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Abstract: Various algorithms predominantly use data-driven methods for forecasting building
electricity consumption. Among them, algorithms that use deep learning methods and, long and
short-term memory (LSTM) have shown strong prediction accuracy in numerous fields. However,
the LSTM algorithm still has certain limitations, e.g., the accuracy of forecasting the building air
conditioning power consumption was not very high. To explore ways of improving the prediction
accuracy, this study selects a high-rise office building in Shanghai to predict the air conditioning
power consumption and lighting power consumption, respectively and discusses the influence of
weather parameters and schedule parameters on the prediction accuracy. The results demonstrate
that using the LSTM algorithm to accurately predict the electricity consumption of air conditioners
is more challenging than predicting lighting electricity consumption. To improve the prediction
accuracy of air conditioning power consumption, two parameters, relative humidity, and scheduling,
must be added to the prediction model.

Keywords: building electricity consumption prediction; meteorological parameters; long short-
term memory

1. Introduction

As the basic industry of a national economy, the energy industry is not only an
important guarantee for ensuring national strategic security but also a prerequisite for
achieving sustainable economic development. Although China’s energy production and
consumption are among the highest in the world, they have yet to be improved in terms
of energy utilization efficiency, renewable energy development utilization rate, energy-
saving, and emission reduction [1]. To cope with global climate change, energy-saving and
emission reduction are crucial.

In recent years, many experts have investigated energy consumption to reduce energy
and the environmental impact of urban building stocks. It has been suggested that pre-
dicting building energy consumption is an important step in solving various engineering
problems. It not only enables us to understand and optimize the energy use of buildings
but also explores potential energy-saving opportunities and proposes better strategies for
sustainable urban development [2]. Building energy consumption prediction is the basic
task of building energy management.

The optimization and management of energy consumption require a full understand-
ing of building performance. The energy consumption of buildings and end-users, from
various sources, should first be determined. Research on the end-use of building consump-
tion shows that it can be grouped into heating, ventilation, and air conditioning systems
(HVAC); lighting and plug-ins; special uses, including elevators, kitchen equipment, etc.;
and auxiliary equipment and electrical appliances [3]. Among them, heating, ventilation,
and air conditioning systems account for the majority of building energy consumption.
Because the building energy prediction problem is a multivariate time prediction problem,
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accurately describing the energy consumption in a building is very complicated [4–6]. Con-
versely, energy consumption in a building depends upon many factors, such as weather
conditions, thermal characteristics of the building envelope, occupancy behavior, and per-
formance of the underlying components. However, the electricity consumed by buildings
has obvious seasonal regularities and uncertainties [7].

At the same time, numerous approaches have been proposed. Some scholars have
made a detailed summary of the existing prediction methods, such as Wei et al. [3] and
Li et al. [8] Generally, the methods of predicting building electrical energy consumption
are grouped into white box, gray box, and black-box methods [8]. The white box method
is based on the physical parameters of the building and is modeled using modeling
software for simulation. Currently, the three commonly used modeling software are DOE-
2, EnergyPlus, and DeST [9]. DOE-2 is an early and widely used simulation software,
and various simulation software have been derived as a computing core, such as eQuest,
VisualDOE, EnergyPlus, etc. Energy Plus is a new generation of building energy efficiency
simulation software, supported by the US Department of Energy. Currently, it is a core
computing software without a graphical user interface. The software developed on its
basis was DesignBuilder. DeST is a building energy simulation software, with AutoCAD
as a graphical interface. The advantage of the white box method is that it does not require
historical energy consumption data and can rely on the building’s physical parameters to
predict the building’s energy consumption data. However, the disadvantage of the white
box is that it cannot be calibrated using the actual historical data [8]. The gray box model
refers to a statistical prediction method that combines the historical load information of
a building with the physical information of the building [10]. The black box method is
also called a data-driven method. It relies heavily on large amounts of historical building
data. It uses strict mathematical derivation algorithms to predict data. Using the black box
method is recommended when the historical data are sufficient and accurate, because its
prediction accuracy is higher than that of the other two methods [3].

In recent years, many researchers have used data-driven black-box methods to predict
the energy consumption of buildings. The data-driven method disregards the physics-
based modeling process [11]. There are three main types of methods for using data-driven
models to make time-series predictions, which are statistical analysis, machine learning, and
deep learning. The autoregressive integrated moving average model (ARIMA) is the most
common statistical analysis method. In recent years, some scholars have used ARIMA as a
hybrid algorithm. De Nadai and Van Someren [12] combined the ARIMA model with an
artificial neural network to predict natural gas consumption and achieve good performance.
However, the ARIMA method relies heavily on historical data; if the data have great
variability, they are not the right choice for predicting long-term time series [13]. Among
the machine learning methods, K-nearest neighbors (KNN), artificial neural networks
(ANNs), and support vector machines (SVMs) are more common for time series prediction.
The core idea of the K-nearest neighbor algorithm is to predict the category of unlabeled
samples, determined by the votes of the k nearest neighbors. However, each prediction of
the K-nearest neighbor algorithm calculates the distance from the entire training set data to
predict the data point, and then sorts the distances in increasing order, requiring significant
calculation. Valgaev et al. [14] provided preliminary recommendations for a general short-
term energy consumption forecasting model for buildings, based on the K-nearest neighbor
method. The proposed model was automatically parameterized, generating predictions
using only historical building load measurements as inputs. Artificial neural networks
(ANNs) are effective nonlinear algorithms for time-series prediction [15]. Because they
do not have linear characteristics and can fit any nonlinear function, they have become
widely used algorithms. In addition, owing to the adaptive nature of artificial neural
networks, artificial neural network models have become increasingly popular in prediction.
Ferlit et al. [16] used the ANN algorithm to apply to real-world applications that included
monthly historical building electricity consumption data sets. The SVM is a traditional
prediction algorithm [17]. and is widely used in research because of its efficient model for
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solving nonlinear problems SVM can also be used to predict time series as it is effective in
solving nonlinear regression estimation problems [18]. Dong et al. [19] first used SVMs to
predict building energy consumption. This is the first application of an SVM for building
load estimation research.

With the advent of cloud computing and big data, a significant increase in computing
power can alleviate training inefficiencies and a large increase in training data can reduce
the risk of overfitting, resulting in deep learning algorithms. A typical deep-learning
model is a deep neural network. Compared with machine learning, deep learning not
only increases the number of hidden layers but also the complexity of the system [20].
Among the commonly used deep learning algorithms, recurrent neural networks (RNNs)
specifically deal with time-series problems. There are multiple time steps for the input
of RNNs neurons and the input of each time step will share parameters when entering
the neuron. Therefore, RNN can ‘memorize’ and ‘simulate’ the dependencies between
data [21]. Long short-term memory (LSTM), as an RNN algorithm, is more complicated
than RNN but addresses the problems of vanishing/exploding gradient. When there is a
dependency relationship between data and a sequential relationship, the LSTM algorithm is
generally considered first. Some scholars have used deep machine algorithms for building
energy predictions. Fan et al. [22] confirmed that deep learning can improve the accuracy
of building cooling load prediction, especially when using advanced functions as model
inputs in an unsupervised manner. In their research, Wang et al. [20] compared thermal
load predictions of the machine learning model XGBoost and the deep learning model
LSTM. Wang believes that LSTM is only suitable for short-term load prediction and adding
weather parameters helps to improve the robustness of LSTM.

However, few scholars currently use deep learning algorithms to predict the medium-
and long-term energy consumption of buildings; it is difficult for the forecasting model to
obtain more accurate results for the whole data set for long-term energy forecasting. On
the other hand, the value of long-term energy consumption forecasting is less dependent
on other parameters, while long-term forecasting appears more in regional energy con-
sumption forecasting. Because the LSTM algorithm has a strong memory for time series,
the annual energy consumption data may be reliably predicted using LSTM. This study
attempts to use the LSTM algorithm to predict the energy consumption data for each day
in the past two years by inputting hourly energy consumption data for each of these days.

To verify this idea, we collected air-conditioning energy consumption data for several
office buildings in Shanghai and meteorological data from 2015 to 2017. The LSTM method
was used to predict the air conditioning energy consumption of these office buildings
in 2017. The final prediction results were compared with the actual building energy
consumption of that year. The main contribution of this article lies in three aspects. First,
unlike previous studies, air-conditioning and lighting electricity consumption data is based
on hourly and sub-project measurements. Secondly, through LSTM model training, the
data of the previous two years are used to predict the data of the next year. Such long-term
forecasts did not exist in previous studies. Lastly, this work explores the influence of
different parameters on improving the accuracy of the algorithm’s prediction. This study
will help researchers use deep learning algorithms to further explore mid- to long-term
energy consumption forecasting.

2. Data Analysis Methodology

There are still many difficulties in using the black box method to predict the electrical
energy consumption of buildings. However, recently emerging deep-learning algorithms
have attracted increased attention from many scholars. The well-known RNN algorithm in
deep learning is widely used to predict time series [21] Many scholars have recently begun
using LSTM to predict the electricity consumption of buildings. For example, Sendra-
Arranz R [23] proposed several multistep prediction models based on LSTM neural net-
works. Zhou and Fang [24] used the deep learning long-term short-term memory (LSTM)
model and Autoregressive Integrated Moving Average (ARIMA) and back-propagation
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(BP) network to predict the air-conditioning energy consumption of the Guangzhou Uni-
versity Library respectively. The results show that the LSTM model has reliable predictions.
Wang and Du [13] proposed a novel approach based on an LSTM network for predicting
periodic energy consumption. The results also proved that the prediction accuracy of LSTM
is better than ARIMA and BP. This article will also start with the LSTM method to discuss
the electricity consumption forecast of office buildings.

2.1. Research Route

This section describes the main work in this study.
The first step was a cognitive project. Having a correct understanding of the research

object is the first and most important step in this research; thus, an on-site inspection of
the office building was conducted to record and obtain the energy consumption and other
relevant information of the building.

The second step was data preparation to ensure the accuracy of the data information;
preliminary check of the data distribution map to ensure that the electricity consumption
data is valid, i.e., there should be no zero or negative values, and there should be no
extreme values outside the range. For continuous periods of electricity consumption, cases
in which the value remains constant should also be eliminated. However, the content of
the data should be as rich as possible for subsequent data screening.

The third step was data processing. After data collection, the first step is to collate and
process the data. There are very few detailed and complete building information materials
in the data obtained from field investigations. Among the obtained data, there are many
invalid data or abnormal data, which require data washing. The types of data that need
to be cleaned include the electricity consumption data of non-high-rise office buildings,
abnormal energy consumption data, NA values in the original data, and discrete values.

The fourth step was the model prediction. LSTM was used to construct the building
prediction model. Weather, building information, and building historical power consump-
tion were selected as the input layer of the model and the estimated power consumption of
the building was selected as the output layer. Then machine learning was used to build
the prediction model of the building. From the data, 17,520 h of building electricity data
from the first two years were used for model training, and 8760 h of building electricity
data from the last year were used for model testing. Random sampling was not used for
cross-validation, based on the temporal characteristics of LSTM.

The fifth step was model evaluation, i.e., analyzing and comparing the electricity con-
sumption predicted by the model with the actual electricity consumption of the building. If
there is a large difference between the predicted and real data, the process is repeated from
the fourth step to rebuild the model and filter out invalid indicators or add new indicators.

2.2. Data Description

The data in this study were obtained from the actual building data of an office building
in Shanghai. The office building has 30 floors above ground and 4 floors underground,
with a total construction area of 101,806 m2. The air conditioner used a full-air variable air
volume system. In this study, LSTM can predict changes in the building through the most
basic data and thus, other information from the site survey, such as building envelopes and
air conditioning equipment information, has not been applied. The air-conditioning system
of the office building adopted centralized cooling. There are two chillers in an AC system.
The COP of the two units was 5.6 and the cooling capacities were 1758 kWh and 2813 kWh,
respectively. The electricity consumption of the building’s air conditioning, lighting, and
sockets was collected every hour.

At present, when some scholars use LSTM for building energy consumption prediction,
they only use the historical data of the building to verify the accuracy of LSTM prediction
and use the data from the previous day to predict the current day’s data. However, these
historical load data cannot be used alone as a training indicator. The weather is still the
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primary influence on the energy consumption of building air conditioning [25]. Therefore,
this study obtained weather data from the Shanghai Hongkou Weather Station.

Shanghai has a subtropical monsoon climate zone. There are four different seasons
throughout the year, with plenty of sunshine and abundant rainfall. In 2016, the average
temperature in Shanghai was 18.28 ◦C, and the average relative humidity was 73%.

2.3. Data Processing
2.3.1. Data Cleaning

The obtained data cannot be directly used for model training and must be processed
first, that is, data cleaning. The purpose of data cleaning is to find and correct identifiable
errors in the data files. The main process includes handling invalid and missing values
and checking data consistency. First, we deleted any unavailable data. For some NA data
in the dataset, the method used in this modeling is to delete all of these data instead of
using a variable average or median. Second, abnormal data was cleared to avoid abnormal
phenomena such as negative numbers or large data volumes. Finally, this study uses
a method based on violin illustration detection to filter the data and eliminate outliers.
The variables to be filtered include dry bulb temperature (Ta), dew point temperature
(Td), relative humidity (RH), pressure (P), and wind speed (WS). Figure 1 shows the
violin distributions of the above five variables. The average dry bulb temperature is
approximately 19 ◦C, the average wet bulb temperature is approximately 13 ◦C, and the
average relative humidity is 72%.
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Figure 1. Violin chart of the meteorological parameters.

2.3.2. Data Analysis

After data filtering, the basic electricity consumption of the office building can be
visually analyzed first, as shown in Figure 2 below, which shows the total monthly electric-
ity consumption of the office building from 2015 to 2017. The blue curve represents the
air conditioning energy consumption, and the red line represents the lighting and Socket
energy consumption.
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Figure 2. Monthly electricity consumption for air conditioning and lighting in a high-rise office from 2015 to 2017.

As shown in Figure 2, the electricity consumption of this office building has an
obvious law, that is, the annual fluctuations of electricity consumption are similar. The
power consumption of the air conditioner represented by the blue curve fluctuates greatly.
It consumes more power in winter and summer, and less power in spring and autumn.
The air-conditioning power consumption in the highest month exceeds the lighting power
consumption. The total power consumption of lighting and sockets represented by the red
curve is higher than the power consumption of air conditioners, but it does not change
much between seasons. The highest power consumption also occurs during summer. On
the other hand, it can be seen from Figure 2 that over time, the air-conditioning power
consumption of office buildings in peak months has gradually increased over time, while
the power consumption of lighting and sockets has no obvious annual change trend.

2.3.3. Correlation Analysis

Correlation analysis was used to identify the correlations between different variables.
By identifying highly interdependent variables, the number of variables input to the model
can be reduced to simplify the model. The range of the correlation coefficient (COR) was
−1 to 1, indicating the degree of correlation between the variables. COR = 0 indicates that
there is no relationship between the two variables. COR = 1 indicates a completely positive
correlation and COR = −1 indicates a fully negative correlation. There are currently two
types of correlation analysis that are used more frequently, i.e., Pearson correlation analysis
and Spearman correlation analysis.

The Pearson correlation coefficient (PCC) is suitable for continuous data and requires
that the data population is normally distributed or close to a normal unimodal distribu-
tion [26]. The Spearman correlation coefficient (SCC) [27], does not require the distribution
of the original variables and is a non-parametric statistical method. It is mainly used to
measure the degree of correlation between hierarchical ordinal variables, but its statisti-
cal power is lower than Pearson’s correlation coefficient. Considering that the Schedule
parameters used in this study were ordinal—not continuous—variables and electricity
consumption data were non-normally distributed the Spearman correlation coefficient was
used to calculate the correlation when performing correlation analysis. The electricity data
distribution diagram is shown in Figure 3.
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Figure 3. Distribution diagram of the electricity consumption data.

2.4. LSTM Algorithm

Long Short-Term Memory (LSTM) is a recursive neural network. Its appearance solves
the problems of gradient disappearance and gradient explosion in long-sequence training.
Compared with traditional recurrent neural networks, long-term and short-term memory
increase the connection between data [28].

The main input and output differences between the LSTM structure (right in the
figure) and the ordinary RNN are shown in Figure 4.
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Figure 4. LSTM structure compared with an ordinary RNN.

Compared with RNN, which only has one transfer state ht, LSTM has two transmis-
sion states, one ct (cell state) and one ht (hidden state). Among them, ct changes very
slowly. Usually, the output ct is ct−1, transmitted from the previous state with some values.
However, ht is often very different for different nodes.

The internal structure of the LSTM is analyzed below. First, the current input of xt of
LSTM and ht−1 is passed down from the previous state to obtain four states.

z = tanh(wzxt + Uzht−1 + bz)z f = σ(w f xt + U f ht−1 + b f )zi = σ(wixt + Uiht−1 + bi)zo = σ(woxt + Uoht−1 + bo) (1)
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z, z f , zi, and zo are all calculated by multiplying the input variable matrix by the
weight matrix and adding the deviation; z converts the result to a value between −1 and 1
through a tan activation function, while z f , zi, and zo convert it to a value between 0 and 1
through the activation function of the gated state.

z f , zi, and zo relate to the input gate, forget gate, and output gate, respectfully. wz, wi,
w f , wo, Uz, Ui, U f , and Uo are weight matrices. bz, b f , bi, and bo are the bias vectors. xt is
the current input, ht−1 is the hidden layer output of the previous node.

tanh is used to convert the result into a value between −1 and 1 through a hyperbolic
tangent activation function. The sigmoid function and tanh function are defined as:

σ(x) =
1

1 + e−x tanh(x) =
ex − e−x

ex + e−x (2)

The following starts to further introduce the use of these four states in LSTM. Figure 5
shows the LSTM algorithm structure.
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Figure 5. Algorithm structure of LSTM.

There are three main stages within LSTM:

(1) ‘Forget’ stage. Here, the input of the previous node is selectively ‘forgotten’. This
stage controls the information from the previous state that needs to be retained and
the previous state that needs to be forgotten.

z f = σ(w f xt + U f ht−1 + b f )kt = ct−1 � z f (forget stage) (3)

(2) ‘Storage’ stage. Here, the inputs of this stage are selectively ‘remembered’. Based on
the results of previous calculations, this stage selectively stores and inputs the current
amount of information.

zi = σ(wixt + Uiht−1 + bi)z = tanh(wzxt + Uzht−1 + bz)jt = zi � z (storage stage)ct = jt + kt (4)

(3) ‘Output’ stage. This stage determines the output of the current state. At this stage,
the results obtained in the previous stage are scaled (changed by the tanh activation
function) and the amount of current information flowing into the subsequent network



Energies 2021, 14, 4785 9 of 21

is controlled. The results obtained in the first and second steps for transmission are
added to the next network. This is the first formula shown in the figure above.

zo = σ(woxt + Uoht−1 + bo)ht = tanh(ct)� zo (output stage)yt = σ(W ′ ht) (5)

3. Results

In this section, the LSTM method is used to predict the power consumption of an
office building in Shanghai. The significance of this study is not only to use LSTM to
predict the energy consumption of buildings but also to explore the models and methods
that affect the prediction accuracy by using LSTM methods. Previous scholars only used
the LSTM method to conduct preliminary exploration and verification of the total load
forecast for buildings, but no scholars have tried to use this method to separately predict
the air-conditioning load and lighting load. Therefore, the results of this study further
propose ways to improve the prediction accuracy of the LSTM method.

In the LSTM prediction process, the core variable is electricity consumption, and historical
electricity consumption can be used as the only input variable to achieve a certain degree
of accuracy. To explore whether adding other variables can change the prediction accuracy,
the other variables will be added to study how the addition of these variables will affect
prediction accuracy and these variables will be adjusted to improve the prediction accuracy.

3.1. Correlation Analysis of Auxiliary Variables
3.1.1. Correlation Analysis

Because electricity consumption data are not normally distributed, the Spearman
correlation coefficient is used to express the correlation between auxiliary parameters and
electricity consumption data. These auxiliary variables include dry-bulb and wet-bulb
temperatures, relative humidity, pressure, and schedule parameters. The results of the
correlation analysis are presented in Table 1.

Table 1. The correlation between the auxiliary parameters and the power consumption data.

Correlation
Coefficient

Electricity
Consumption Humidity Dry-Bulb

Temperature
Wet-Bulb

Temperature Pressure Schedule
Parameter

electricity
consumption 1.000

humidity −0.301 1.000
dry-bulb

temperature 0.171 −0.040 1.000

wet-bulb
temperature 0.074 0.355 0.900 1.000

pressure −0.059 −0.223 −0.855 −0.876 1.000
schedule

parameter 0.365 −0.008 −0.006 −0.004 −0.004 1.000

Table 1 summarizes these three key points. First, the correlation between air condition-
ing energy consumption data and other auxiliary parameters is not very high, and the three
auxiliary variables with a higher correlation with load data are the schedule parameters,
relative humidity, and dry bulb temperature. Second, among the input variables, the
correlation among the schedule parameters, relative humidity, and dry bulb temperature
was very low, demonstrating that these three variables have a low correlation. Finally,
there was a strong correlation between dry bulb temperature, wet bulb temperature, and
atmospheric pressure. The absolute value of the correlation coefficient between these
variables exceeds 0.8, indicating that these three parameters are interchangeable. Based
on the above analysis, we finally discarded the two parameters—wet bulb temperature
and atmospheric pressure—and selected dry bulb temperature, schedule parameters, and
relative humidity as auxiliary variables.



Energies 2021, 14, 4785 10 of 21

3.1.2. Meteorological Parameters

As mentioned in the Methods section, meteorological parameters have always been a
factor that cannot be ignored in building energy consumption forecasting. It is a natural
idea to include meteorological parameters in LSTM forecasting. Through data collection,
we collected hourly meteorological data from the Shanghai Hongkou Weather Station from
2015 to 2017, including dry bulb temperature, wet bulb temperature, relative humidity,
atmospheric pressure, and wind speed. Through correlation analysis, we found a clear
correlation between dry bulb temperature, wet bulb temperature, and atmospheric pressure.
Therefore, the two meteorological parameters—wet bulb temperature and atmospheric
pressure—were deleted. Because wind speed, a meteorological parameter, affects air
conditioning consumption in buildings with natural ventilation—but has little effect on
the electricity consumption of high-rise buildings (especially office buildings) [29]—wind
speed is not considered here. The remaining dry-bulb temperature and relative humidity
were selected as variables among the meteorological parameters.

3.1.3. Schedule Parameters

To determine whether to use electrical appliances as a determinant of electricity con-
sumption, it is necessary to consider when the office building uses more/less electricity [10].
For office buildings, electricity consumption is very regular. For the energy consumption of
buildings, office buildings use more electricity during the day and less electricity at night.
There is an obvious time dependency; therefore LSTM, an algorithm that specifically deals
with timing issues, is very suitable for predicting energy consumption in office buildings.
However, it is not sufficient to pay attention to the electricity consumption time. Most
office buildings are closed during national legal holidays, such as the Spring Festival or
National Day. During the holiday season, the building’s electricity consumption level is
even lower than at night on weekdays. During national legal holidays, such as the Spring
Festival, the time is not fixed, so it is necessary to add a variable ‘schedule’ to constrain the
prediction model.

3.2. Model Description

The results of this experiment are divided into an air-conditioning electricity con-
sumption forecast and a lighting electricity consumption forecast. According to the LSTM
method, the parameters used in the input layer and the result of the output layer need to
be set. In this study, the historical electricity consumption of the building as the output
variable, and other relevant parameters were used as the input variable, and the LSTM
network model was first established through the model training set. Then, the pertinent
parameters of the test group were verified in the model and the power consumption of the
building was predicted to verify the accuracy of the model. In accordance with previous
studies [30], 50 neurons were set in the hidden layers in the LSTM model, 1 neuron was
set in the output layer (regression problem), the input variable was a characteristic of the
time step (t-n), the loss function used the ‘mean_squared_error’, the ‘Adam Optimizer’
was used as an optimization algorithm, the model used 200 epochs, and the size of each
batch was 72.

The accuracy of the energy consumption forecast results can be evaluated by using
indicators such as the mean square error (MSE), mean absolute error (MAE), and coefficient
of variation of the root mean square error (CV-RMSE) [31].

MSE =

n
∑

k=1

(
Y(k)−Yp(k)

)2

n
MAE =

1
n

n

∑
k=1

∣∣Y(k)−Yp(k)
∣∣CV− RMSE =

√
n
∑

k=1
(Y(k)−Yp(k))

2

n

Y
(6)

where Y(k) and Yp(k) are the actual and the predicted values, respectively, and Y
denotes the average values.

MSE can accurately reflect the precision of the prediction results, MAE can measure
its accuracy and CV-RMSE is the percentage of the root-mean-square error and the actual
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average value, reflecting the degree that the forecast value deviates from the actual value.
The proposed model was established on an ordinary computer with Intel Core i5 and 16
GB of memory while the platform was Python 3.6. The packages used in Python include:
numpy, pandas, sklearn, and keras.

3.3. Forecast Results Analysis
3.3.1. Model Comparison of Hourly Energy Consumption Prediction

For the black-box-based prediction model, various methods must be applied and then
compared, and thus we introduced the ARIMA algorithm and BP algorithm as benchmarks
for validating the performance of the LSTM algorithm used in this case. ARIMA and BP
are considered as the widely used methods with good capabilities. The main principle of
ARIMA is to first transform the non-stationary time-series data into the stationary time-
series data, and then use the historical data of the variables to predict themselves [12]. The
following formula shows the basic principles of the model.

ft(p, d, q) = (1 + ϕ1) ft−1 + (ϕ2 − ϕ1) ft−2 + · · ·+ (ϕp − ϕp−1) ft−p
−ϕp ft−p−1 + et − θ1et−1 − · · · − θ2et−2 − · · · − θqet−q

(7)

where t is the number of days, p is the lag of the time series data, d is the differential order of
the time series data that needs to be stable, and q is the lag of error used in forecast model.

The BP algorithm, a basic neural network, is able to implement the prediction but
cannot remember the historical data [24], which may not be suitable for dealing with
the time series forecasting problems. The setting of the BP neural network was that the
electricity consumption data of the first 24 h was used as the data input layer, and the
electricity consumption data of the next hour was used as the output layer.

The air-conditioning power consumption prediction was used for comparison among
the BP, ARIMA, and LSTM methods. All the methods selected the hourly power consump-
tion data of air conditioners from 2015 to 2016 as the training set and the hourly power
consumption data of air conditioners in 2017 as the test set, respectively. To better illustrate
the pros and cons of the three methods, we showed the daily electricity consumption
forecast results for a week in 2017. The test set prediction results are shown in Figure 6.
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Figure 6. Different model daily air-conditioning electricity forecast results in 2017.

As shown in Figure 6, it is obvious that LSTM has a better performance than ARIMA
during weekdays, and the BP’s prediction results are the worst. The error between the
daily prediction results of LSTM and the real data is no greater than 20 kWh. At the same
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time, we also calculated the MSE, MAE, and CV-RMSE for the three methods. The results
are shown in Table 2. Compared with the ARIMA and BP, LSTM has a lower value in
MSE, MAE, and CV-RMSE. The results showed that the LSTM model is superior to the
ARIMA and BP neural network models in air conditioning energy consumption prediction.
Therefore, using the LSTM method to train the hourly power consumption data of the first
two years to predict the power consumption of the office building in the next year, has a
better prediction accuracy than the other two algorithms.

Table 2. Results of different models forecasting daily air-conditional electricity consumption.

Evaluation Index MSE MAE CV-RMSE

LSTM 618.40 15.34 0.147
ARIMA 650.51 21.73 0.183

BP 721.36 35.32 0.276

3.3.2. Air-Conditioning Electricity Consumption Forecast

Figure 7 shows the air-conditioning electricity consumption forecasting graph in which
only historical data are input. The blue line represents the actual power consumption of the
air conditioner in the office building, and the red line represents the power consumption
predicted by the LSTM. It can be seen from Figure 8 that the prediction is relatively accurate
when the model only uses historical energy consumption data as input variables.
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Figure 8. Air-conditioning electricity forecast in 2017.

Figures 8 and 9 show the winter air conditioning forecast and summer forecast,
respectively. These two prediction charts provide more detailed predictions. Compared
with the winter forecast, the summer forecast was more accurate. This may be because office
buildings use air conditioning more regularly during summer. In winter, air conditioning
schedules for buildings are much more complicated than those in summer. Therefore,
the model prediction result at a certain peak power consumption time was greater than
the actual value. These large data are 10–200 kWh larger than the actual data. There are
380 data points with an error exceeding 50 kWh (a total data volume of 8736) and 82 data
points with an error exceeding 100 kWh. The data with errors of more than 100 kWh are
concentrated around 7:00 and 8:00 on weekdays, in summer or winter.
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Figure 9. Forecast of air conditioning power consumption in summer 2017.
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Figures 10 and 11 compare the forecast map of winter working days and non-working
days and the actual electricity consumption, respectively. From the resulting point of view,
the forecast of electricity consumption on working days is relatively accurate. There is
an obvious lag in forecasting electricity consumption on non-working days, and at some
moments an error of more than 50 kWh occurs.
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Figure 10. Forecast of air conditioning energy consumption in winter working days.
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This lag was due to the algorithm because the LSTM algorithm is based on the
previously obtained data; it continuously obtains the subsequent results and thus the size
of the previously obtained data will affect the prediction of the amount of data behind.
If there is a significant change in electricity consumption before and after the time, the
algorithm may have a large error. Therefore, as shown in the previous results, the prediction
data with large errors often appear at 7:00 during winter and summer. At a later moment,
the error between the predicted and actual data volume gradually decreases to below
5 kWh or even lower.

Based on the above predictions, this study considers the addition of weather—and
other—parameters to the input variables; these include: the dry-bulb temperature and,
relative humidity (weather), and schedule (other). This article compares the prediction
accuracy of the models with the added parameters and the results of the comparison are
presented in Table 2.

In Table 3, “0” indicates a model with only historical data, and “1”, “2”, and “3”
represent hourly dry bulb temperature, relative humidity, and schedule parameters. “1&2”
means to include the dry bulb temperature and relative humidity at the same time, and
“1&2&3” means to include dry bulb temperature, relative humidity, and schedule param-
eters. Owing to a large amount of data and the different data selected at the beginning
of each training period, the accuracy of each model’s prediction will change. To better
compare the results of the various parameters, we conducted multiple simulations. In
the first column of the table, “a”, “b”, and “c” represent the specific experiment used for
simulation prediction. Each prediction records the MSE, CV-RMSE, and MAE of the model.

Table 3. Calculation results of indicators after adding different parameters to the model.

Experiments Index 0 1 2 3 1&2 1&3 2&3 1&2&3

a
MSE 618.4007 639.2804 611.8292 521.6249 628.3102 621.6918 525.8993 580.7773

CV-RMSE 0.1472 0.1497 0.1464 0.1352 0.1484 0.1476 0.1357 0.1427
MAE 15.3412 15.4008 15.0831 14.5979 15.1707 15.8855 14.6078 14.8953

b
MSE 637.9738 642.9971 620.1647 529.0256 638.2404 616.0422 530.3914 610.0158

CV-RMSE 0.1495 0.1501 0.1474 0.1361 0.1495 0.1469 0.1363 0.1462
MAE 15.6836 15.4158 15.2198 14.6996 15.5829 15.7330 14.7353 15.4975

c
MSE 634.4595 654.3532 609.4524 524.1977 624.5042 613.2818 533.1998 598.2004

CV-RMSE 0.1491 0.1514 0.1461 0.1355 0.1479 0.1466 0.1367 0.1448
MAE 15.6369 15.7573 15.0483 14.6299 15.01581 15.6632 14.7882 15.2544

d
MSE 627.5367 646.9769 617.9012 522.8939 641.9141 642.3194 527.0063 618.1331

CV-RMSE 0.1483 0.1506 0.1471 0.1354 0.1499 0.1500 0.1359 0.1472
MAE 15.4419 15.5479 15.1449 14.5952 15.5305 16.2132 14.6679 15.7004

e
MSE 632.7266 634.7069 615.5522 527.4990 653.2188 600.0877 519.7688 599.0087

CV-RMSE 0.1489 0.1491 0.1469 0.1359 0.1513 0.1450 0.1349 0.1449
MAE 15.5905 15.3135 15.1968 14.6927 15.7624 15.3513 14.5183 15.3066

The highest accuracies of the five predictions conducted via the same model were selected
from Table 3 and compared. From the results presented in Table 3, the prediction error rates
between the various models are relatively close, demonstrating that including other relevant
parameters did not significantly improve the prediction accuracy. However, it can also be
easily found from the data in Table 3 that including the variable of ‘dry bulb temperature’ in
the model prediction reduces the accuracy of the original prediction, and adding the ‘schedule’
variable can slightly improve prediction precision. Simultaneously including ‘Schedule’ and
‘relative humidity’ can maximize the prediction accuracy of the model.

Based on the results of this experiment, it can be concluded from Figure 12 that the
prediction accuracy can be increased or decreased by changing the input variable, and it is
possible to include the variables ‘schedule’ and ‘relative humidity’ while entering historical
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energy consumption data to improve accuracy while only adding the variable ‘dry bulb
temperature’ reduces the prediction accuracy.
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Figure 12. Forecast of the air-conditioning electricity consumption on a working day.

As shown in Figure 12, the prediction models 1, 2, and 3 represent those with only
historical electricity data, those with the addition of ‘dry bulb temperature’, and those with
‘schedule’, or relative humidity. At 7:00. on weekdays, the actual electricity consumption
data significantly increased. Model 3 reflects this change more accurately than the other
two models. Model 3 is closer to the actual electricity consumption data than the other two
models in the subsequent predictions. After a day of accumulating energy consumption
data, the actual air-conditioning power consumption was 7682 kWh, the total predicted
power consumption of Model 3 was 7695 kWh, the total predicted power consumption
of Model 1 was 7619 kWh, and the total predicted power consumption of Model 2 was
7798 kWh.

3.3.3. Validation of Air-Conditioning Electricity Consumption Prediction Model

Next, we discuss whether the above parameter adjustment method can be applied to
other office buildings. We used the energy consumption data of another office building in
Shanghai from 2015 to 2017 and used the same method to recalculate and verify the office
building. The final prediction accuracy results are listed in Table 4.
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Table 4. Different model prediction results for another building.

Experiments Index 0 1 2&3

a
MSE 207.6466 236.1434 175.5794

CV-RMSE 0.0565 0.06029 0.0519
MAE 10.4367 11.1318 9.7602

b
MSE 202.2124 228.3745 174.7428

CV-RMSE 0.0558 0.05929 0.05186968
MAE 10.3585 11.0803 9.7443

c
MSE 203.2862 231.5124 170.6705

CV-RMSE 0.0559 0.05970 0.0513
MAE 10.3066 10.9787 9.6480

d
MSE 209.9991 223.4955 172.8036

CV-RMSE 0.0568 0.05866 0.0516
MAE 10.5164 10.9168 9.7492

e
MSE 205.2349 245.4507 166.9035

CV-RMSE 0.05621 0.06147 0.0507
MAE 10.4451 11.4452 9.5268

The results in Table 4 indicate that the model prediction results of the building’s air
conditioning electricity consumption prediction are consistent with the results obtained in
this study; that is, when using the LSTM model to predict high-rise office buildings, adding
the dry-bulb temperature will reduce the prediction accuracy. Including ‘schedule’ and
relative humidity can improve prediction accuracy.

3.3.4. Lighting Electricity Consumption Forecast

In contrast to the air-conditioning electricity consumption, lighting electricity con-
sumption is less correlated to the meteorological parameters, but more correlated to how
regular the office building uses its lighting. Thus, there is no difference in electricity
consumption between the seasons

Figure 13 shows the result of the prediction in with the single-history lighting elec-
tricity consumption. Compared with Figure 7, it can be seen that the red prediction curve
almost completely covers the actual blue energy consumption curve. Only the peak power
consumption on individual days cannot be accurately predicted. The indicators of the
accuracy of the lighting prediction model are much better than those of the air-conditioning
prediction model, as presented in Table 5.
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Figure 13. Hourly lighting electricity forecast in 2017.
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Table 5. Different model prediction indicators result for lighting electricity consumption.

Index Only Historical Data With Schedule With Dry-Bulb Temperature

MSE 215.264 202.712 208.542
CV-RMSE 0.058 0.056 0.057

MAE 10.698 10.665 10.65

To study the details of the prediction model, the study also provides a diagram of the
lighting electricity consumption and the corresponding predicted electricity consumption
including weekdays and weekends, as shown in Figure 14. From the results, after the
model is trained, there is no need to mark the work and rest time, and the LSTM model can
accurately predict the electricity consumption on weekends and weekdays, respectively.
Compared with the forecast of air-conditioning electricity consumption, there is no lag
in the forecast of lighting and socket electricity consumption, which again confirms that
the forecast of lighting and socket electricity consumption is better than the forecast of
air-conditioning electricity consumption.
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Figure 14. Forecast of air-conditioning energy consumption in a week.

Finally, this study attempts to improve predictions via the energy consumption model
for lighting and sockets by, adding “schedule” parameters and “meteorological” parameters
to the original electricity consumption data. The final error results of the model are
presented in Table 5.

The results show that adding parameters to the prediction models of lighting and
sockets does not significantly improve the prediction model. In summary, the main pa-
rameter for predicting the electricity consumption of lighting and sockets is the historical
electricity consumption data of the building.

4. Limitations

This study yielded an energy consumption forecasting method for high-rise office
buildings. Through deep learning methods, long-term energy consumption forecasting
can be achieved using data with regular patterns. By discussing the addition of different
auxiliary variables, the accuracy of the prediction model can be increased. The limitations
of this study are as follows:

(1) This study only used the LSTM algorithm for the long-term energy consumption
prediction of office building air conditioning. Due to the limitations of article length,
methods other than the ARIMA and BP algorithms were not compared with the
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LSTM method. Whether LSTM is the best method for long-term energy consumption
prediction in office buildings remains to be verified.

(2) The research results of this study are limited to the prediction of office buildings in
Shanghai. Whether it can be widely used in office buildings remains to be verified.
The prediction model, in this case, was tested on a high-rise office building and the
algorithm was not suitable for low-rise office buildings. Owing to the deviation of
the prediction model, this study did not show the prediction results of low-rise office
buildings. It can be seen from this that using the LSTM algorithm for long-term
air-conditioning power consumption forecast has a certain scope of application.

(3) Among the input variables considered in this study, only meteorological parameters
and schedule parameters are considered, and other parameters that affect building air
conditioning energy consumption, such as building maintenance structural parame-
ters and the amount of fresh air entering the building, are not considered. Whether
the inclusion of other input variables affects the accuracy of predictions, requires
further investigation.

5. Conclusions

In this study, the air-conditioning electricity consumption of office buildings in the
Shanghai area was used to verify the accuracy of this algorithm, and the variables that
affect the prediction accuracy were selected, and the influence of these variables on the
prediction accuracy was studied. The conclusions of this study are as follows:

(1) It is feasible to use the LSTM method to train the hourly electricity consumption data
of the first two years to predict the hourly electricity consumption data of the office
building in the next year, and the model has better prediction accuracy. However, the
prediction accuracy of the model for air-conditioning electricity consumption is not
so high, and the error of the prediction mainly appears in the morning from 7:00 to
8:00 on weekdays.

(2) To further improve the air-conditioning prediction accuracy, we considered adding
three other variables for model verification. When the dry bulb temperature is added
as an input variable for prediction, the prediction accuracy decreases. This may be
because the power consumption of the air conditioner is also affected by the building
envelope; thus, the temperature has no direct influence on the power consumption of
the air conditioner. When adding the “schedule” and “relative humidity” as input
variables for prediction, the prediction accuracy can be slightly improved. This
conclusion can be applied to other office buildings.

(3) The increase in the accuracy of forecasting with the addition of other variables is
mainly due to the improvement of the forecasting accuracy at the beginning of
working hours (7 a.m.–8 a.m.) on weekdays, not the improvement of the accuracy of
peak load forecasting.

(4) Using the LSTM model, the prediction of lighting power consumption is very accurate,
and only using historical power consumption data can well predict the lighting power
consumption of buildings.

This study uses the LSTM method to verify that the model formed using the variables
of historical electricity consumption data, schedule, and relative humidity has the greatest
prediction accuracy. Whether this conclusion applies to all office buildings requires further
verification. According to the results discussed in this article, the prediction accuracy of
the air-conditioning model should be further improved.
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Nomenclature

Abbreviations
ANN Artificial neural network
ARIMA Auto regressive integrated movingAverage model
COR Correlation coefficient
CV-RMSE Coefficient of variation of the root mean square error
HVAC Heating, ventilation and air conditioning systems
LSTM Long Short-Term Memory
KNN k-nearest neighbors
MAE Mean absolute error
MSE Mean square error
NA Not available
PCC Pearson correlation coefficient
SCC Spearman correlation coefficient
SVM Support vector machine
RNN Recurrent Neural Networks
Superscripts/Subscripts
b Bias of LSTM
ct Cell input received by the previous node
ht Hidden layer input received by the previous node
P Pressure
RH Relative humidity
Ta Dry bulb temperature
Td Wet bulb temperature
W Weight of LSTM
WS Wind speed
xt Data input in the current state
yt Data output in the current state
Y(k) Actual value
Yp(k) Predicted value
Y Average value
Z Gate control signal converted by tanh activation function
Zi ‘Memory’ gate control
Zf ‘Forget’ gate control
Zo ‘Output’ gate control
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