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Abstract: This study aims to plan a cost-minimizing charging schedule for electric buses with
fast charging stations. The paper conceptualizes the problem as a three-stage procedure, which is
oriented around the participation of an electric bus aggregator in a day-ahead energy auction. First,
the aggregation stage determines the bid parameters of buses. With bid parameters, aggregated
cost-minimizing charging plans are obtained in the second stage conceived as the hourly day-ahead
auction. The disaggregation of hourly plans into feasible minutely charging schedules is the third
stage. The main contribution is the formulation of mixed-integer linear programming aggregation
models to determine charging availability expressed as minimum and maximum hourly energy
requirements taking into account detailed, minutely characteristics and constraints of the charging
equipment and the buses. No price forecasts are required, and the plans adjust to the wholesale
prices of energy. Defining only a few aggregated bids parameters used in linear programming
constraints and incorporating them into the auction model is another contributing factor of this paper,
allowing the scheduling of storage-based participants economically. The proposed methodology
has been verified on a recently published case study of a real-world bus service operated on the
Ohio State University campus. We show that the auction-based charging of all 22 buses outperforms
as-soon-as-possible schedules by 7% to even 28% of daily cost savings. Thanks to the aggregated bids,
buses can flexibly shift charges between high- and low-price periods while preserving constraints of
the charging equipment and timetables.

Keywords: aggregator; coordinated charging; double auction; mixed-integer linear programming

1. Introduction

According to the plans for the electrification of public transport around the world,
we are facing a profound change toward electric bus adoption [1]. One of the foremost
anticipated challenges related to this growth is in the design and planning of the electric
bus charging system [2]. It is crucial to identify the possibilities for cost savings as the
incremental charging loads will inevitably impact the power system [3] especially regarding
coal-fired generation costs [4]. Among others, active demand-side participation enabled by
bus aggregators can create an opportunity for mutual benefits, both for transport entities
and the power system [5]. However, it is a challenging issue, as, on the one hand, the
constraints of bus timetables and charging infrastructure must be handled, and on the
other hand charging flexibility must be transformed into bids that can be traded in the
electricity auction [6].

1.1. The Purpose, Objectives, and Hypothesis of Research

Cost-minimizing charging schedule planning of buses with fast charging stations is
a valuable area for investigations. Simultaneously, looking for ways to include energy
storage-based demands in the market design is another important research topic. This
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study aims to develop new models that address both challenges and can be formulated as
standard mathematical programming optimization problems. The following hypotheses
are at the basis of this research:

¢ Itispossible to define minutely requirements and constraints of the charging equipment
and individual buses at the aggregate level in such a way that taking them into account
in an hourly model allows obtaining the feasible disaggregated charging schedules.

¢ The hourly charging model can be incorporated into the auction-clearing problem,
extending the standard formulation with new bidding parameters adopted for storage-
based participants.

These hypotheses summarize themselves into a postulate that the day-ahead auction
may serve as a mechanism to schedule the charging plans of buses economically.

1.2. Literature Review

There is already some research in the areas of optimal charging schedules for electric
buses (EB). The premise behind this research problem is that the current charging schedule
for an EB fleet is based on the assumption that there is an ample charging capacity available
for an EB fleet and the changing values of electric charging (electricity). This type of
traditional charging can lead to expensive costs and misses the opportunity for cost savings.
The negative impact of uncoordinated charging was clearly demonstrated by Muratori [7].
In place of this traditional but costly charging scheme, the optimal charging scheme
based on the electricity cost or market prices can create opportunities for saving for the
fleet dispatcher. The electricity cost considered in those studies can be electricity rates
determined by the local electric utility or the electricity market operators’ electricity prices.

One of the earlier works by De Filippo et al. [8] developed a simulation model to ex-
amine how electric bus charging strategies are affected by the type and number of chargers
installed. A strict idle charging time was not assumed; instead, the study investigated
queuing times to determine the fleet requirements. Thus, the study finds out that all 22 of
the buses on the campus lines can be made electric and that one 500 kW or two 250 kW
chargers are sufficient to maintain reasonable service frequencies. The simulation is very
well documented, so we used their parameters in our case study.

Several works, such as Kontou et al. [9], Moradipari et al. [10], Chen et al. [11,12],
Raab et al. [13], Qin et al. [14] have been done on the optimal charging schedules for electric
buses to reduce the charging costs or emissions. For example, in Moradipari et al. [10]
work a mixed-integer linear programming problem was formulated to find the optimal
charging schedule for the EB fleet of Stanford University’s Marguerite Shuttle, based on the
electricity rates set by the local utility (PG&E) and given the preset physical infrastructure
and timetables for the EB fleet. The authors also assume free on-site solar energy that the
fleet dispatcher uses to charge/recharge the EB and is the first choice when solar energy is
available. If solar energy is not available, the fleet dispatcher will purchase electricity from
the grid as the second choice. Although the new charging schedule, which optimizes the
EB fleet schedule, can save money for the fleet dispatch, given the electricity rates from the
local utility, it is not logical to assume that the on-site solar energy is free. This assumption
misses the solar energy opportunity cost, which can obtain revenue if its energy is sold to
the grid.

Chen et al. [11] attempted to solve the problem of optimal charging strategies based
on the formulation of mixed-integer linear programming for a plug-in electric bus (PEB) to
reduce the charging costs and peak load of the electric bus fast charging station (EBFCS)
when responding to the time-of-use electricity prices in real time. The authors claimed
that the suboptimal charging strategy improves computation efficiency significantly with
a slight increase in charging cost. The suboptimal charging strategy is solved as a two-
stage model where an ideal charging load profile is optimized without considering the
continuous charging at the first stage while the continuous charging loads are scheduled to
follow the ideal profile using a heuristic method. The case study employed in their work is
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the bus transit system in Beijing in the backdrop of the time-of-use (TOU) prices for the
relevant charging station.

The same set of authors in [12] extended their previous work by modeling and pairing
an energy storage system (ESS) with the existing plug-in electric bus fleet charging stations
(PEBFCS) with the same goals of reducing both peak-charging load and electricity purchase
cost when providing a real-time control strategy. Two scenarios—coordinated PEB charging
and uncoordinated PEB charging—are studied while the price and the valuable life of ESS,
the capacity charge of PEBFCS, and electricity price arbitrage are taken into account in the
model. In their previous work, a similar heuristics-based method was used to obtain a
suboptimal charging strategy that can enhance computation efficiency while compromising
the optimal solution. The case study employed in their work is the bus transit system and
TOU prices in Chongging, China.

Raab et al. [13] formulated a dispatch cost minimization problem for a virtual power
plant while incorporating an electric bus fleet as a storage resource with their capacity and
energy constraints in a market setting. The optimal charging strategies for the electric bus
fleet were implemented as the mixed-integer linear programming problem. The optimized
dispatched schedules are provided to the forecasted day-ahead and intraday market prices.
The electric bus fleet is represented by an EV supplier/aggregator interacting with the
virtual power plant operator interacting with the market operator. The schedule for the
electric bus fleet was based on the bus operation in Berlin metropolitan area, where three
bus types—standard, articular, and double-decker buses—were considered in that work.
The authors claimed that their proposed methodology could fully integrate electric bus
fleets in the virtual power plant operation while providing economic benefits to both the
EV aggregator and power plant operator.

Qin et al. [14] conducted a research work that identified and investigated the optimal
charging strategy of an EB fleet from the StarMetro bus fleet in Tallahassee, Florida, intend-
ing to reduce demand charge and minimize the fuel cost (aka electricity cost). The authors
employed an energy consumption model which provided flexibility to simulate different
EB modules. An exhaustive enumeration method covering the full range of charging
threshold (CT) of 0-95% was used to search for the optimal CT. The authors found that the
CT of 60-64% provided the most cost-saving while the CT of 0-28% produced the highest
demand, hence the highest demand and highest fuel costs. The authors also investigated
and found that fleets of 4 and 12 buses achieve the lowest cost per mile driven when one
fast charger is installed.

Those studies on optimal charging schedules for EB transit systems directly re-
late to transit management of electric buses. In this regard, the survey work done by
Deng et al. [15] provides an excellent reference on electric buses, energy storage, power
management, and charging scheduling. Indeed, this research topic on electric buses or
electric vehicles, particularly for public transportation or used for public transit systems,
cuts across the two important disciplines—the energy system and transportation field. In
this regard, many of those works are strong in one area but not in the other.

Another crucial area that requires a mention in the context of our paper is the orga-
nization of charging planning. All relevant works consider decentralized, self-planned
operation under flat rates or the perfect foresight of TOU prices to the best of our knowl-
edge. This can be a reasonable assumption, as early investigations of [16] suggest. However,
there is a considerable improvement area, especially when deciding whether to postpone
charging in a specific hour, which can be very sensitive to prices, as shown in our case study.
Instead of trying to adjust to uncertain energy prices, one of the possibilities, as recently
put forward by Mays [17] is to allow full, bid-based participation of energy storage-based
demands in the wholesale markets. The inclusion of new market participants leads to the
introduction of a rich parameterization of the market and the definition of bidding parame-
ters adopted for new participation models, as suggested, for instance, in the FERC Order
No. 841 [18]. Despite the widely recognized needs, mechanisms suited to storage-based
participants remain relatively unrepresented [19]. One of the first attempts is [20] where a
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new bidding mechanism, which uses the so-called Price Elasticity Matrices, is proposed.
Another exciting proposition extended the bidding format with numerous parameters that
accounted for three new types of demand characteristics, namely shiftable, adjustable, and
arbitrage [21].

1.3. Contribution

We believe that no other papers have investigated the optimal charging schedule of
buses with restricted access to fast charging stations from the market-based perspective of
bus fleet aggregator.

The process analyzed in this paper is summarized in Figure 1: individual bus and
charging stations parameters, specifically buses timetables, idle time and per-cycle energy
use, battery capacities and efficiency, number of chargers, and charging efficiency, serve as
a basis in the aggregation phase; the resulting aggregated bid parameters are submitted to
the market operator a day before the operation; the detailed operating plan is computed
in the final, disaggregation phase when an aggregated dispatch plan is received from the
market operator.

DAY N-1 DAY N
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Figure 1. The phases of the optimization process proposed in this paper.

Based on the above discussion, the main contributions of the paper are summarized
as follows:

1.  We formulate new mixed-integer linear programming aggregation models regarding
the detailed, minutely characteristics and constraints of the charging equipment
and the buses. They determine charging availability expressed as minimum and
maximum hourly energy requirements.

2. We propose only a few aggregated bids parameters that lead to incorporating linear
variables and constraints into the standard auction model. The extended auction
model determines aggregated hourly charging plan.

3.  We formulate the new mixed-integer linear programming disaggregation model
linking the auction-based hourly plan and the detailed charging characteristics.

4. We demonstrate that the bus fleet can be economically scheduled with an auction-
clearing model with suitable bid parameters.

2. Materials and Methods
All the nomenclature is provided in the Abbreviations list at the end of the paper.
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2.1. Aggregation Model

We propose the aggregation of periods (minutes) and buses to let the buses aggre-
gator participate in the day-ahead energy auction and flexibly adjust to uncertain hourly
market prices.

Individual parameters regarding demanded trip energy can be summarized:

h-60
Agg Trip bus,Trip Trip
BV =LEy =L ) By h M
b b t=(h—1)-60+1

Furthermore, the total energy E! that must be loaded by buses is equal to the total
amount of energy needed for trips, minus the initial energy stored in batteries:

Agg Tri
El = ;Eh 88 1P _ ;(50(12 —S0C,). )

On the other hand, the total battery capacity provides the value of additional energy
E? that can be loaded by buses:

E? =} (50C; — S0C,). 3)
b

In adverse market conditions expressed in high energy prices, the buses would charge
only the minimum amount of energy required for driving, and at the end of the day, they
would return to the depot with depleted batteries. However, they may as well finish their
service with full batteries if the prices are low enough. The threshold price the aggregator
decides is denoted as c, one reasonable level may be the average nightly price. Charging
during the night hours is not a problem. First, because the buses are fully available, second,
the prices level and volatility are much lower than prices during the day.

We assume a deterministic trip energy usage Egtnp while many factors affecting the
driving conditions may exist, as recently investigated by Gao et al. [22]. This limitation of
our study can be relieved relatively easily using a certain safety margin. The procedure is
justified in Gao et al. research.

Setting other parameters is a challenging problem because there are two dependencies
between periods and the buses. One linking constraint valid for each minute and links the
buses is the number of charging stations available. Another linking constraint connects
each period, so the SoC level of each bus sustains within the admissible limits. The solution
strategy for dealing with the charging constraints when we determine aggregated charg-
ing demand is to resolve the aggregated minimum and maximum energy requirements
separately, but considering the detailed constraints.

In the following two sections, we discuss these aspects and show how we use them to
form the aggregated parameters that can be submitted directly to the auction.

2.1.1. Minimum Hourly SoC level

To find the minimum SoC level of the buses at the end of each hour, we consider a
hypothetical situation where buses charge as frequently as possible to keep the charge level
as low as possible. With this goal in mind and unlimited access to chargers, buses would
load just enough energy to make the next trip. However, when chargers are limited, we
need to solve the following MILP optimization problem.

min }_ SoC, 8™, 4)
h
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SoC Ee™n ¥, SoCnin vh, (5)
poi < Spe - T Vb, t, 6)
spr < Ay Vb, t, (7)
Y sy < C vt, 8)

b
SoCy = S0Cus 1+ pee —Ep® Vb ht, ©)
SoCy < SoC” Vb, t, (10)
SoCy > SoC, Vb, t, (11)
SoCpin - = SoCy 160 b, h. (12)

The goal is to determine minimum hourly SoC levels (4), defined as the summary
minimum hourly SoC levels of each bus (5). Detailed SoC level of each bus SoCy; is
inspected in typical constraints (6)—(11), while we are particularly interested in SoC level at
the end of each hour (12).

2.1.2. Maximum Hourly Energy Requirements

The solution to the problem (4)—(12) provides reference values to further determine
maximum amount of energy P‘:gg'max that can be possibly loaded in each hour. When
considering maximum amounts of energy, we should not be restricted to the total maximum
demanded energy E! + E2. Instead, we need to determine potential maximum amounts of
energy in particular hours. That is why we must solve each hour’s problem separately but
consider some multiperiod characteristics, such as the requirement on minimum SoC level
at the beginning of each hour. Thus, the following model considers the SoC level of each

bus separately in each hour, but charging energy has multiperiod limits.

Agg,
max P, ge/max, (13)
Ags, .
Pu R Zb Z?f(oh_1).6o+1 Spt = T Vh, (14)
Spt < Apt Vb, t, (15)
Yosp < C vt, (16)
b
ip ) . L
Y swr < Xt Eg® 4+50C,—SoC)  Vb,i, (17)
k=1
& iy Trip cycle 0 .
2 Spit > Zk:l Ebk +Eb —SOCb +Mb Vb, 1y, (18)
k=1
SoCy = SOCys 1 +Sp -7 — Ep? Vb, b, t=((h—1)-60+2...,1-60), (19)
SoCp; < SoC, Vb, t, (20)
SoCp; = SoG, Vb, t, (21)
S0Cp 6011 = SoCpyin Vb,h < H. (22)

The goal is to determine aggregated maximum amounts of energy that can be loaded in
a particular hour / (13), which is simply equal to all charging statuses of buses in all minutes
belonging to a given hour (14). Charging statuses may not violate bus timetables (15),
nor summary chargers number (16), just as in (7) and (8). New constraints introduced
into this model (17)—(19) are responsible for ensuring that despite the SoC level at the
beginning of each hour being independent of the SoC level at the end of the previous
hour (19), charging is still limited by the total amount of energy used so far plus the initial
free battery capacity (17). On the other hand, all the charged energy till the end of the
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specific idle period must cover all the trip energy used so far plus energy demanded in
another cycle minus the initially stored energy (18). Detailed SoC level of each bus must
be within acceptable limits (20) and (21). Starting SoC level is independent of ending SoC
level in the previous hour but must be at least equal to the minimum hourly SoC level (22).

2.2. Auction Model

The energy auction we consider is a single-price and double-sided auction that bal-
ances supply and demand in a 24-h horizon of the next day. The independent market
operator collects demand bids and offers from all auction participants, solves the auction-
clearing problem, and posts day-ahead hourly dispatch and prices.

Bidding parameters allowed in the auction provide clear, quantitative boundaries
to the buses’ energy storage capabilities and operating limits. Specifically, they state the
total energy E! requested by buses, plus an additional amount of energy E? that can be
potentially loaded by buses when the auction price of energy is below the price c of their
bid to buy. To enable the control of aggregated states of charge, summary hourly trip

energy of buses E,f‘gg’Trip is reported, together with aggregated hourly minimum battery

State of Charge SoChAgg’min. Final parameter is the aggregated maximum amount of energy

PhAgg’max that can be loaded in each hour.

For clarity, we present the auction model considering a single bus aggregator; however,
there may be multiple participants of this type. In such a case, the aggregator-specific
index should also be considered when defining the bidding parameters. Assuming several
aggregators are indexed with index ‘a’ then bidding parameters used in the auction model
would be: ¢, E,}, Eg, Eﬁlgg’mp, P:;gg’max, SoCZgg’mm.

Thanks to including the aggregated bus parameters, the auction can economically
schedule the hourly charged energy based on the aggregated states of charge of the buses.
This leads to the auction model of pool type, where power scheduling is conducted by the
operator aiming at social welfare maximization. The model can be formulated as a price-
based unit commitment problem, with generators’ technical constraints, etc. Moreover,
the network power flow constraints can also be included. Detailed, centralized auction
model may be found, for example, in [23]. Here, we concentrate on the newly introduced
constraints of demands representing (aggregated) storage-based participants.

maxQ =c- () phAgg — E') — Y Cost(NetSupplyy). (23)

h h

Subject to:
p?gg = NetSupplyy, Vh, L m, (24)
Y pps8 < E'+ 2, (25)
h

prEE < PRERTX | goCiEEMN _GoCEE v > 1, (26)
P]Agg < Pfgg,max , (27)
SOCI#8 = SoC, 88 4 piss _ pAsETP oy (28)
SOChAgg > SOChAgg,min vh, (29)
NetSupply ~ constr. (30)
Transmission constr. (31)

The social welfare Q) defined as the difference between consumption willingness-to-
pay and the generation offered costs is maximized in the auction objective (23). Equilibrium
prices, also known as marginal prices derived as the shadow prices to the energy balance
constraint (24) are used to settle the trading energy volumes in each hour. In (25), we
limit the total energy bought by buses while (26) preserves hourly limit. Recall that
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. Aggmax . . o -
aggregated maximum amount P, 88O i determined considering the minimum SoC level,

as explained in Section 2.1.2. This value must be decreased with a higher actual SoC SoChA_glg
at the end of previous hour. In (28), the standard linear SoC update is modeled, using
aggregated values. Aggregated SoC must not drop below the acceptable limit, as given
by (29). Finally, (30) symbolically represents all the constraints of other market participants
(generators, loads, etc.), including representation of costs Cost(NetSupplyy,). Similarly, (31)
represents network constraints. Notice that the variables and constraints representing
(aggregated) storage-based participants, which are newly introduced with our proposed
approach, are linear (LP).

2.3. Disaggregation Model

Once the bus fleet aggregator receives from the market operator the planned hourly
energy schedules phAgg, the final step is to determine detailed, minutely charging plans.
The disaggregation model uses the same individual bus and charging station parameters
as aggregation models developed in Sections 2.1.1 and 2.1.2. Here, it finds the feasible
solution that considers the characteristics and constraints of the charging equipment and
the buses and the amount of available energy in each hour. Specifically, the following
constraints must be met.

Agg

P = Liayeon opu Y, (32)
P < Spt - T Vb, t, (33)
Spr < Apt Vb, t, (34)

Y s < C vt, (35)

b

SoCp = SoCys 1+pet —Ep® Vbt (36)

SoCy; < Rb Vb, t, (37)

SoCy > SoC,, Vb, £, (38)

In (32), we ensure that all energy bought on the market is charged by buses every hour.
Constraints (33)—(38) represent standard characteristics of the charging equipment and the
individual buses. Model is of MILP type because of binary charging state variables s;. It is
a simple, standard model; the main novelty is in the fact that any auction-based solution
can be safely disaggregated, thanks to the use of proper aggregation models introduced in
Sections 2.1.1 and 2.1.2.

2.4. Summary

To summarizing, dependencies between the models introduced in this paper are
visualized in Figure 2. The most challenging phase is developing MILP aggregation
models: they consist of a multiperiod model determining minimum aggregated SoC level
at the end of each hour, complemented by models setting the maximum amounts of energy
that can be loaded solved separately for each hour. For the record, in this phase, total
demanded energy is computed, which is simply the sum of the individual trip energy
demands. The resulting aggregated parameters constitute bids submitted to the market
operator. Hourly charging plan is finally provided to bus fleet aggregator after auction
clears, where it is disaggregated into feasible charging instructions using a typical MILP
model based on buses states of charge. Aggregation phase may be performed once in
a longer horizon, because its results do not depend on changing market environment.
Disaggregation, on the other hand, should be executed daily, each time an auction clears.
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Figure 2. Dependencies between the models introduced in this paper.

3. Results

We show the applicability of our methodology on a bus network serving the Ohio State
University’s main campus located in Columbus, as first described by De Filippo et al. [8].

3.1. Data

The system consists of six lines of varying cycle time and energy consumption. Addi-
tionally, the lines are operating with different frequencies, so they use different numbers of
buses. All the details are listed in Table 1, repeated after [8].

Table 1. Description of bus lines at the Ohio campus [8].

. Cycle Time Per-Cycle Frequenc No. of

Bus Line Y (min] Energy Use [kWh] (min] Buses
North Express 23 8.41 9 5
Loop North 31 1091 9 4
Loop South 31 11.08 9 4
Central Connector 32 12.11 12 3
East Residential 33 11.62 9 4
Buckeye Village 30 12.71 15 2

Altogether 22 buses are sharing four fast charging stations at the same depot. Each
bus has a 55 kWh battery with a capacity of 41.25 kWh (acceptable SoC range from 20% to
95%) while the charging rate of each station is 250 kW with a 5% efficiency loss. Available
charging time for each bus is assumed 5 min, which means that they could charge up to
19.7 kWh during idle time.

The first bus begins service on each line at 7:00 a.m. Subsequent buses run with
corresponding line frequencies until 7:00 p.m. Buses operate 446 trips in total and use
4762.48 kWh during 12 h (720 min). They begin service with a fully charged (i.e., 95% SoC)
battery. Figure 3 visualizes Ap; indicating if bus b is available for charging in minute f.

Values of the parameters are summarized in Table 2.

Table 2. Detailed parameters values used in the case study.

) C r SoC, SoC, SoC) E! E?
5min 4 250kW 11kW 5225kW  5225kWh 385498 kWh  907.5 kWh
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Figure 3. Availability charging periods of buses.

We compare our results to a typical recharging strategy, i.e., charging as soon as
possible (Asap rule) and refilling batteries to maximum SoC during each idle time, as
illustrated in Figure 4. Acting like this causes several problems: first, queues may arise
because the number of buses would exceed the number of chargers; second, high energy
costs may arise because of charging during peak hours. The first problem with Asap
charging is shown in Figure 5.

State of Charge (SoC)

Max SaC s _/. .......... s / ........ e
I SO oo

Cycle time Cycle time
P e S —— o
Start Idle time End
of service of service
b v 1 = o —+ } e
hour =0 t t+1 k k+1 24

Figure 4. Illustration of the Asap recharging strategy that aims in refilling batteries to maximum SoC

during each idle period.
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Figure 5. Total number of buses trying to recharge immediately after each cycle under Asap
charging strategy.

We computed a feasible Asap charging plan to all constraints and used it as a bench-
mark to the cost efficacy of our newly proposed approach. The charging energy of the
Asap plan aggregated into hourly values is shown in Figure 6, together with summary
hourly trip energy. The charging stations limitations are visible when investigating the first
hour—there are about 30 min available for charging after buses finish their first cycle tour,
then they accumulate, as can be inspected in Figure 5.
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Figure 6. Asap charging plan aggregated into hourly values compared to summary trip energy.

3.2. Results of the Proposed Approach
3.2.1. Aggregation Results

In this section, we describe results obtained using models from Section 2.1. The total
energy E! that must be loaded by buses, equal to the total amount of energy needed for
trips, minus the initial energy stored in batteries, is given in Table 2, where also the value of
additional loadable energy E? is provided. For the record, we also show summary hourly
i Agg,Trip . .
trip energy E, in Figure 6.

Applying the method described in Section 2.1 we first determine the minimum ag-

gregated SoC level at the end of each hour. Results are shown in Figure 7. Notice that
aggregated minimum SoC values SoChAgg’mln exceed the simple summary minimum SoC
level of batteries (22 x 11 = 242 kWh) in every hour but first and last. In the first hour,
batteries are full, so the minimum level will not be reached after all. It is safe to end trips
with the minimum SoC level in the last hour as no other trips will be made.

'11495 ———————————————————————

summary max. SoC level

800 [ b
=
Z
5 600 b
o
c
L

400

242

Hour

Figure 7. Aggregated minimum battery State of Charge and aggregated maximum amount of energy
that can be loaded in each hour.
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Figure 7 also shows the result of determining maximum aggregated energy to load by
solving in each hour the model provided in Section 2.1.2. Interestingly, the total capacity
of batteries may never be reached when starting from the minimum SoC level within a
specific hour.

Detailed values of the computed parameters are summarized in Table 3. These
aggregated parameters constitute aggregated bid submitted to the market operator.

Table 3. Detailed bid parameters [kWh] resulting from aggregation stage.

h Eﬁgg,Trip Pigg,max So Cigg,min
1 336.8 186.0 242.0
2 410.3 597.7 285.3
3 413.3 740.2 366.4
4 415.0 665.0 336.3
5 4121 692.7 351.3
6 4114 700.6 357.9
7 411.4 736.3 360.5
8 414.6 692.7 348.3
9 408.5 649.2 375.5
10 416.1 641.3 347.5
11 414.3 732.3 340.2
12 298.6 843.1 242.0

3.2.2. Auction Results

Depending on the market situation, different hourly schedules and prices can be
obtained, but buses are guaranteed to receive at least the minimum required energy and
be scheduled for charging during hours with the lowest prices. The auction model was
solved, assuming net supply costs reflected in marginal energy price from PJM market [24].
Such an assumption is justified under a price-taking feature of the bus fleet, which is small
enough that its charges do not affect the price of electricity.

We examine more closely exemplary scenarios of two consecutive days: in the first
scenario (4 January 2018), high prices occurred in hours number 4 and 12 (13:00 a.m. and
17:00 a.m., translating into daily time), while in the second scenario (5 January 2018) high
prices occurred in hours 1 and 12. Prices, together with the energy schedules determined
in the auction, are presented in Figure 8. Threshold price ¢ was set to $100 per MWh, so
total energy purchased in both scenarios is equal to trip energy used, i.e., 3854.98 kWh. In
both scenarios, buses do not charge at all in hours with the highest prices.

Scenario 1: 04.01.2018
600 400

400 300

200

1 2 3 4 5 6 7 8 9 10 11 12
Scenario 2: 05.01.2018

600

Price [$/MWh]

400 |

Purchased energy [kWh]

200 -

1 2 3 4 5 6 7 8 9 10 11 12
Time [hour]

Figure 8. Scenarios of purchased energy.
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3.2.3. Disaggregation Results

Finally, the disaggregation step is performed applying the algorithm provided in
Section 2.3. Detailed charging stations occupation obtained in each scenario is shown in
Figure 9. We also show in Figure 10 specific SoC levels for two exemplary buses (1 and 12)
under each scenario. It can be observed that the batteries are correctly managed within the
operational limit, i.e., between 11 and 52.25 kWh.

Scenario 1
T T T I T 400
| f [
| [ \ Ml 300
i i ‘ | I \ ‘ I
' | i 200 —
. I | =
g 1 1 L ” 1 [ 1 E
20 60 120 180 240 300 360 420 480 540 600 660 720 &
o @
é, Scenario 2 £
5 4 | T 4000
= |
5 |
.
g 300
= 2
| i 200
O 1

0 60 120 180 240 300 360 420 480 540 600 660 720
Time [minutes]

Figure 9. Detailed charging plan in each scenario.

Scenario 1

1952.25

133

bus no. 1
bus no. 12
I I f 1

60 120 180 240 300 360 420 480 540 600 660 720

o

Scenario 2
T T T

\ f -152.25

SoC level [kWh]

33

"
0 60 120 180 240 300 3680 420 480 540 600 660 720

Time [min.]
Figure 10. Exemplary SoC levels of buses 1 and 12 in each scenario.

3.3. Cost Savings Analysis

Comparison of costs incurred under our newly proposed day-ahead auction-based
charging and Asap charging in each scenario is shown in Figure 11. In both cases, the fleet
can achieve about 25% savings using day-ahead auction participation models developed in
this paper.
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Figure 11. Comparison of costs incurred in each scenario in reference to costs incurred in the case of
charging buses as soon as possible (asap rule).

Investigating the whole year of historic prices reveals that the savings on average are
not as significant as in the test scenarios; instead, they are around 10%. Regardless, there
are several days when up to 28% of savings can be achieved, and they are never less than
7%. Histograms of daily savings day in years 2018-2019 are shown in Figure 12.
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Figure 12. Histograms of costs savings achieved in each day of years 2018-2019 when comparing
day-ahead auction-based charging to the Asap charging.

3.4. Sensitivity Analysis of the Number of Chargers

For the sensitivity analysis, we tested the scenario results reducing the number of
chargers. The reduction from 4 to 3 chargers has a minor effect on the minimum aggregated
SoC level: in hour 4, the value increases by 1.3 kWh (from 336.3 to 337.6), while in hour 8
2.1 kWh (from 348.3 to 350.4). Minimum SoC level in other hours remains unchanged, i.e.,
the same as given in Table 3.

On the contrary, maximum aggregated energy to load decreases considerably. Starting
from hour 3, the value decreases by about 80 to 160 kWh (assuming full use of a 250 kW
rate charger, a reduction of at most 250 kWh could be expected). The scale of differences
varies over time, as shown in Figure 13.

Further reduction of the number of available chargers (from 3 to 2) leads to no feasible
solution. With only two chargers, a service level with very short, 5-min idle time cannot
be maintained. The result confirms the findings of [8] showing that installing only two
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250 kW chargers would result in an average of 3.7 min of additional time to each bus trip
along a line.

11405 " om mm o= - - - ——— = e e e

1000 | | - |
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600 [ b

Energy [kWh]
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Aggregated max. energy
Agg. min. SoC (3 chargers)

[ IAgg. max. energy (3 chargers)
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Hour

Figure 13. Comparison of computed parameters regarding aggregated minimum battery State of
Charge and aggregated maximum amount of energy, assuming four (baseline case) or three fast
charging stations.

Finally, it is interesting to compare auction results obtained with the new aggregated
parameters, computed assuming three chargers. We observe a very slight increase in costs
in both price scenarios: by 1.4% in the first scenario, and only 0.6% in the second scenario.
Detailed comparison of differences in aggregated plans reveals minor changes, see Table 4.

Table 4. Comparison of hourly charging plans [kWh] obtained in each scenario, assuming four or
three fast charging stations.

h Scenario 1 Scenario 2

4 Chargers 3 Chargers 4 Chargers 3 Chargers
1 186.0 186.0 0.0 0.0
2 411.0 411.0 43.3 43.3
3 299.9 250.4 334.0 333.9
4 0.0 0.0 384.9 386.2
5 2923 341.8 427.1 425.8
6 556.0 500.6 418.1 418.0
7 504.8 491.0 517.7 532.3
8 439.3 430.4 458.1 451.0
9 3971 370.9 441.0 381.2
10 415.2 421.9 414.6 427.0
11 353.3 451.1 416.3 454.2
12 0.0 0.0 0.0 21

Reduction of the amount of energy that can be loaded caused a decrease in purchase
volume during low-price hours: hour 3 or 6 in Scenario 1, or hour 8-9 in Scenario 2. On the
contrary, purchases increase during the more expensive hours to sustain the constraints.
The comparison clearly shows the ability of the day-ahead auction to schedule the charg-
ing plans of buses economically within the allowed flexibility. However, the observed
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worsening of costs is insignificant; therefore, it can be assumed that investing in more than
3 chargers is unprofitable.

4. Discussion

An optimization model for coordinated charging of bus fleet and fast charging sta-
tions is developed using the market participation concept in this study. By contrast, the
conventional methods assume charging as soon as the buses arrive at the charging location
or optimization based on forecasted (or fixed) prices. Our results show that it is possible
and reasonable to define aggregated energy demands of the bus fleet in such a manner that
allows it to fully participate in the markets and take advantage of its charging flexibility.
It is worth noting that only five bidding parameters related to bus fleet charge states are
required for inclusion in the day-ahead auction. All complicated, individual characteristics
are taken into account in the aggregation phase and then in the disaggregation phase,
formulated as mixed-integer linear problems. The proposition provides flexibility to the
market operator, as well as to the bus fleet aggregator. Additionally, our case study con-
firms the ability of the proposed day-ahead auction model to schedule the charging plans
of buses economically.

Though our newly developed models are quite versatile, there are few limitations of
our study: (1) Although the assumed deterministic driving parameters could be handled
to account for uncertainty using the safety margin, determination of the specific level
related to the risk-aversion of the aggregator can be challenging; (2) The proposed models
aim to minimize only the electricity-related cost. Operational life-cycle cost or emissions
impacts are neglected; (3) Although the aggregation can make it possible for electric buses
to participate in the day-ahead, the demanded amounts of energy may be still too small
for some larger wholesale markets. Limitations on the size of demand may not be easily
addressed in our proposition.

Several future research areas are further recognized. First, we take a price-taking
perspective in this paper. Analyses investigating the effects of large-scale bus fleets on
the price of energy and the overall economics of the energy markets, including network
congestion, etc. would be of great interest. An enhancement to integrated decision support
including intraday, and real-time operation, is another good topic. On the other hand,
the applicability of the proposed models to estimate the profitability of strategic decisions
regarding, i.e., battery capacity or charging infrastructure, seems a natural enhancement of
this approach.
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Abbreviations

The following abbreviations are used in this manuscript:

Indices

b Index of electric buses

h Index of time periods (hours)

t Index of time periods (minutes)

iy Index of minutes when bus b ends the idle period

Parameters

) idle time (in minutes)

Apy 0/1 indicator if bus b is available for charging in minute ¢

C Number of chargers

c Maximum unit price for the excess amount of energy set by bus aggregator
Elci_yde Per-cycle trip energy demand of bus b

ELtr1 P Per-minute trip energy demand of bus b (per-cycle energy use/cycle time)
SoCy Maximum battery State of Charge of bus b

SoG,, Minimum battery State of Charge of bus b

SoC(b) Initial battery State of Charge of bus b

r Charging rate of a charger

Variables used specifically in aggregation/disaggregation model

Pot Charging energy of bus b scheduled in minute ¢

Spt Binary charging status of bus b in minute ¢

SoCp; Battery State of Charge of bus b in minute ¢

SoCZ‘},in Minimum battery State of Charge of bus b at the end of hour /
Variables in Aggregation model used as Parameters in Auction model

E! Total energy that must be loaded by buses

E? Additional energy that can be loaded by buses

pAesTrip Summary hourly trip energy of buses

P, gg max Aggregated maximum amount of energy that can be loaded in hour /1
SoChAgg’mln Aggregated minimum battery State of Charge in hour &

Variables used specifically in auction model

Cost(NetSupply,)  Net supply cost in hour h

NetSupply,, Net supply in hour &

SOC?gg Aggregated battery State of Charge in hour h

Auction energy price in hour & derived as the shadow prices to balance
constraint ()

Variables in Auction model used as Parameters in Disaggregation model

T

phAgg Charging energy scheduled in hour h
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