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Abstract: The induced draft (ID) fan is an important piece of auxiliary equipment in coal-fired power
plants. Early fault detection of the ID fan can provide predictive maintenance and reduce unscheduled
shutdowns, thus improving the reliability of the power generation. In this study, an adaptive model
was developed to achieve the early fault detection of ID fans. First, a non-parametric monitoring
model was constructed to describe the normal operating characteristics with the multivariate state
estimation technique (MSET). A similarity index representing operation status was defined according
to the prediction deviations to produce warnings of early faults. To deal with the model accuracy
degradation because of variant condition operation of the ID fan, an adaptive strategy was proposed
by using the samples with a high data quality index (DQI) to manage the memory matrix and update
the MSET model, thereby improving the fault detection results. The proposed method was applied
to a 300 MW coal-fired power plant to achieve the early fault detection of an ID fan. In addition, fault
detection by using the model without an update was also compared. Results show that the update
strategy can greatly improve the MSET model accuracy when predicting normal operations of the
ID fan; accordingly, the fault can be detected more than 4 h earlier by using the strategy with the
adaptive update when compared to the model without an update.

Keywords: fault detection; induced draft fan; multivariate state estimation technique; model update;
coal-fired power plant

1. Introduction

The induced draft (ID) fan is a mechanical device that exhausts the gas from other
equipment with a wheel rotor to achieve gas compression and gas delivery. ID fans are
widely used in ventilation plants, including mine, tunnel, and cooling towers. The ID fan
is one of the crucial pieces of auxiliary equipment in the thermal power plant, where it
induces the flue gas generated in the boiler to maintain a certain negative pressure in the
furnace. ID fans are usually exposed to high-temperature flue gas and fly ash, which can
make the impeller and blades easily eroded; moreover, the bearings are prone to wear
and tear because of the mechanical vibration. Thus, faults can occur to ID fans in daily
operations. Even worse, ID fan faults may cause an unscheduled downtime of the power
plant, seriously affecting the secure operation and economic generation [1,2].

An early fault detection strategy can identify the current status based on historical
operating information of process or equipment and give a warning signal on the abnormal
operation, thereby providing enough time to take risk mitigation measures. Early fault
detection models have been widely applied in different industrial fields [3–7]. Some
models are developed according to the physical mechanism; however, it is usually difficult
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to obtain adequate knowledge for a non-linear complex industrial process, thus affecting
the prediction accuracy in condition monitoring. Instead, researchers have tried to solve
the fault detection problem by using historical operating data, also known as data-driven
models. Shen et al. [8] employed an optimized deep belief network (DBN) technique to
diagnose the bearing faults of the rotating machinery. Wang et al. [9] proposed an early
fault detection for wind turbines based on operational condition clustering and optimized
DBN. Francesc et al. [10] utilized principal component analysis to achieve wind turbine
fault detection. Dai et al. [11] presented a fault detection strategy of the rolling bearing by
combining sparse autoencoder (SAE) and denoising autoencoder (DAE).

In general, the abnormal operation can be identified by using classification techniques,
including artificial neural networks (ANN), random forest, and support vector machines
(SVM) [12–18]. Models are trained by using plenty of normal and abnormal operating data
samples to produce accurate fault recognition results. For example, SVM is adopted in
the classification of wind turbine faults with data sampled from supervisory control and
data acquisition (SCADA) systems [17]. Guo et al. [18] introduced an improved random
forest approach in fault recognition of direct current motors. These methods can divide
the operating states into two types: fault states and fault-free states. To construct a precise
model for fault detection, it is necessary to get the operating data of typical faults of the
equipment or process. However, it is difficult to describe the dynamic characteristics of
the ID fan with physical mechanism knowledge. The fault data samples of the ID fan are
rarely recorded and not enough to train the model. In addition, it needs a large amount of
computation to tune excessive adjustable parameters in the training process of machine
learning models, and this is not conducive to field implementation in a power plant.

The multivariate state estimation technique (MSET) is one of the most used data-driven
fault detection methods. The MSET model is developed with normal operating data, but
unlike ANN, complicated parameter searching is not necessary during the MSET model
construction, making it much easier and more feasible to be implemented in practical
use [19–27]. By using MSET, faults can be detected without the need for fault records
that are difficult to obtain, physical mechanism knowledge, and complicated parameter
determination. MSET can learn the process features with historical normal operations and
produce an estimation of the actual measured data sample, a process called the observation.
By evaluating the similarity between the predicted value and the observation, operating
faults can be identified. Thus, MSET can be used in constructing the early fault detection
system of ID fans. MSET models have been wildly applied in the industrial field. For
example, Zhang et al. [22] introduced the MSET model combined with similarity theory for
early fault warning of auxiliary equipment; Cui et al. [23] integrated MSET with principal
component analysis (PCA) to monitor the operating condition of an air compressor. Unlike
model training of the ANN, the parameters of MSET can be directly solved by using the
memory matrix.

MSET is a widely used data-driven method, and it mines the features of healthy states
from the historical operating database. However, as with all the data-driven models, the
accuracy of the MSET model has an important dependence on the training data, referred to
a as a memory matrix, and represents the relationship among feature variables [27–29].

To obtain an accurate MSET model, the historic memory matrix usually consists of
a set of operating data to represent all possible normal working conditions. Thus, how
to construct an adequate memory matrix is crucial when applying MSET for early fault
detection. As with preparing the training data of ANN models, the memory matrix needs
to be elaborately designed, a process which has not received enough attention. In some
research, several segments of data were manually selected from the plant-level operating
database and then considered as the memory matrix. Such a method is implemented
without any specific indicators; thus, all possible operating conditions cannot be fully
covered. Another type of method tried to design the memory matrix with a uniform
distribution by evenly selecting samples from historical operating data. Nevertheless, to
the best of our knowledge, the memory matrix is usually set to be invariable in previous
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research. If the current operating conditions have a large change and deviate from the
operating condition described by the memory matrix, the MSET model will exhibit a
decline prediction accuracy, which is called model degradation. Model degradation is
a crucial problem of the practical use of most data-driven models [30–32]. To maintain
a high prediction accuracy, it is necessary to absorb operating information from newly
acquired data and achieve the model update [33,34]. Model-update strategies have been
presented to guarantee the prediction accuracy of the data-driven models. For example,
Kaneko et al. [33] presented a review of adaptation mechanisms that are mainly utilized in
data-driven modeling methods. In addition, Liu et al. [34] proposed kernel learning with
adaptive parameter selection for soft sensor modeling of batch processes.

One commonly used framework for the adaptive update is the moving window
strategy, in which the model is constructed with the most recent data of the window with
a certain width that moves over time [35–39]. For example, Shi et al. [35] introduced
a kernel function and the moving window algorithm to achieve real-time detection of
rolling bearings faults; in Reference [36], the moving window was utilized to optimize
the monitoring model based on the dynamic principal component analysis; and Sheriff
et al. [37] proposed a moving window generalized likelihood ratio test approach to reduce
the missed fault detection rate. The just-in-time (JIT) learning is another widely used update
method. JIT learning method selects data samples that are similar to the observation from
the historical operating database to construct the model; in addition, the model can be
updated automatically by storing the newly acquired data into the database. Chen et al. [38]
proposed a JIT-support vector regression model to achieve better silicon content prediction.
Ahmad et al. [39] applied the JIT strategy to develop an online model. Both moving window
and JIT learning strategies need to reconstruct the model with completely reselected data,
and this process has an influence on the computation time and the sensitivity of the model.

To solve the above problems, the update of the MSET model can be implemented
incrementally, in which the unnecessary sample is replaced and the update is executed once
a new measured sample is acquired. The incremental update can reduce the computation
cost compared with model reconstruction. In Reference [40], the incremental update was
adopted to modify the parameters of the sequential assimilation model. Kaneko et al. [41]
defined a database monitoring index to realize incremental updates and solve the model
degradation problem. The index is used to measure information contained in newly
acquired data and, thus, determine whether the new data are added to the database. Thus,
the monitoring index can offer a valuable guide to designing the update strategy of the
memory matrix, hence updating the MSET model.

The main contribution of this study is to introduce an adaptive early fault detection
model for ID fans in coal-fired power plants. ID fan failure can cause the boiler to shut
down unexpectedly, leading to power loss, high maintenance costs, and potential accidents.
Early fault detection is an effective strategy to solve the above problems by producing a
warning signal before the abnormality develops into a serious fault, allowing the operator
time to take appropriate measures. The MSET method is utilized to detect early faults of ID
fans in power plants in this study. The historic memory matrix used for the MSET model
training consists of data samples that represent normal operating conditions. However,
the operating conditions of the ID fan in power plants are inconstant because of the
environmental change and boiler load regulation, and it is difficult to guarantee that all
possible normal operating conditions are contained in the memory matrix when selecting
training data from the plant-level database. If the ID fan runs beyond the coverage of the
initially obtained memory matrix, an inaccurate estimation will be produced, thus leading
to a false alarm. To solve the problem of variant condition operation of the ID fan and the
model performance degradation, an adaptive update strategy is implemented to make
the memory matrix cover newly acquired operating information. Based on the estimation
errors of the MSET model, a similarity index is defined to detect potential faults of ID fans,
thereby alarming the operators in advance.
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The remainder of this paper is organized as follows. Section 2 describes the framework
of the proposed adaptive MSET model, including the MSET theory, the adaptive update
method, and the early warning approach. Section 3 presents a case study, and the results
and discussion are also provided. Section 4 gives the conclusions.

2. Adaptive Early Fault Detection Model Framework
2.1. Model Structure

The framework of the proposed adaptive early fault detection model is given in
Figure 1. It consists of three parts: offline modeling, fault detection, and online update.
The offline modeling module mainly develops the MSET model to calculate the estimation
of the current observation; the online update module is used to achieve the update of the
memory matrix and update the MSET model according to the prediction accuracy of the
newly acquired operating data, and the fault detection module performs anomaly detection
and produces warnings of early faults.

Figure 1. Framework of the adaptive early fault detection model.

In the offline modeling module, the first step is to acquired historical normal operating
data of the feature variables of the ID fan. One set of informative samples is selected from
these data to construct the memory matrix and develop the MSET model. Then the real-
time operating data are acquired and predicted by using the MSET model. The estimation
deviations of the feature variables are taken as the inputs of the fault detection module to
calculate the similarity index and achieve the condition monitoring of the ID fan system. If
the similarity index is below the limit, a warning signal is produced to alert operators to
take appropriate measures. In addition, the model prediction accuracy is assessed once a
new measured data sample is obtained. According to the assessment results, the model
update strategy is implemented if necessary to maintain a high prediction accuracy of the
MSET model.

2.2. MSET Theory

MSET was first proposed by Argonne National Laboratory [19], and it is widely
applied in condition monitoring, fault detection, and residual life prediction. The MSET
model uses normal operating data, which are stored in the memory matrix, to characterize
the monitored process or equipment. Considering that the memory matrix is constructed
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by a dataset of n variables at m time stamps, which are collected from the plant-level
historical operating database, the memory matrix can be denoted as follows:

D = [x(t1), x(t2), . . . , x(tm )] =


x1(t1 ) x1(t2 )
x2(t1 ) x2(t2 )

· · · x1(tm )
· · · x2(tm )

...
...

xn(t1 ) xn(t2 )

. . .
...

· · · xn(tm )

 (1)

where xi
(
tj
)

(i = 1, 2, . . . , n, j = 1, 2, . . . , m, i and j are the indices of the variable and
time stamp, respectively) is the value of the variable xi at time stamp tj. Each column of D
represents a normal operation state at a certain time stamp, and each row represents the
values of a certain variable at different time stamps. Thus, D consists of m vectors x

(
tj
)

that represent different normal operating states of a process.
For a given operating state, denoted as the observation vector, xo the MSET model

will produce its estimation x̂o by taking dot products between a weight vector, w, and the
memory matrix, D:

x̂o = Dw
= D · [w1, w2, . . . , wm]

T

= w1x(t1) + w2x(t2) + · · · + wmx(tm)

(2)

As shown in Equation (2), the estimation vector, x̂o, can be considered as a linear combina-
tion of m normal operating states with the weight vector (w). The estimation vector, x̂o, is
supposed to be like the observation vector, xo, if the equipment is in normal operations;
that is, the residual ε between x̂o and xo should be minimized. The residual ε can be written
as follows:

ε = xo − x̂o (3)

Then the quadratic sum of ε is written with respect to the weight vector, w:

J(w) = ‖ε‖2 = (xo − x̂o)
T(xo − x̂o)

= (xo −Dw)T(xo −Dw) =
n
∑

i=1

(
xo(ti) −

m
∑

j=1
wjDij

)2
(4)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m, wk means the kth element of the weight vector w.
To get the minimum of the residual, we need to take the partial derivative of the J(w)

to wk and make it equal to 0:

∂J(w)

∂wk
= −2

n

∑
i=1

(
xo(ti) −

m

∑
j=1

wjDij

)
Dik = 0 (5)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . . , m.
Namely,

n

∑
i=1

xo(ti)Dik =
n

∑
i=1

m

∑
j=1

wjDijDik =
m

∑
j=1

(
n

∑
i=1

DijDik

)
wj (6)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . . , m.
Equation (6) can be written in a matrix form:

DTDw = DTxo (7)

Then, the weight vector (w) can be calculated accordingly:

w =
(

DTD
)−1(

DTxo

)
(8)
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As shown in Equation (8), the inversion of DTD is calculated to obtain the weight
vector. The dot product calculation is replaced with a nonlinear operation, such as the
Euclidean distance operation, to guarantee the existence of the inversion. The Euclidean
distance ϕ is expressed as follows:

ϕ(x, y) =

√
n

∑
i=1

(xi − yi)
2 (9)

Then Equation (9) can be expressed as follows:

w = K−1 · f(xo) (10)

where K is an m-by-m matrix, and Kij = ϕ
(
Di, Dj

)
; f is an m-by-1 function vector, and

fi = ϕ(Di, xo), Di = x(ti). Kij is the ith row and jth column element of K.
Thus, the weight vector can represent the similarity of xo and D. Assuming that the

observation vector (xo) is very similar to the vector x(ti) in D, the weight (wi) can have a
large value. After submitting Equation (10) into Equation (2), the estimation vector (x̂o) can
be written as follows:

x̂o = DK−1f(xo) (11)

If the observation, xo is consistent with most vectors in memory matrix (D), the
estimation vector (x̂o) will be close to xo. On the contrary, if a potential fault occurs, the
observation (xo) will diverge from normal operating states, and an estimation vector with
large deviations is generated.

The memory matrix (D) needs to be constructed firstly when developing the MSET
model. The data samples in D should cover all possible operating conditions to characterize
the ID fan system. However, the historical operating data recorded in the plant-level
database is large in volume, and if the memory matrix (D) is constructed with all operating
data, the computational complexity will increase greatly, leading to a decline in real-time
warning performance. Thus, the memory matrix (D) should be selected according to a well-
designed criterion. In this way, the samples in the memory matrix (D) can be representative
to guarantee good prediction accuracy of the developed MSET model. There are many
sample-selection methods, such as uniform sampling method, random sampling method,
etc. In this paper, the memory matrix (D) is constructed by maximizing the operating
information with optimization algorithms, which is detailed in Reference [42].

2.3. Fault Detection

The estimation error, which is produced by the MSET model, can indicate the deviation
between the current state from norm operations. Thus, in this study, the deviation (δ),
which is the norm value of the residual, is utilized to identify early faults of ID fans. The
deviation (δ) is calculated as follows:

δ(x) =
√

∑n
i=1(x(i)− x̂(i))2 (12)

where x̂ is the estimation of x, and it can be calculated by using Equation (11).
When the deviation (δ) is larger, the dissimilarity between the observation vector (x)

and the estimation vector (x̂) is higher. Based on the deviation, we define the similarity
index (κ), which is limited to the range of (0, 1), for better detection of ID fan faults.

κ(x) = 1−

√
∑n

i=1 µi(x(i)− x̂(i))2

θ
(13)

where θ is a similarity threshold, µi is the weight of the ith variable.
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The weights µi in Equation (13) can be determined based on the estimation residuals of
samples in the validation set to remove the influence of error variations of different variables:

µi =
1/ei

∑n
i=1 1/ei

(14)

where ei is the mean error of the ith variable in the prediction of the validation set.
The threshold θ in Equation (13) can set to be the upper limit of the confidence interval

of the estimation residuals of the validation set with a level 1− α [29]:

θ = d + σ/
√

Ntα/2(N − 1) (15)

where d and σ are the mean and variance of the prediction residuals of the validation set,
tα/2(N − 1) is the T-distribution with the confidence level 1− α, and N is the size of the
validation dataset.

Equation (13) shows that if the equipment runs in normal operations, the estimation x̂
will have a high similarity to the observation x, and thus κ is close to 1. If the equipment
runs in abnormal operations, the similarity will be beyond the normal range and κ is close
to 0. Therefore, the similarity index can be taken as a visual indicator for fault judgment.

Moreover, the similarity value is easily influenced by the random disturbance. The
moving window method is applied to optimize the similarity value. Considering a period of
L data samples, the similarity sequences [κ1, κ2, . . . , κT , . . . κL] can be calculated by Equation
(13). Assuming that the moving window width is T, the mean similarity value of each
sub-window is obtained:

κ j =
∑

T+j−1
i=j κi

T
(16)

where j = 1, 2, · · · , L− T + 1, which represents the similarity sequences index.
The warning threshold (κs) can be set to the minimum of the similarity sequences

multiplied by a coefficient:

κs = γ ·min{κ1, κ2, · · · , κt−T+1} (17)

where γ is a warning threshold coefficient, which can be adjust to guarantee that all the
operations in the validation set are recognized to be normal; that is, the similarity sequence
values are just above the threshold, κs. Thus, A warning signal will be produced when the
similarity of the current observation falls below the threshold, κs.

2.4. MSET Update

The ID fan usually runs in variant conditions because of the environmental change
and boiler load regulation. The MSET model trained with the memory matrix selected
from certain operations fails to represent the whole characteristics of the ID fan. When it
runs in a different operating condition, the observed value may quite differ from the data
in the memory matrix, leading to inaccurate estimations. Thus, it is necessary to implement
an update strategy to make the memory matrix cover new information to update the
MSET model.

However, if all the newly acquired data are added into the memory matrix, the size of
D will be constantly increased, leading to a heavy computation. Thus, the update strategy
can be implemented incrementally. Once a new observation is obtained, it is analyzed
to check whether it satisfies the updating criteria. If yes, then it is added into D; and
meanwhile, an old sample is selected and deleted from D to maintain the matrix size
unchanged. After a new D is obtained, the MSET model is calculated accordingly.

The first step of the MSET update procedure is to check whether the newly acquired
data sample belongs to normal operations. To achieve this, the similarity index (κ) is
calculated according to Equations (11)–(15). If the similarity index (κ) exceeds the warning
threshold (κs), this sample is considered to reflect an abnormal behavior, and the next
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data sample is focused on; otherwise, its estimation deviation (δ) is analyzed next. If
the deviation (δ) keeps in an instant growth, we believe that this data sample may be in
the fault-development stage, and then the next data sample is focused on. If deviation
(δ) is below a given deviation threshold (δs), then we consider the sample as a totally
normal operation, and the next step is to check whether this sample contains new operating
information that is not covered by the memory matrix (D). The data quality index (DQI),
which builds the relationship between the new data sample and the memory matrix, is
defined to select the data sample that represents new operating information. The DQI is
expressed as follows:

DQI(xo) =
∏n

i=1(xo(i) − x(i))

∑n
i=1(xo(i) − x(i))2 (18)

where xo(i) is the ith variable value in the new data sample, x(i) is the average value of the
ith variable, n is the number of variables. The data sample with a large DQI is considered to
help increase the operating information in D. A threshold (Ts) is set to determine whether
the data sample is added into D:

Ts = max
1≤j≤m

(
∏n

i=1
(
xj(i) − x(i)

)
∑n

i=1
(
xj(i) − x(i)

)2

)
(19)

where n is the number of variables, and m is the number of data samples in D. If the DQI
value of the new sample has a larger value than Ts, it is added into D. Meanwhile, to keep
the matrix size unchanged, the oldest data sample, which may have become invalid, is
deleted from D.

The flowchart of the MSET update is shown in Figure 2. Firstly, a new data sample is
acquired and focused on. The deviation (δ) and similarity index (κ) are calculated according
to Equations (12) and (13), respectively. The value of the similarity index (κ) is judged,
and if the similarity index (κ) exceeds the threshold (κs), a new data sample is acquired.
Otherwise, the value of the deviation (δ) is analyzed to determine whether the sample is in
the fault-development stage. If the sample is identified to be in totally normal operation,
the DQI value is calculated according to Equation (18). Then we check the DQI value
according to the threshold (Ts) to determine whether it is added into the memory matrix
(D). Finally, the size of D is checked, and if it reaches the limit, the oldest sample is deleted.
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Figure 2. Memory matrix update procedure.

3. Industrial Case Study
3.1. Data Preparation

The operating data of the ID fan are acquired from the plant-level supervisory informa-
tion system (SIS) in a 300 MW coal-fired power station. More than 20 parameters related to
the ID fan operation are recorded in the database, but only 7 fault-sensitive parameters are
selected as the feature variables to develop the MSET model. These parameters specifically
consist of motor power, an output pressure, a bearing temperature at the fan drive end
(FDE), horizontal and vertical vibrations at the FDE, and horizontal and vertical vibrations
at the fan non-drive end (FNDE). The real-time operating information of these parameters
is recorded in the SIS; thus, the data can be mined to recognize early faults of the ID fan.
The measurement locations of the mentioned parameters are shown in Figure 3, and their
normal operating ranges are illustrated in Table 1.
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Figure 3. Measurement locations of the parameters of the ID fan.

Table 1. Normal operating range of parameters related to the ID fan.

Variables Measurement Location Unit Operating Range

Motor power 1 kW 730~2050
Outlet pressure 2 kPa −0.33~−0.03

FDE bearing temperature 3 ◦C 32.2~42.7
FDE horizontal vibration 4 mm 0.21~1.30

FDE vertical vibration 5 mm 0.21~1.30
FNDE horizontal vibration 6 mm 0.75~2.05

FNDE vertical vibration 7 mm 0.75~2.05

Nearly two weeks of operating data of the ID fan system are acquired from the plant-
level SIS database with a resolution of 10 min, with total 1800 samples. At the 1560th data
sample, a cumulative deviation with a step length of 0.06 is artificially added to the FDE
bearing temperature to simulate the abnormal temperature state caused by the fault of the
induced draft fan. The first 1400 samples are considered as the available training dataset to
construct the memory matrix (D) and develop the MSET model. The next 140 samples form
a validation dataset to evaluate the prediction accuracy of the MSET model on the normal
operations; in addition, the validation dataset is also used to determine the parameters
related to the fault detection strategy, including the deviation threshold (δs), the similarity
threshold (θ), weights (µi), the warning threshold coefficient (γ), etc. Both the training
and validation data are obtained during normal operation. The remaining 260 samples
cover the span from normal operation to fault occurring are considered as the test dataset
to verify the fault-detection performance of the model. The partition of the training dataset,
validation dataset, and test dataset is shown in Figure 4.

Figure 4. The division of training dataset, validation dataset, and test dataset.
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In addition, three criteria are used to evaluate the prediction accuracy of models M1
and M2, i.e., the root mean squared errors (RMSE), normalized root mean squared error
(NRMSE), and mean absolute error (MAE), which can be calculated as follows:

RMSE =

√√√√ 1
n

n

∑
i=1

(
ˆ
xi − xi

)2
(20)

NRMSE =
RMSE

xmax − xmin
× 100% (21)

MAE =
1
n

n

∑
i=1

∣∣∣∣ ˆ
xi − xi

∣∣∣∣ (22)

where xi is the measured value at time stamp i,
ˆ
xi is its estimation, and n is the number of

data samples.

3.2. Modeling Results and Discussion

The memory matrix (D) is designed to consist of 200 samples, which are selected accord-
ing to a well-designed criterion. The MSET model was developed based on Equations (1)–(11).
To validate the proposed update strategy, two models were constructed: the MSET with adap-
tive update strategy (denoted as M1) and the MSET model without update (denoted as M2).
The prediction results of the validation dataset are calculated by using models M1 and M2.
During the prediction of model M1, the estimation result of the new data sample in the
validation dataset is analyzed to determine whether it is added into the memory matrix (D)
according to the update strategy. The data samples in D are updated when the new operating
condition occurs. However, during the prediction of model M2, the estimation results are
calculated without such an update procedure.

Figure 5 gives the estimations and actual measured values of the motor power by
using models M1 and M2. The estimations are basically coincident with actual measured
values of the motor power from the 1401st to the 1510th data samples. Furthermore, the
estimations produced by model M1 are much closer to the measured values of the motor
power from the 1511th to the 1540th data samples.

Figure 5. Estimation of motor power in validation dataset by using models M1 and M2.

The detailed estimation errors of the motor power are given in Table 2. It is shown
that models M1 and M2 produce almost the same-level estimation errors from the 1401st to
the 1510th data samples. For example, the RMSE values of the two models are 26.2 and
31.8 kW, respectively. However, from the 1511th to the 1540th data samples, the estimation
errors of model M1 are much lower than those of model M2. The RMSE of motor power
predicted by M2 is 50.0 kW, but the RMSE produced by model M1 is only 32.9 kW, about
34.2% reduced. Thus, one can find that the prediction accuracy is greatly improved after
the proposed update strategy is implemented.
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Table 2. Estimation errors of the motor power in validation dataset.

Models

From 1401th to 1510th
Data Samples

From 1511th to 1540th
Data Samples Entire Validate Dataset

RMSE
(kW)

NRMSE
(%)

MAE
(kW)

RMSE
(kW)

NRMSE
(%)

MAE
(kW)

RMSE
(kW)

NRMSE
(%)

MAE
(kW)

M1 24.0 2.83 19.8 32.9 3.38 23.0 26.2 2.69 20.5

M2 24.6 2.90 20.5 50.0 5.14 40.0 31.8 3.27 24.7

Similar results can be obtained when using models M1 and M2 to predict the outlet
pressure in the validation dataset, and these results are illustrated in Figure 6 and Table 3.
The two models exhibit similar accuracy during the prediction from the 1401st to the
1510th data samples. For example, the NRMSE values of models M1 and M2 are 2.44% and
2.77%, respectively. From the 1510th data sample, a small deviation between the estimation
and actual measured values occurs for both two models, but overall, model M1 produces
a much more accurate prediction. From the 1511th to 1540th data samples, model M1
produces an NRMSE value of 4.33%, whereas the NRMSE of model M2 drops to 6.92%. It
indicates that the memory matrix of model M1 covers new operating conditions after the
update, and thus the prediction accuracy is improved.

Figure 6. Estimation of outlet pressure in validation dataset by using models M1 and M2.

Table 3. Estimation errors of the outlet pressure in validation dataset.

Models

From 1401th to 1510th
Data Samples

From 1511th to 1540th
Data Samples Entire Validate Dataset

RMSE
(kPa)

NRMSE
(%)

MAE
(kPa)

RMSE
(kPa)

NRMSE
(%)

MAE
(kPa)

RMSE
(kPa)

NRMSE
(%)

MAE
(kPa)

M1 0.0045 2.44 0.0024 0.0055 4.33 0.0029 0.0047 2.57 0.0025

M2 0.0050 2.77 0.0026 0.0088 6.92 0.0055 0.0060 3.32 0.0032

Figure 7 and Table 4 show the prediction results of FDE bearing temperature. The
estimations of the two models are basically the same except for the 1515th to the 1525th
data samples, where the estimations produced by model M1 are closer to approaching the
actual measured values.

The estimation results of the vibrations are shown in Figure 8 and Tables 5–8. The
estimations of the two models M1 and M2 are generally close to actual measured values,
but the estimations of some samples produced by model M1 are more accurate than those
produced by model M2. For the FDE horizontal vibration (see Figure 8a and Table 5), the
estimation errors of model M1 are smaller than those of model M2 around the 1515th and
the 1520th data samples. The RMSE values of models M1 and M2 during the prediction
from 1511th to 1540th data samples are 0.018 and 0.023, respectively. The NRMSE and MAE
values of model M1 are also smaller than those of model M2. Thus, we can find that the
proposed update strategy is beneficial to improve prediction accuracy. We only analyzed
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the variable of FDE horizontal vibration, and the accuracy improvement of model M1 is
still valid to other vibration variables.

Figure 7. Estimation of motor power in validation dataset by using models M1 and M2.

Table 4. Estimation errors of FDE bearing temperature in validation dataset.

Models

From 1401th to 1510th
Data Samples

From 1511th to 1540th
Data Samples Entire Validate Dataset

RMSE
(◦C)

NRMSE
(%)

MAE
(◦C)

RMSE
(◦C)

NRMSE
(%)

MAE
(◦C)

RMSE
(◦C)

NRMSE
(%)

MAE
(◦C)

M1 0.16 1.78 0.10 0.37 8.63 0.29 0.22 2.23 0.14

M2 0.18 1.93 0.10 0.60 13.92 0.49 0.32 3.17 0.19

Figure 8. Estimation results of validation dataset by using models M1 and M2: (a) FDE horizontal
vibration, (b) FDE vertical vibration, (c) FNDE horizontal vibration, and (d) FNDE vertical vibration.



Energies 2021, 14, 4787 14 of 18

Table 5. Estimation errors of the FDE horizontal vibration in validation dataset.

Models

From 1401th to 1510th
Data Samples

From 1511th to 1540th
Data Samples Entire Validate Dataset

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

M1 0.013 2.3 0.011 0.018 3.0 0.013 0.014 2.4 0.011

M2 0.014 2.4 0.011 0.023 4.0 0.017 0.016 2.8 0.012

Table 6. Estimation errors of the FDE vertical vibration in validation dataset.

Models

From 1401th to 1510th
Data Samples

From 1511th to 1540th
Data Samples Entire Validate Dataset

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

M1 0.004 0.9 0.002 0.008 3.0 0.007 0.005 1.2 0.003

M2 0.004 0.9 0.002 0.009 3.2 0.008 0.005 1.3 0.004

Table 7. Estimation errors of the FNDE horizontal vibration in validation dataset.

Models

From 1401th to 1510th
Data Samples

From 1511th to 1540th
Data Samples Entire Validate Dataset

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

M1 0.008 1.7 0.005 0.014 3.1 0.011 0.010 1.9 0.006

M2 0.008 1.8 0.005 0.016 3.5 0.013 0.010 2.0 0.007

Table 8. Estimation errors of the FNDE vertical vibration in validation dataset.

Models

From 1401th to 1510th
Data Samples

From 1511th to 1540th
Data Samples Entire Validate Dataset

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

RMSE
(mm)

NRMSE
(%)

MAE
(mm)

M1 0.011 1.5 0.006 0.012 2.4 0.009 0.011 1.6 0.007

M2 0.013 1.7 0.007 0.017 3.4 0.014 0.014 1.9 0.009

Same results are obtained during the prediction of the FDE vertical vibration (see
Figure 8b and Table 6), the FNDE horizontal vibration (see Figure 8c and Table 7), and
the FNDE vertical vibration (see Figure 8d and Table 8). For the FDE vertical vibration
(see Figure 8b), models M1 and M2 produce almost identical estimations; for the FNDE
horizontal vibration (see Figure 8c), model M1 has lower estimation errors than model M2
when predicting the 1515th data sample; for the FNDE vertical vibration (see Figure 8d), the
estimations of model M1 are closer to actual measurements around the 1520th data sample.

3.3. Fault Detection Based on Similarity Index

Considering the estimations of all the feature variables, the similarity index of the
validation dataset can be calculated by Equation (13), and the results are shown in Figure 9.
It can be found that the similarity index values calculated by models M1 and M2 generally
coincide from the 1401st to the 1497th data samples. The similarity index of model M1 is
much closer to 1.0 than that of model M2 after the 1498th data sample. According to the
prediction results of the validation dataset, the warning threshold coefficient, γ, is set to
0.83, and the fault warning thresholds of models M1 and M2 are respectively 0.79 and 0.76.
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The similar index values of models M1 and M2 during the validation dataset show that
model M1 can achieve better estimation than model M2 during normal operation.

Figure 9. Similarity index values of the validation dataset.

The test dataset, which consists of 260 data samples (from the 1541st data sample
to the 1800th data sample), was used to evaluate the fault-detection performance of the
proposed model. The similarity index values of the test dataset were calculated by using
models M1 and M2, and the results are shown in Figure 10. The similarity index values
calculated by the two models show a general downward trend. The similarity index of
model M1 drops from 0.98 to 0, and the similarity index of model M2 drops from 0.98 to
0.27. Thus, both two models can capture the abnormal increasing trend of the FDE bearing
temperature. In addition, the similarity index calculated by model M1 decreases at a faster
rate compared with model M2. The similarity index of model M1 decreases to the warning
threshold of 0.79 after the 1602nd data sample, indicating that an abnormal operation is
identified. The similarity index of model M2 reaches the warning threshold of 0.76 after
the 1630th data sample. Thus, one can find that model M1 can detect the abnormality of
the ID fan 28 data points (i.e., 4 h and 40 min) earlier than model M2, which indicates that
the proposed adaptive update strategy is beneficial to advance the fault warning time.

Figure 10. Similarity index values of the test dataset.

4. Conclusions

In this paper, an adaptive early fault detection strategy was proposed for the ID fans
in coal-fired power plants based on the MSET model. Firstly, the informative memory
matrix was selected from historical normal operating data to construct the offline MSET
model. The prediction deviations were taken as the inputs to define a similarity index
that represents the operating status of the ID fan. Then, in order to deal with the problem
of variant condition operation of the ID fan, an online update strategy was implemented
based on monitoring the DQI of the operating data to make the memory matrix cover new
information and update the MSET model. The proposed strategy was applied to an ID fan
in a 300 MW coal-fired power plant for fault detection. The performance was compared
with the model without an update.
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First, the prediction results of the validation dataset show that the MSET model with
the online update has better accuracy than the model without updates, which means that
the proposed update strategy is beneficial to enhance the monitoring accuracy during the
normal operation of the ID fan. Second, the fault-detection results of the test dataset show
that the adaptive early fault detection model is more sensitive to the fault of the ID fan
and can achieve an earlier warning than the model without updates. Finally, the proposed
method is not only applicable to ID fans, but also to other industrial processes where a
certain relationship exists among the feature variables.

In addition, the proposed method was verified by using the real operating data of the
ID fan from a coal-fired power plant; however, there are still a series of complex problems
to be solved before its practical application. In view of not affecting the power generation
process of the power plant, a feasible solution is to package the proposed model into a
dynamic link library and integrate it within the supervisory platform of the power plant to
realize practical application, which will be our future work.
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