLR represents an easy-to-follow statistical method [37] which can explain a dependent
variable, using multiple independent variables, but does not require in-depth knowledge
of physical processes or training algorithms. It is easy to develop and implement [38]
and is widely used in the prediction of energy use. For example, Safa et al. [39] presented
a method to predict energy use in office buildings for the purpose of energy auditing.
The study showed the capacity of simple models where the final regression model was
based on outdoor temperature and occupancy with a monthly resolution. The model
performed well with acceptable error, when assessing each of the four buildings in the
study individually. Catalina et al. [40] developed a regression model for predicting the
monthly space heating demand for residential buildings while another approach developed
a generic equation of three variables for predicting the heating demand in apartments
blocks [41]. The MLR method has also been applied with success in energy forecasting for
swimming pool buildings [38,39].

The objective of this paper is to investigate and propose a method for energy prediction
in swimming facilities, based on the MLR method. This approach has considerable potential
for reducing the annual energy demand of both existing and new buildings by making the
operating staff conscious of the performance of the building in relation to the design level.
Buildings are only sustainable if they are operated and maintained properly [15].

2. Method

This study investigates the impact of several independent variables on the energy use
of a swimming facility. The analysis has been carried out by applying the multiple linear
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regression method with the purpose of developing a reliable energy prediction model.
Figure 2 illustrates the workflow of the study, where the main topics are identified.

Figure 2. Block diagram representing the workflow of the study.

2.1. The Building

The investigated building is a multi¬purpose sports center located at Jøa, an island in
the municipality of Namsos in Norway. It is located at 64.6 N, 11.2 E, 65 m above mean
average sea level. It is defined as part of the Marine West Coast climate zone according to
the climate zone definition of Köppen and Geiger [42]. The sport center was commissioned
in autumn 2016 and contains several facilities besides the swimming pool facility, such as
a sports hall, a shooting range, a library, a café, a gym and an outdoor ice rink. Figure 3
shows a photograph of the north-oriented façade for the swimming hall. The swimming
hall has a usable area of 266 m² (13.7 m × 9.43 m), including the 8.5 m × 12.5 m swimming
pool. Key quantities are presented in Appendix B. This paper investigates only the part of
the building with the swimming facilities.
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Figure 3. The northern façade of the building.

2.2. The Technical Systems

The swimming facility at Jøa is a state-of-the-art swimming facility which complies
with the Norwegian passive house standard [22]. It includes a ventilation heat recovery
system equipped with a heat pump, as recommended in the literature [5,43], and conven-
tional water treatment, which research has found to be the most effective water treatment
train [44].

2.3. The Dataset

The dataset ranges from November 2017 to June 2019 and is separated into two parts.
The training dataset and the validation dataset are, respectively, from November 2017 to
June 2018 and September 2018 to June 2019. The size of the datasets was decided based
on three main factors: (1) The training dataset should not be too large, due to the purpose
of the study; it should be a quick and easy to implement a dynamic energy benchmark
for swimming facilities. (2) The validation dataset should be large enough to cover all the
seasons and several operation disruptions. (3) It should be preferably based on continuous
operation data, without including lockdowns for maintenance.

2.4. The Variables

The objective of the study is to predict the energy use (dependent variable) as a result
of several independent variables. The selected independent variables used in this study
are listed in Table 1.

The dependent variable was defined by applying the energy conservation Equation (1)
at the boundary defining the swimming facility as presented in Figure 1.

dEnet

dt
= Ėnet = Ėea + Ėta + Ėep + Ėtp (1)

where Ėnet is the net delivered energy to the facility, Ėea is the delivered electricity to the
air handling unit, Ėta is the delivered thermal energy to the air handling unit, Ėep is the
delivered electricity to the pool circuit and Ėtp is the delivered thermal energy to the pool
circuit. The units for the variables are given in Table 1.

The independent variables were defined as the meteorological data, ambient air tem-
perature and relative humidity and the usage data. This choice was due to the availability
in the respective building and to the known correlation between energy use and outdoor
climate [45] and user interference [7,36,45]. In addition, this group of indicators is repre-
sented as logged values in conventional building automation systems (BASs). Due to the
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highly insulated building envelope and the orientation of the façades, the assumption of
negligible effects of wind pressure and solar radiation was applied.

The dataset was created by:

1. Extracting historic data from the BAS.
2. Collecting weather data from the national database of the Norwegian Meteorological

Institute [46].
3. Digitalizing handwritten occupancy data due to lack of electronic occupancy registration.
4. Calculating new variables based on indirectly monitored data. This is reported for

the respective variables in Table 1.

Due to implications within the BAS, extracting data prior November 2017 was not
possible. In addition, only a limited part of the variables was logged in June 2018. Table 1
summarizes the variables in the dataset, the units and the origin of the data.

Table 1. The selected variables that have been used in the analysis.

N Variable Unit Type Source Comment

Ėea
Electric energy kWh

h

D
ep

en
de

nt

BAS
Fans, compressor,

consumption, AHU pumps and control system

Thermal energy Supplied thermal energyĖta consumption, AHU
kWh

h BAS for air heating

Ėep
Electric energy consumption, kWh

h BAS
Related to pumps,

pool circuit disinfection, etc.

Thermal energy consumption, Supplied thermal energyĖtp pool circuit
kWh

h BAS for pool heating

Ėtot
Total thermal and electric kWh

h Calculated
Summarized

energy consumption load pt. 1–4

Outdoor dry-bulb

In
de

pe
nd

en
t

Measurement fromTout temperature °C BAS the site

Moisture content g
g Calculated

Meteorological
outdoor air data

Enthalpy Combining meteorological
difference data and indoor air

indoor/outdoor measurements and by applying
kJ
kg Calculated

the ideal gas law

tpu

Pool usage factor
-

Calculated by
(proportion of time BAS/ utilizing water level data
the pool was in use) Calculated in the equalization tank

Manually digitalized andNumber of adults bathing adults Handwritten implemented in the dataset

Number of children bathing children Handwritten
Manually digitalized and

implemented in the dataset

Water supply flow Calculated by utilizing
rate to the BAS water level data,Qw

pool circuit

l
s

/Calculated flushing reservoir

2.4.1. Cleaning the Dataset

The resolution of the original training dataset was 1 min time steps for all the variables.
The dataset was cleaned and preprocessed by detecting and analyzing outliers manually,
caused by broken sensors, miscoded values, operation disruption (e.g., unintended oper-
ation due to mechanical flaws, software errors or mistakes by the operator), etc. Outlier
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detection can also be carried out statistically, for example, by using approaches such as
standard deviation or the interquartile range [47]. Both techniques identify outliers by
comparing each value/measurement to its population. Due to the purpose of this study,
outliers are of special interest (fault detection). For the training dataset, operation disrup-
tions were identified and excluded prior to regression analysis, while operation disruption
was a part of the validation process.

The process of identifying and categorizing operation disruptions was carried out
by an in-depth investigation of the historic data, stored in the BAS and in the dedicated
control systems of the air handling unit and heat recovery system.

2.5. Statistical Methodology

The choice of the multiple linear regression method was based on its strength as a
statistical data handling tool and its simplicity in development, implementation and opera-
tion. The latter is crucial if the building owners and the industry are to be able to minimize
the energy use, related to undesired operation, over a short period of time. Regarding
practical issues, the developers (the engineers) recognize the method in their university
education and the operation management can easily evaluate the energy performance in a
spreadsheet [41], or it can be easily implemented in any report system, due to its simple
algebraic equation.

The dataset was imported and analyzed with IBM SPSS statistical software [48].

2.5.1. Multiple Linear Regression

The MLR method was used to predict the dependent variable y, here the total power
consumption, averaged over a certain period. This period was taken to be sufficiently long
so that the method only focused on physical effects as processes in the steady state for
each time step. The regression equation was trained by the ordinary least square method
where the sum of the root square error was minimized. The corresponding regression
coefficients, β0 and βi, were determined. These comprised the slope coefficient for the
independent variables.

yi = β0 + β1x1 + β2x2 + . . . + ε (2)

where yi is the dependent variable, β0 is the intersection with the y-axis when x is zero, βi is
the regression slope coefficient in the linear equation, xi is the predictor—the independent
variable—and ε is the error term.

2.5.2. Assumptions

In the development of the model, several assumptions were adopted. The data
source was time series data, and, initially, its autoregressive properties or the order of the
autoregressive process were not known. These were identified by applying the partial
autocorrelation function (PACF), which specifies the number of past lags influencing
the dependent variable (i.e., the order of the autoregressive process). The application of
the PACF in time series analysis is analogous to deciding the number of independent
variables to be included in a multiple linear regression analysis [49]. The dataset was
initially investigated for autoregressive properties and reduced by averaging the data and
centered in time to eliminate any autoregressive properties in the dependent variable. Each
observation in the training dataset was then treated as independent.

2.5.3. Evaluation of the Prediction Model

The “goodness of fit” was evaluated by the coefficient of determination R2 and the
adjusted R2, which considers the number of explanatory variables and the possibilities of
overfitting. R2 is defined by the relationship between the explained sum of squares and
the total sum of squares.

The multiple linear regression equation was validated by analyzing the variance with
the F-test. The test operator, F, which is defined by the ratio between the explained sum of
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squares and the residual sum of squares, was applied to the F-distribution. A significance
level of 5% was chosen as the required level.

The coefficients in the equation, the impacts of the independent variables, were
evaluated by applying the T-statistic, with the t-test, which is similar to the F-test, but which
describes the probability of nonlinear correlation by applying the test operator to the T-
distribution. The test operator is defined by the relation between the coefficient and its
standard error.

The fundamental assumptions for using linear regression were investigated, such as
a lack of multicollinearity, no heteroskedasticity, normally distributed residuals and no
autocorrelation among the residuals [50], which were fulfilled for each case in the presented
analysis. The multicollinearity among the variables was investigated by manually applying
the independent variables in a correlation matrix. Potential heteroskedasticity was evalu-
ated visually. The autocorrelation among the residuals was tested with the Durbin–Watson
statistic, which assumes a maximum lag of one. The lag of the residuals was investigated
by determining the autoregressive process by applying the PACF.

2.5.4. Validation

The prediction model was tested and validated by comparing the prediction and
measurement for the whole validation dataset. The criteria for a passed validation process
were defined as (1) all the measurements identified as normal operation should be predicted
within the prediction interval defined in the training process and (2) all of the operation
disruptions should be clearly identified by the validation process.

3. Results and Discussion
3.1. Description—The Training Dataset

The dataset used for training the regression analysis comprises approximately
350,000 observations. Figure 4 shows the collected data for the dependent variable and
the total electric and thermal power consumption, plotted together with the outdoor dry-
bulb temperature. The average power consumption for the whole dataset is approximately
16 kW and energy supply for the period is 93,000 kWh. The daily average energy use
ranges from approximately 190 kWh to nearly 900 kWh, with a corresponding daily average
power consumption ranging from approximately 7.9 kW to 37 kW. The registered average
diurnal dry-bulb temperature ranges from −11 ◦C to 20 ◦C. During this period, nearly
2000 swimmers used the facility, equally divided between adults and youngsters/children.

Figure 4 reveals a seasonal trend, a minor dependency between the energy use and
the outdoor temperature, with some spikes in energy use distributed over the period.
By visual inspection, it seems that the outdoor temperature variable can explain some of
the variations in energy use, but additional variables influenced the variation in daily total
energy usage.

3.1.1. The Energy Performance of the Facility

Regarding the energy performance, the swimming facility at Jøa was identified as
having an energy performance indicator (EPI) of 44.8 kWh/visitor, calculated over the
period of the investigated dataset presented in Figure 4. In comparison, Norwegian
swimming facilities are associated with an average EPI for a typical year of approximately
26 kWh/visitor,and a median EPI of approximately 22 kWh/visitor, where the dispersion
is reported to range from 10 to 80 kWh/visitor [51]. The EPI has been recommended
by Kampel [7] who found that visitors are the single variable that explains most of the
variation in the energy performance of swimming facilities [35]. The poor EPI-value of
the swimming facility at Jøa can be explained by the low user intensity, on average only
235 visitor/month, compared to Kampel’s dataset representing a median annual user
intensity of 94,261 visitors (average of 7855 visitors per month). Additionally, the outdoor
climate can explain this performance indicator since the data are not climate corrected.
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Figure 4. Energy usage for operation of the swimming facility vs. the outdoor temperature, both
daily averaged.

3.1.2. Energy Distribution

The delivered energy to the swimming facility is almost evenly divided between
electricity and thermal energy. Figure 5 depicts the energy distribution of the building
section with the swimming pool. The low thermal energy consumption for the air handling
unit (AHU) in comparison with the thermal load of the pool circuit has two major causes.
The low overall user intensity for the period of collected data implies that the system
operates in air recycling mode (night mode) without fresh air supply for a long period of
time, which reduces the air dehumidification and heating demands considerably. Another
reason is the operation of the heat recovery system which recovers the latent heat in the
exhaust air and supplies heat to the facility, where the order of priority is air heating
and pool heating. The building automation system neither collects data regarding the
performance of the subsystems nor the thermal efficiency of the heat recovery system.

3.1.3. Time Step Analysis

When treating time series data of energy use in buildings with linear regression,
the inertia of the building must be considered due to this impact on the autoregressive
process of the variables. This is because the energy use (the dependent variable) is logged
with a short time step (1 min). For the swimming pool at Jøa, this impact is partly illustrated
using a duration curve depicted in Figure 6, where the data are sorted by decreasing power
consumption. The range of outdoor temperatures associated with each step of power
demand is wide and can be partly explained by inertia of the building. A short time step
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resolution will not give any significant correlation, since the process depicted is not steady
state. The impact of the time lag can be minimized by averaging the dataset, and thereby
reducing the time step resolution (see Section 2.5.2).

Figure 5. Energy distribution for the swimming facility incl. the energy use for domestic hot
water heating.

Figure 6. Scatter plot—sorted power consumption presented as a duration curve along with the
corresponding outdoor temperature.

Figure 7 illustrates the consequences of averaging the dataset and reducing the time
step resolution. The figure presents the dataset with time steps ranging from 1 min to
4 weeks. Both the power consumption and outdoor temperature are presented as time-
averaged values centered in time. Firstly, the figure gives an indication of two possible
different states in the operation of the facility, represented as a pattern of a divided dataset
(clouds of datapoints), for time-step resolution from 1 min up to 60 min. The same
can be observed in Figure 6, which represents a pattern of two different duration curves
overlapping. Secondly, without considering the significance of the simple linear regressions,
a considerable increase in the coefficient of determination, the R2, is observed when
averaging the dataset. This implies that the time step should be maximized in order to
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obtain the best fitting model if prediction is the main purpose. Concerning the purpose
of this study, the time step should correspond to the swimming facility operating staff’s
requirement to identify and handle possible operational disturbances during a reasonable
period of time.

Figure 7. Averaged total power consumption plotted against averaged diurnal outdoor dry-bulb
temperature when the dataset is averaged from 1 min to 4 weeks.

3.2. Statistical Analysis—Developing the Model

Since the training dataset consists of operation data from the first period after the
building was commissioned, several irregularities may occur. By detecting and excluding
observations associated with irregular operation events, the training dataset is optimized
to only represent flawless operation. A predictive model trained by this dataset should be
able to provide accurate predictions.

By investigating historical operating data from both the BAS and the internal control
system of the air handling unit, a major change in operation was found. The consequence
of this is illustrated in Figure 8, which depicts the thermal load for the pool heating system,
where a change in operation is identified in late March 2018. The reason for the considerable
change was issues related to the control of the integrated dehumidification system and
the pool temperature, possibly a problem with a mixing valve. However, since this flaw
in the operation has implications for both the pool temperature and the heat recovery
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system, the whole period from 25 October 2017–22 March 2018 must be excluded from the
training dataset.

Figure 8. Thermal load for the pool circuit, plotted against the timeline, in averaged 1-day time
step resolution.

3.2.1. New Training Dataset

By excluding the period associated with operational irregularities, prior to 22 March
2018, the prediction model was developed. The new training dataset, ranging from 22
March to 24 June 2018, consisted of three-day averaged values, for a total of 29 datapoints.
The analysis of the autoregressive properties of the dataset showed no autocorrelation
when averaging data for 72 h, or 3 days.

The results of the regression analysis are expressed in Equation (3). The key out-
put from the regression analysis is given in Table 2. Regarding possible problems with
overfitting, 15 datapoints per predictor are recommended [52] to obtain reliable fitted
regression, which means a maximum of two predictors for a dataset of this size. The two
independent variables which are found to explain most of the variance are the outdoor
dry-bulb temperature (Tout) and the pool usage factor (tpu) (see description of variables in
Table 1). This combination has a statistical effect on the energy use, with almost similar
impact, and both were identified by a significance level p < 5%. The chosen combination
of variables is in accordance with the physics, where the outdoor temperature represents
the thermal losses through the envelope and ventilation, and the pool usage represents
the water usage and the operation mode of the facility. The number of swimmers was not
found to have a statistical effect on the overall power consumption, despite the impact of
evaporation on the energy use. This may be explained by the phenomenon of evaporation,
which is observed as a step function where a few bathers have a significant impact, but a
further increase only gives a small additional contribution to evaporation [53]. However,
the combination of weather conditions and usage/occupancy is also found to have a
statistically significant effect on energy use in office buildings [38], despite the difference
between these building categories.

Ėtot = 14, 715 − 227.8Tout + 24, 790tpu (3)

where Ėtot is the predicted power consumption [Watt], Tout is the outdoor temperature [°C]
and tpu is the pool usage factor.
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Table 2. Key outputs from the regression analysis.

Unstandardized Coefficients

B Error Standardized
Coefficients T Significance

Constant 14,715 2410.7 16.387
Outdoor temperature −227.8 27.2 −0.591 −8.38 0.000

Pool usage 24,790 2607.5 0.671 9.507 0.000

The ability of the model to explain the variance is given by R2 = 87%. The ability of
the prediction model to reproduce the power consumption is illustrated in Figure 9, where
the predicted power consumption is plotted along with the training data, the actual power
consumption and the corresponding prediction interval. The prediction interval of 95%
is the interval where there is 95% confidence of there being an observation within it. It
depends on factors like sample size, number of predictors and the significance level. For the
range of independent variables given in the training dataset, the mean prediction interval
is identified to be ±1.86 kW. Figure 10 shows the linear relationship between the training
dataset and the data produced by the prediction model where the Pearson correlation
coefficient is 0.93.

Regarding the fundamental assumptions in linear regression, the residuals from the
training process, given in Figures 11 and 12, are approximately normally distributed. There
are no signs of heteroskedasticity and the residuals are represented with a mean value of
approximately 0. The autoregressive process is not found to be on an order higher than 1,
but the Durbin–Watson coefficient is approximately 1.4, which possibly indicates some
autocorrelation. However, the possible autocorrelation, or the lack of autocorrelation, is
not found to be statistically significant. The regression equation is considered to be reliable
within the given goodness of fit.

Figure 9. The predicted power consumption plotted against the training data and with the corre-
sponding prediction interval.
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Figure 10. The predicted power consumption plotted against the measured power consumption.
The Pearson correlation coefficient is given as the R-coefficient.

Figure 11. The distribution of the residuals.
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Figure 12. Residuals plotted by power consumption.

3.3. Validation and Application

The validation of the prediction model is illustrated in Figure 13 as a comparison
between the predicted and actual data from the validation dataset. The predicted power
consumption, including the prediction interval, is the gray shaded area and the measured
power consumption is the black line. The numbered red areas are the identified periods
with operational disruption, and they include 14 datapoints out of a total of 85 in the
validation dataset. The given operation disruptions have been identified as (A) uncon-
trolled water refill, (B,C) issues with the control system of the water temperature, (D) issues
with controlling the indoor environment and water refill system, leading to a consecutive
lockdown of the facility and (E) issues related to the control of the air handling unit and
the air flow supply. The prediction model identifies all of the disruptions as illustrated.
When the facility operates without flaws and faults, the facility performs within the opera-
tional baseline provided by the prediction model. Each of the operational disruptions are
identified as major deviations from the baseline.

When excluding the data associated with operational disruptions, 14 datapoints in
total (approximately 16% of the dataset), the predicted operation fits the actual performance
well. Figure 14 illustrates the correlation between the predicted and measured power con-
sumption exclusive of the operation disruptions. The Pearson correlation coefficient is 0.85.
However, there are periods where the models seem to consistently over- or underpredict
the performance model, and this may have to do with the lack of explanatory variables in
the model. However, this deviation is within the prediction interval, which corresponds
with no detection of operational disruption for the relevant period. Figures 15 and 16
present the range of the independent variables used in the prediction model. Even though
the range of the training dataset was initially significantly reduced to only three months of
data (29 datapoints), the dispersion of the variables within this dataset corresponds with
the validation dataset.
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Figure 13. Visual validation of the prediction model from September 2018 to June 2019. The prediction
model includes the prediction interval in gray, measured power consumption in black and periods
associated with operational disruptions in red (see Appendix A for higher resolution).

In the perspective of applying the presented method to industry, the combination of a
short-term training dataset and the few predictors makes this method especially useful.
This means that a facility can develop a model over a short period of time, with a minimum
of sensors. However, the transferability with regard to the choice of independent variables
must be further investigated in order to obtain a universal method for industry.

Figure 14. The predicted power consumption plotted against the measured power consumption for
the validation dataset. The Pearson correlation coefficient is given as the R-coefficient.
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Figure 15. The dispersion of the independent variables in the prediction model, for each dataset used
in the analysis.

Figure 16. The dispersion of the independent variables in the prediction model, for each dataset used
in the analysis.
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4. Discussion and Opportunities for Deployment of the Created Model

Due to the importance of focusing on the operating phase when minimizing the
environmental impact [10,54], and because operational irregularities are common in build-
ings [55], an implemented operational tool may have great potential for industry. For swim-
ming facilities, this is especially important since inappropriate operation may also cause
problems such as degradation of equipment and the occurrence of the sick building syn-
drome [56]. When applying the presented method to industry, the combination of a
short-term training dataset and a few predictors makes this method especially useful. It
means that a facility can develop a personalized model in short period of time with a
minimum of sensors. In addition, the final energy prediction model is simple and can be de-
ployed either in a spreadsheet or in the building automation reporting system. This method
can therefore contribute instantly to keep the operation of a swimming facility within the
optimal and expected individual energy performance range, which is fundamental for
achieving the energy target for any building [57]. The MLR method, which is applied in
this study, has formerly been recognized for predicting energy use in buildings [39] and has
also been applied to determine the parameters of thermal equations for outdoor swimming
pools [58]. With respect to the specific case of Jøa, the operational staff have to download
the energy usage, the outdoor temperature and the pool usage. The deviation between the
prediction and the measured energy use will give the operational staff an alarm if there is a
potential flaw in the operation and enable them to detect the fault within a short period of
time. However, the transferability with respect to the choice of independent variables must
be further investigated in order to obtain a universal method for industry. Additionally,
guidelines with respect to the implementation of the model should be provided.

5. Conclusions

This paper presents a model for predicting energy consumption in swimming facilities.
The energy prediction model aims to become a dynamic energy benchmark for fault detec-
tion in swimming facilities. The investigation has been carried out by using multiple linear
regression analysis (MLR) for a specific swimming facility located in Norway. The MLR
method has formerly been recognized in predicting energy use in buildings but has also
been applied to determine the parameters of thermal equations for outdoor swimming
pools. The main findings of this study are:

• The study has shown that it is possible to develop an accurate energy prediction
model for swimming facilities with a minimum of variables and datapoints.

• The results from the analysis of the training dataset underlined the importance of
investigating the training data prior to training of the model. The original dataset was
based on raw data from 7 months of operation after the building was commissioned
and approved by the building owner. The modified and preferred dataset was reduced
after an in-depth investigation that revealed comprehensive operational disruptions.
The final training dataset consisted of only 29 datapoints of 3-day averaged data
ranging over a period of 3 months, March to June 2018.

• The statistically significant independent variables were found to be the outdoor dry-
bulb temperature and the pool usage factor, which predicted the average power
consumption accurately in the validation process. In the validation period from
September 2018 to June 2019, the equation correctly identified all the critical opera-
tional disruptions.

• The model has been shown to be a suitable tool for helping operating staff in continu-
ous evaluation of the energy performance of a facility and quickly disclosing possible
operational disruptions. By identifying possible operational irregularities at an early
stage, excessive energy use in operation can be avoided. Operational irregularities
occur in a high percentage of new buildings. The importance of focusing on the
operating phase and the overall energy consumption is crucial when minimizing
the environmental impact. In addition, the knowledge of the energy performance of
buildings is fundamental in achieving the energy targets. For swimming facilities,
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inappropriate operation of technical installations may also cause problems such as
degradation of equipment and the occurrence of sick building syndrome.

• This study only investigated one specific facility and future work should address the
robustness of the model and transferability to other swimming facilities.

This study illustrates the strength of multiple regression analysis when applied as
a dynamic and continuous energy benchmark. By applying simple input variables, an
estimate of the expected power consumption, within an acceptable error range, can be
made that reveals potential operational disruptions. The energy prediction model is simple
and can be easily implemented in the automation system of a building. The prediction
model does not require an operator with an engineering background and may serve as
first-line supervision for the use of a dynamic energy benchmark for a facility. By applying
this method in existing swimming facilities, the overall energy use may be greatly reduced
as it provides the building management with improved knowledge about the energy
performance of the building.
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Appendix A

Figure A1. Visual validation of the prediction model from September 2018 to June 2019. The pre-
diction model includes the prediction interval in gray, measured power consumption in black and
periods associated with operational disruptions in red.



Energies 2021, 14, 4825 21 of 23

Appendix B

Subject Quantity

Window surface area 30 m2

Water surface 12.5 m × 8.5 m

Useable area 266 m2

Nominal air flow, air handling unit 11,000 m3/h

Nominal thermal power, air condenser 26 kW

Nominal thermal power, pool water condenser 34 kW

Nominal water flow circulation pool circuit 60 m3/h

Rating condition pool circuit 300 visitors/day

Nominal power pool heater 70 kW
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