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Abstract: Integrated energy systems have become an important research topic in the pursuit of
sustainable energy development. This paper examines regional integrated energy systems, presents
the typical architecture of regional integrated energy systems, and builds an integrated energy
system model. Two evaluation indexes are proposed: the integrated energy self-sufficiency rate
and the expected energy deficiency index. Based on these evaluation indexes and taking into
account the uncertainty of wind power generation, a bi-level optimization model based on meta-
heuristic algorithms and multi-objective programming is established to solve the problem of regional
integrated energy system planning under different load structures and for multi-period and multi-
scenario operation modes. A quantum evolutionary algorithm is combined with genetic algorithms
to solve the problem.

Keywords: integrated energy system; quantum evolutionary algorithm; multi-objective program-
ming; bi-level model; uncertainty

1. Introduction

With the increasing demand for energy, as well as the increasingly serious problems
of environmental pollution and energy crisis, fossil energy alone can no longer meet the
current energy demand, and the energy industry system is facing transformation and
upgrading [1,2]. In this context, the concept of the integrated energy system (IES) was
put forward. The integrated energy system involves the conversion of different forms of
energy and the connection of different types of energy networks [3,4]. Compared with the
traditional power supply system, the integrated energy system can effectively improve the
utilization efficiency of primary energy and alleviate the fluctuation in the power of new
energy connected to the main network of the distribution network, meaning it is of great
value and significance [5,6].

The modeling and optimal scheduling of regional integrated energy systems (RIESs)
have always been a hot topic in academic circles. The problems faced in the development
of integrated energy and the Energy Internet were proposed by Kamalinia et al. (2014) [7],
aiming at the problems encountered when the power system in the integrated energy
system is coupled with other systems. Hajabdollahi et al. (2014) [8] studied the modeling,
planning, and economic scheduling of a combined cooling, heating, and power (CCHP)
system, which still belongs to the research scope of traditional CCHP energy flow optimiza-
tion. Different ways of increasing flexibility in the energy system by the use of regional
optimization scheduling were established by Lund et al. (2006) [9]. Karimi et al. (2013) [10]
listed the optimal power dispatch strategy for different generation units and storage de-
vices. Ni et al. (2015) [11] used the bi-level optimization method to achieve the optimal
scheduling of an integrated energy system, but only the optimization of the electrically
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coupled system was considered. A cogeneration scheduling model which can improve
the peak shaving capacity of cogeneration units was established by Chen et al. (2014) [12],
and the effect on wind power consumption was analyzed. Li et al. (2015) [13] established
the RIES combined thermoelectric dispatching model and discussed the utilization and
economy of renewable energy.

Up until now, only a few research studies have investigated the optimization of re-
gional integrated energy systems (RIESs) while considering multi-objective optimization
and uncertainty. Existing research had focused on the bi-level modeling and the multi-
objective optimization of RIESs. The models investigated in the RIES optimization studies
by Ha et al. (2018) [14], Hu et al. (2017) [15], and Chen et al. (2018) [16] were complex
and difficult to solve, and they did not properly consider the interactions between the
electricity, heating, and cooling systems. The uncertainty and multi-objective programming
challenges of renewable energy power generation in RIESs were also not fully considered.
Moreover, with the intensification of conflicts between economic development, environ-
mental protection, and sustainable energy development, the construction of low-carbon,
clean, and efficient renewable energy systems has become a global concern. The operation
and planning of RIESs should also be carried out in a sustainable manner. In view of the
above problems, this paper fully considered the interactions between the gas, heating,
cooling, and power systems and investigated the optimal design of the RIES. With different
load structures and multiple periods considered, a multi-scene RIES optimization model
was built with the power system at the core.

Contrary to the previous studies that mainly focused on the cost problem, this paper
also examined the primary energy utilization efficiency during the actual operation of
the RIES. Taking into consideration the uncertainties existing in wind power generation,
the selection and configuration of the energy equipment in the RIES were optimized,
and scheduling strategies were obtained for various typical situations. In order to solve
the above problems, a bi-level optimal allocation model was established for the RIES.
The target of the upper-level model was the annual investment costs, and which energy
instruments to use and how many to use were the variables to be optimized. The lower-
level model aimed to minimize the operation and maintenance costs and improve the
primary energy utilization efficiency by taking into account the constraints of the above
evaluation indicators. In order to solve the complex multi-objective optimization problem,
a strategy combining quantum evolutionary algorithms and genetic algorithms was chosen.
Finally, the rationality and effectiveness of the modeling and optimization strategies were
verified through an analysis of the simulation results, and the influences of different
evaluation indexes and calculation methods were studied.

2. Regional Integrated Energy System Model
2.1. RIES Structure

By analyzing the operating parameters of the energy equipment, considering the load
balance and constraint relaxation method, a general joint scheduling optimization model
of the RIES was established, and the simulation calculation was carried out based on the
model. This RIES optimization model does not depend on any assumptions about the
system operation mode and is applicable to various typical days. It is also applicable to
the joint cold, heat, and power dispatching model in general situations. This optimization
model can not only ensure the efficiency of the algorithm but also find the global optimal
solution of the joint scheduling optimization model.

In order to describe the energy flow coupling relationship of the RIES, a bi-level opti-
mization model was adopted for this study, as shown in Figure 1. The energy equipment
included a CCHP system, electric refrigerators (ERs), gas boilers (GBs), electric boilers
(EBs), and wind turbine generators (WTGs). The system contains three types of load:
cooling, heating, and electricity. The energy sources of the system are electricity from the
power grid, chemical energy from natural gas, and renewable energy generated from the
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wind turbines. The energy efficiency of the system and economic benefits were improved
through optimized scheduling. The specific structure of the RIES is shown in Figure 1:

Figure 1. RIES structure.

2.2. Energy Equipment Model
2.2.1. CCHP Model

The CCHP system is the most important energy conversion instrument in an RIES.
A complete CCHP system mainly consists of a gas turbine, absorption chiller, and waste
heat boiler. Gas turbines use natural gas as the energy source to generate electricity and
waste heat. The released waste heat can be cooled by an absorption chiller or heated
by a waste heat boiler. The CCHP is coupled with the power grid and gas network for
integrated energy supply. There is a functional relationship among the parameters of the
gas turbine, absorption chiller, and waste heat boiler in the CCHP system, and the model
can be described as follows:

1. The gas turbine consumption Pg,t and power generation Pc,t data satisfy the quadratic
function, where Ic is the operating state of the gas turbine:

Pg,t = a1(Pc,t)
2 + b1Pc,t + c1 Ic (1)

When Ic is 0, the CCHP is turned off, and when Ic is 1, the CCHP is turned on.

2. The cooling capacity Fc,t of the absorption chiller satisfies the cubic function for gas
turbine power generation Pc,t:

Fc,t = a2(Pc,t)
3 + b2(Pc,t)

2 + c2Pc,t + d2 Ic (2)

3. The heat produced Tc,t in the waste heat boiler and the power produced Pc,t in the
gas turbine satisfy the quadratic function

Tc,t = a3(Pc,t)
2 + b3Pc,t + c3 Ic (3)

In the above formula, ai, bi, ci, and di are the coefficients obtained after a relationship
was determined between the CCHP parameters and the power generation data. The specific
values are shown in Table A1 in the Appendix A.

2.2.2. Model of Electric Boiler, Gas Boiler, and Electric Refrigerator

Both electric boilers and refrigerators consume electrical energy to heat/cool. Gas-
fired boilers are a common source of heat in an RIES, and they consume natural gas. The
working principle for electric boilers, refrigerators, and gas-fired boilers is very similar.
The input power Ii,t and the output power Oi,t can be written as

Oi,t = ηi Ii,t i = {EB, GB, EC} (4)

where EB, GB, and ER represent the electric boiler, gas-fired boiler, and electric refrigerator,
respectively, and ηi is the operating efficiency of i.
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2.3. Wind Power Uncertainty Model

Renewable energy sources contribute a great deal of uncertainty to energy systems,
which will create difficulties for practical planning. When decisions need to be made for
actual energy systems, it is often difficult to obtain an accurate probability density function,
while it is relatively easy to obtain a range for the uncertain variables. In this model, there
is a large degree of uncertainty regarding the wind power output. Historical data from
large-scale wind power operations can be preprocessed and used to establish an RIES
uncertainty model. The BP neural network processes the data and uses a randomized
dataset to calculate the objective function of the random solution. The BP neural network
is used to train the randomized dataset and the objective function so that the BP neural
network can predict the probability of random events occurring. Finally, the uncertainty
model is solved using the dependent-chance programming method. The specific steps for
calculating the uncertain factors in the wind power model in this study were as follows:

1. Data preprocessing:

Defect screening and cluster analysis of the historical wind power data were combined
with regional climate information to form a complete dataset.

2. BP neural network model:

(a) Random values for the typical daily load were generated according to the
existing data, including N groups of random data and N groups of random
solutions.

(b) The objective function of the N groups of solutions was calculated using the
generated N groups of random data.

(c) The random solution and fit were normalized, and the BP neural network was
trained to predict uncertain events.

(d) The trained BP model was used to calculate the wind power correlation function.

3. Dependent-chance programming method:

Dependent-chance programming is a chance function that maximizes an event in an
uncertain environment: {

maxPr{hk(x, ξ) ≤ 0, k = 1, 2, . . . , q}
s.t. gj(x, ξ) ≤ 0, j = 1, 2, . . . , p,

(5)

In Equation (5), x is an n-dimensional decision vector, ξ is a random vector parameter,
Pr{·} is the probability of an event in {·}; hk{x, ξ} = 0, k = 1, 2, . . . , q for the event, denoted as
ε, and the uncertain environment is gj(x, ξ), j = 1, 2, . . . , p. In this study, the characteristics
of dependent-chance programming were used to address the problem of wind power
output uncertainty.

3. Bi-Level Optimal Configuration Model

In this paper, the equipment configuration and scheduling strategy of the RIES were
established as a bi-level optimization model, and a bi-level integrated energy optimization
strategy is proposed, taking the efficiency index and economic index into consideration. The
transfer relationship between the upper- and lower-level optimization decision variables is
shown in Figure 2.

Firstly, the upper planning model transfers the planned capacity of various units to
the lower operating model, and the lower model simulates the scheduling operations of the
system and returns the results to the upper-level planning model. Then, the upper-level
model revises the total costs of the planned period based on the results and re-optimizes
the planned capacity of all the equipment. Finally, through the optimization and iteration
of the upper and lower levels, the integrated energy system plan and operation scheme are
solved to maximize the total benefits.
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Figure 2. Bi-level optimization model.

3.1. The Upper Model

The objective function of the upper-level planning model is to minimize the equivalent
annual investment cost, and the decision variables are the type and number of energy
instruments used.

Cinv = ∑
ω

CωRω (6)

In the formula, Cω is the unit investment cost of the equipment ω, and Rω is the
construction capacity of the equipment ω. The specific equipment includes a CCHP,
electric refrigerators, gas-fired boilers, electric boilers, and wind turbine generators.

3.2. The Lower Model

The lower-level planning model is responsible for coordinating the operation of the
energy equipment within the RIES. The goal is to minimize the COP of the operation and
maintenance costs and maximize the utilization efficiency of primary energy F during the
whole operation period.

In addition to the costs of equipment operation and maintenance and the costs of
purchasing electricity and natural gas, the total operation and maintenance costs should
also be included into the cost of carbon emissions and the load deficiency penalty. It can be
concluded that COP encompasses the equipment operation and maintenance costs COM, the
electric energy transaction costs Ctrade, the natural gas fuel costs Cgas, the carbon emissions
tax Cco2, and the penalty costs Cp for energy shortages, as shown in Equation (7).

Cop = Com + Ctrade + Cgas + Cco2 + Cp (7)

Com = ∑
i

∑
k

∑
t

oEC
i Pik,t + ∑

l
∑
k

∑
t

oRE
k Plk,t (8)

Ctrade = ∑
t

CtPtg (9)

Cgas = ∑
t

CgPg (10)

Cco2 = ∑
t

CcδePtg (11)

Cp = λeEV
e + λhEV

h + λcEV
c (12)

In Equation (8), Pik,t is the input power of the kth type i energy conversion instrument
in period t. Plk,t is the output power of the kth type l renewable energy instrument in
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period t. In Equation (9), Ct is the electricity price in time period t, and Ptg is the electricity
purchased by the regional power grid. In Equation (10), Cg is the price of natural gas and
Pg is the volume of regional gas purchased. In Equation (11), δe and δg are the carbon
emission factors of electrical energy and natural gas. In Equation (12), λe, λh, and λc are the
penalties for interrupting the electrical, heating, and cooling loads, respectively, and EV

e , EV
h ,

and EV
c are the expected shortfalls in the electrical, heating, and cooling loads, respectively.

The total cost C of the RIES takes into account the equivalent annual investment costs
Cinv and the total operation and maintenance costs Cop:

minC = Cinv + 365
S

∑
s=1

psCop (13)

where Cinv is the equivalent annual investment costs for all the equipment, S is the total
number of selected typical days, Ps is the probability of a typical day occurring, and Cop is
the operation costs of the system on a typical day.

The efficiency index of the lower model takes the utilization efficiency of the whole
primary energy operation period as the objective function and considers the electrical load,
cooling load, heating load, and transformer input power in period t. The objective function
of the efficiency index is as follows:

F =

T
∑

t=1
Lt

T
∑

t=1
St

(14)

In Equation (14), T is the simulation period, Lt is the total load in the time period of t,
and St is the total power into the RIES.

Lt = Lt
e + Lt

h + Lt
c (15)

In Equation (15), Lt
e is the electrical load; Lt

h is the heating load; and Lt
c is the

cooling load.
In Equation (14), St is the total power of the input of the RIES, and the calculation

formula is as follows:
St = Ptg/ηeηgrid + Pw + Pgas (16)

In Equation (16), Pw is the power from the wind turbine into the RIES, Pgas is the gas
power into the system, ηe is the average power generation efficiency of the power plant,
and ηgrid is the average transmission efficiency of the power plant.

3.3. Constraints
3.3.1. Load Balancing Constraint

At any time t, the injected power Pj,t of any node j in the distribution system can be
expressed as

Pj,t = Pg,t + ∑
c∈Cj

PC
c,t + ∑

w∈Wj
PW

w,t − ∑
h∈Ej

PER
e,t − ∑

b∈Gj
PG

g,t − ∑
b∈Bj

PEB
b,t , ∀j ∈ J (17)

In Equation (17), Pg,t is the power output from the power grid to the RIES, while PC
c,t

and PW
w,t are the power output of the CCHP for No. c and the WTG for No. w at time t,

respectively. PER e,t, PG g,t, and PEB b,t are the power consumption of the electric chiller No.
e, the gas-fired boiler No. g, and the electric boiler No. b at time t, respectively. J is the set
of all the nodes in the power system, and Cj, Wj, Ej, Gj, and Bj are, respectively, the set
of CCHP, wind turbine generators, electric chillers, gas-fired boilers, and electric boilers
connected to power grid node J.
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The main sources of heat in the thermal system studied in this paper are the waste
heat boiler, gas-fired boiler, and electric boiler in the CCHP. The total heating load Lt

H

required at time t in the RIES can be expressed as

LH
t =

C

∑
c=1

Tc,t +
B

∑
b=1

Tb,t +
H

∑
g=1

Tg,t (18)

In Equation (18), Tc,t is the heat supplied by the CCHP at No. c, Tb,t is the heat supplied
by the electric boiler at No. b, and Tg,t is the heat supplied by the gas-fired boiler at No. g.

The total cooling load Lt
C at time t within the RIES can be expressed as

LC
t =

C

∑
c=1

Fc,t+
E

∑
e=1

Fe,t (19)

In Equation (19), Fc,t is the cooling capacity of the CCHP at No. c, and Fe,t is the cooling
capacity of the electric chiller at No. e.

3.3.2. Constraints for Equipment Operation

xeo
i Pmin

i ≤ Pi ≤ xeo
i Pmax

i (20)

In Equation (20), xeo
i is the operating state variable of the equipment i, while Pmax

i and
Pmin

i are the upper and lower operating power limits for the equipment i, respectively.

3.3.3. Integrated Energy Self-Sufficiency Rate Constraint

In order for the RIES to be a sustainable system, the integrated energy self-sufficiency
rate in the system is required to meet the following constraint:

ωsr ≤ ω
sr

(21)

In the formula,ωsr is the lower limit of the comprehensive energy self-sufficiency rate.

3.3.4. Energy Deficiency Constraint

To simplify the calculations, the energy deficiency constraint in this paper only con-
siders the N-1 fault of class α energy equipment in the integrated energy system. In this
case, the expected energy deficiency constraint is described as follows:

EV
α ≤ EVMAX

α (22)

In Equation (22), EVMAX α is the expected upper limit of the energy deficiency of class
α energy.

4. RIES Optimized Scheduling Solution Method

In the bi-level optimization model of this study, the upper-level planning model
transfers the energy equipment configuration scheme to the lower level. The lower-level
planning model optimizes the energy equipment scheduling in the RIES according to
the energy equipment configuration scheme and returns the operating costs and energy
utilization efficiency to the upper level. The upper level optimizes the capacity and number
of energy instruments installed in the RIES based on the operating costs and energy
efficiency returned from the lower level and calculates the annual investment cost.

4.1. Algorithm Selection

Calculation of the bi-level optimal configuration model belongs to the mixed integer
nonlinear programming problem, and the constraints are complex. It is difficult and time-
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consuming to solve the problem by using a non-numerical optimization algorithm, and it
is difficult to ensure the convergence.

This paper employed a hybrid strategy that combines a quantum evolutionary al-
gorithm with genetic algorithms to optimize the calculation. The quantum evolutionary
algorithm was developed from quantum theory and evolutionary algorithms. Some con-
cepts and theories of quantum computing, such as qubits and the quantum superposition
state, are used to encode chromosomes by quantum bits so that a quantum chromosome can
represent multiple superposed states at the same time, and a quantum gate can be used as
an update operator to complete evolutionary searches [17]. In the traditional optimization
algorithm, the particle swarm optimization algorithm does not allocate different search
resources for individuals with different levels of fit, meaning it cannot converge on the
optimal solution or fall into a local optimal solution. The local search ability of genetic
algorithms is not strong, and thus it is difficult to reach the optimal solution. The evolu-
tionary process of the quantum evolutionary algorithm is a type of competition between
quantum entropy and energy, which improves stability and adaptability through adaptive
step sizes and quantum rotation angles while also increasing the calculation speed [18,19].
In this study, the lower target was optimized using the quantum evolutionary algorithm,
and all the non-dominant solutions were stored in the additional population. Meanwhile,
the non-dominant solutions in the additional population were optimized using genetic
algorithms, and the upper-level target was optimized as the fitness function to finally
derive the optimal solution. Figure 3 shows the algorithm flow chart:

Figure 3. The algorithm flow chart.
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In the quantum evolutionary algorithm, the quantum rotation angle has a great
influence on the convergence speed and accuracy of the algorithm. In order to analyze the
influence of the rotation angle on the algorithm, four rotation angles of 0.02 * π, 0.06 * π,
0.1 * π, and 0.2 * πwere set. The optimal value, the worst value, the influence of different
rotation angles on the convergence speed, the convergence precision of the algorithm, and
the stability of the algorithm were analyzed from the variance angle. After the comparison
of the experiment, the rotation angle was set to 0.2 * π.

4.2. Multi-Objective Programming Problem

The model established in this paper is a multi-objective optimization problem, and the
objective functions are the total cost C and the primary energy utilization efficiency F. To
simplify the calculation, the optimal solution can be obtained through the multi-objective
programming hierarchical solution method. However, the hierarchical solution method of
multi-objective programming needs to set the priority levels of P1 and P2, respectively, for
the two objectives. If one of the objectives is satisfied first, the result is optimal, and the
result obtained cannot meet the requirements of multi-objective programming.

The multi-objective programming problem in this paper can be dealt with through the
combination of Pareto optimality and the multi-objective decision making method. A series
of Pareto fronts of the two indexes was obtained by the optimization algorithm as a set
of non-inferior solutions. Since the total cost target C and the primary energy utilization
efficiency target F of the RIES system are difficult to be unified into the same dimension,
the decision-making process can be assisted by the ideal fuzzy decision method [20].

First, the discrete solution was selected as the alternative solution in proportion to the
Pareto front. The set composed of experts’ different decisions on the scheme was used as
the comment set, the triangular fuzzy number was used to represent experts’ subjective
fuzzy weight judgment on the target, and the range of the fuzzy number was set as [0,1].
The fuzzy number is in direct proportion to the importance of the evaluation index. If J
indicators are evaluated by n experts, the fuzzy weight of the jth indicator given by the ith
expert is rij. For indicator j, the evaluation matrix is denoted as Rj = [r1j,r2j, . . . ,rnj], and the
fuzzy comprehensive evaluation matrix is denoted as R.

Each expert is given the same weight e = 1/J × [1,1, . . . ,1]T, and the weight of the
two indicators is w = e·R. The fuzzy ideal decision making method first determines the ideal
solution and negative ideal solution and compares the solution with the ideal solution. The
better scheme is closer to the ideal solution and far away from the negative ideal solution.
The specific decision steps are as follows:

1. There are n candidate schemes, and m target values corresponding to each scheme
form a multi-objective decision matrix R = (Rij)n×m. The R matrix is processed with
a relative superior degree of generality, and the standard 0–1 transformation is applied
to normalize the two index data of N Pareto front non-inferior solutions. For example,
the operation and maintenance cost is written as a, and the ith non-inferior solution
can be processed by the following formula:

bi= (amax − ai)/
(

amax − amin
i ) (23)

2. Form a weighted gauge matrix C = (cij)n×m, cij = wj×bij.
3. Determine the fuzzy ideal solution d+ and the fuzzy negative ideal solution d−.

d+j = min
{

cij| i = 1, 2, · · · , n} , d−j = max
{

cij| i = 1, 2, · · · , n} (24)

4. The Euclidean distance and relative closeness degree of each scheme to the positive
and negative ideal solutions are calculated, and the best scheme is selected according
to this order. The calculation formula of the Euclidean distance is

L+
i =

√√√√ m

∑
j=1

O(d+j − dij), L−i =

√√√√ m

∑
j=1

O(d−j − dij) (25)
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where O(.) represents a binorm operator. The relative closeness can be expressed as

Hi = L−i /(L+
i + L−i ) (26)

5. Simulation Analysis
5.1. Simulation Setup

In this section, a typical industrial area is discussed, and the power grid and CCHP
units are used as the power stations that can distribute all types of loads to the users.
The cooling season, heating season, and transition season are designated as three typical
seasons. The loads in each typical season are shown in Figure A1 in the Appendix A. The
purchase price is the TOU price, as shown in Table A2 of the Appendix A. The wind power
output is calculated as an order of magnitude in this example. The parameters of the
wind and other energy equipment in the system are shown in Table A3 of the Appendix A.
The simulation improves the efficiency and economy of the RIES for each typical day by
optimizing parameters and scheduling within a 24 h cycle.

5.2. Optimization Results in Different Scenarios

In order to verify the effectiveness and correctness of the method proposed in this
paper, five configuration scenarios are set for multi-objective optimization of the lower-
level model. Scenario 1 and Scenario 2 apply a multi-objective programming method to set
up the integrated benefit index of the objective function. First, the optimal solution for a
single target is determined. For example, in Scenario 1 and Scenario 2, the lower operation
and maintenance cost target and the primary energy use efficiency, respectively, determine
the priority of P1 and P2. When Scenario 1 is optimized and solved, the lower level will
give priority to the operation and maintenance costs P1. When Scenario 2 is optimized
and solved, the lower level prioritizes the primary energy utilization efficiency target P2.
Several iterative calculations were carried out for the two RIES scenarios, and the optimized
results of various indicators in Scenario 1 and Scenario 2 under different priorities are
shown in Figure 4. There is a contradiction between the two objectives in the lower-level
model. For example, Scenario 1 seeks to minimize the operation and maintenance costs.
However, in order to reduce the operation costs as much as possible, the gas turbine may
reduce its output or even shut down when the electricity price is low. Conversely, the gas
turbine may want to generate as much electricity as possible when the electricity price is
high, which will lead to a decrease in the primary energy utilization efficiency.

Figure 4. Optimizations for Scenario 1 and Scenario 2.
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Scenario 3 comprehensively considers the two evaluation indexes of the operation and
maintenance costs and the primary energy utilization efficiency, but it does not consider
the constraints from any evaluation index. In Scenario 4, an evaluation index considering
the integrated energy self-sufficiency rate is added based on Scenario 3. Scenario 5 adds an
index considering the expected energy deficiency based on Scenario 4. In these scenarios,
considering the multi-objective optimization of the operation and maintenance costs and
the energy utilization efficiency, the quality of the solution is evaluated in a Pareto-dominant
way, where the priority of the two objectives is the same. At this point, a Pareto front non-
inferior solution satisfying both the annual total costs and the optimal energy utilization
efficiency is obtained. Using Scenario 3 as an example, a group of Pareto non-inferior
solutions is drawn as Figure 5:

Figure 5. Pareto non-inferior solutions of Scenario 3.

By comparing Scenario 3 with Scenario 4, and Scenario 4 with Scenario 5, the influence
of the evaluation indexes on the optimal allocation results of the regional integrated
energy system can be analyzed based on the integrated energy self-sufficiency rate and the
expected energy deficiency. The lower limit of the integrated energy self-sufficiency rate
is 15.0%, the lower limit of the expected energy deficiency is 10% of the energy load. The
penalty cost for interrupted electrical loads is set at 20 CNY/(kW·h), and the penalty cost
for interrupted heating and cooling loads is set at 35 CNY/MJ. The results of the equipment
configuration and optimization of the three scenarios are shown in Tables 1 and 2.

Table 1. Equipment configuration.

Scenarios EB1 EB2 GB1 GB2 ER WTG

3 0 2 3 1 6 3
4 1 2 0 2 6 5
5 2 2 1 2 7 5
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Table 2. The optimization results.

Scenario
Equivalent

Annual Invest-
ment/CNY

Annual
Operating
Cost/CNY

Annual
Penalty

Cost/CNY

Annual
Consolidated

Cost/CNY

Primary
Energy

Efficiency/%

Power
Shortage

Expectation/
(kW·h)

Heat
Shortage
Expecta-
tion/MJ

Cold
Shortage
Expecta-
tion/MJ

3 2189.2 × 104 5387.4 × 104 339.792 × 104 7916.392 × 104 77.3 31,347 40,735 38,436
4 2542.8 × 104 5176.7 × 104 301.880 × 104 8021.381 × 104 78.1 34,238 36,424 30,263
5 2703.3 × 104 5121.6 × 104 0 7824.9 × 104 78.1 0 0 0

Scenario 3 is compared with Scenario 4 in order to meet the requirements of the
integrated energy self-sufficiency rate. Based on the comparison, wind turbines are added
to the system in Scenario 4, which reduces the capacity of the gas boiler and increases the
capacity of the electric boiler in order to balance the heating load. Due to the constraints of
the integrated energy self-sufficiency evaluation index, the equivalent annual investment
costs in Scenario 4 are increased. However, since the installed capacity and output from the
wind turbines increase in Scenario 4, the RIES reduces the energy input from the superior
energy network, meaning the annual operating cost is less than that of Scenario 3, and the
increase in wind power output also improves the primary energy utilization efficiency. In
general, the annual total costs in Scenario 4 are higher than those in Scenario 3, and the
primary energy utilization efficiency is also higher than that of Scenario 3.

Comparing Scenario 4 with Scenario 5, the expected electrical, heating, and cooling
load gaps in Scenario 4 are 34,238 kW·h, 36,424 MJ, and 30,263 MJ, respectively. After
considering the expected energy deficiency evaluation index, the three expected energy
deficiencies decreased to 0. In Scenario 5, electric boilers, gas-fired boilers, and electric
chillers are added to the system to reduce the penalties that may be incurred in the event
that the load is decreased during an N-1 failure of the energy equipment, and to improve
the reliability of the integrated energy system overall. After considering the expected
energy deficiency evaluation index, the equivalent annual investment costs in the system
increase, but the annual operating cost and annual penalties are reduced, and, finally, the
total cost is reduced. It can be seen that the regional integrated energy system achieved
higher reliability and revenue after the reliability index was taken into consideration. Using
a typical summer day as an example, the output scheduling for each device in the system
under this scenario is shown in Figure 6. When the electricity prices are low, the operating
costs of the CCHP system are greater than the price of power from the grid, which increases
the amount of power purchased from the grid. When electricity prices are at their peak, it
is preferable for the CCHP system to operate at full capacity.

In conclusion, it can be considered that the comprehensive energy self-sufficiency rate
can improve the energy utilization efficiency of the system, but it reduces the economy
of the system accordingly. After considering the evaluation index of the energy gap
expectation, the improvement in the system margin meets the requirement of reliability
and improves its economy. It can be seen that the bi-level optimization model proposed
in this paper can pursue the economy of the system configuration and high efficiency of
energy utilization on the premise of satisfying the reliability requirements of the RIES.
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Figure 6. Energy equipment scheduling on typical days in summer.

6. Conclusions

In this paper, a multi-evaluation index system of the RIES was constructed, and
considering multi-objective programming and uncertainty, a bi-level optimal allocation
model of the RIES was established. Through the analysis of an example, the conclusion is
as follows:

1. Using the uncertainty calculation method in this paper, exotic meta-heuristics algo-
rithms, and multi-objective decision making methods, we can reliably optimize the
uncertainty and bi-level model of wind power in the RIES system.

2. A bi-level optimal configuration model of the RIES was established which can fully
consider the influence of the system operating cost and energy efficiency on the choice
of energy equipment type and the number of devices in the configuration.

3. The equipment configuration and scheduling plan obtained in the scenario meet the
constraints of the comprehensive energy self-sufficiency rate and reliability index
and take into account the demands of economy, high efficiency, energy sustainability,
and reliability.

The study in this paper did not involve guidance on how to set the parameter value of
the evaluation index constraint according to the actual situation and specific needs of the
RIES, nor did it consider the interconnection between multiple RIESs with energy storage
modules and different characteristics. Further research on these issues will be carried out
in the future.
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Appendix A

Table A1. Polynomial coefficient.

Equipment i ai bi ci di

Gas turbine 1 2.151 2.198 0.1076 -
Absorption chiller 2 26.87 −3.285 0.7398 0.0181
Waste heat boiler 3 2.664 1.143 0.0734 -

Figure A1. Typical season load.
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Table A2. Time-of-use electricity price.

Period of Time 0–7 7–12 12–17 17–22 22–24

Price (yuan/KW h) 0.4 1.2 0.8 1.2 0.8

Table A3. The equipment parameters.

Energy Equipment Capacity (kW) Investment Cost
(yuan/kW)

Operation and
Maintenance Cost

(yuan/kW)

Conversion
Efficiency

Life
(years)

Failure
Probability

Wind turbine generator 1500 7000 0.02 - 20 0.01
Gas-fired boiler 1 1000 2500 0.04 0.70 20 0.04
Gas-fired boiler 2 2000 1800 0.04 0.75 20 0.02
Electric boiler 1 1000 2300 0.025 0.70 20 0.04
Electric boiler 2 2000 1600 0.025 0.75 20 0.02

Electric refrigerator 1000 2200 0.03 0.75 20 0.04
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