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Abstract: Dye-sensitized solar cells (DSSCs) were fabricated using a photoelectrode covered by a
porous layer of titanium dioxide, platinum counter electrode, iodide/triiodide electrolyte and three
different dyes: phenylfluorone (PF), pyrocatechol violet (PCV) and alizarin (AL). After the adsorption
of the dyes on the mesoporous TiO2 layer, the measurement of absorption spectra of all the tested
dyes revealed a significant broadening of the absorption range. The positions of highest occupied
molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) levels of dye molecules
were determined, indicating that all three dyes are good candidates for light harvesters in DSSCs.
The cells were tested under simulated solar light, and their working parameters were determined.
The results showed that the implementation of the back reflector layer made of BaSO4 provided an
improvement in the cell efficiency of up to 17.9% for phenylfluorone, 60% for pyrocatechol violet and
21.4% for alizarin dye.

Keywords: dye-sensitized solar cell; DSSC; organic dye; back reflector; light trapping; enediol group

1. Introduction

The usage of solar energy for production of electricity implies a constant increase
in investment in the investigations of photovoltaic (PV) technology. Despite the strong
position of silicon solar cells in the market, much attention is attracted by the emerging
photovoltaic technologies such as organic photovoltaics (OPV) and dye-sensitized solar
cells (DSSCs), as well as perovskite cells (PSCs) that stemmed from DSSCs. Dye-sensitized
photovoltaic devices are well known for low-cost production, beneficial energy payback
time, easy recycling and simple structure. A dye cell is essentially composed of an an-
ode covered by titanium dioxide nanoparticles with adsorbed photoactive dye molecules,
counter electrode and electrolyte inserted in between [1]. The illumination of the pho-
toanode is followed by the excitation of a dye molecule and the injection of the excited
electron into the conduction band of titanium dioxide. The electrons can travel through the
mesoporous layer consisting of TiO2 nanoparticles and then by the external circuit to the
counter electrode. Here, the electrons reduce the electrolyte, which in turn regenerates the
oxidized dye molecules. In the whole operation cycle, the crucial process is the electron
transfer from the dye molecule to the TiO2 conduction band [2,3]. The mechanism of this
process depends on the configuration and electronic structure of the adsorbed dyes [4]. The
dye is the core component of a DSSC that sensitizes TiO2 by broadening the spectrum of
absorbed light from UV to NIR since the TiO2 absorbs only UV light. In order to enhance
the light harvesting, it is desirable that the absorption spectrum of the dye adsorbed on
TiO2 covers a broad spectral range. The highest occupied molecular orbital (HOMO) energy
level of the dye molecule should be lower than the redox potential of the electrolyte, while
the lowest unoccupied molecular orbital (LUMO) should be located higher than the edge
of the semiconductor conduction band.

Good DSSC performance, confirmed by the efficiency of over 10% [1], was exhibited
by the cells sensitized with ruthenium complexes (e.g., N3, N719 dyes); however, their
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application is limited due to the scarcity of rare transition elements, high cost of these
compounds and environmental hazard.

Another group of sensitizers, characterized by tunable optical, photophysical and
electrochemical properties, are porphyrins, which contain an inexpensive metal and are
constructed in D–π–A (donor–π-conjugated linker–acceptor) configuration, aiming for
efficient intramolecular charge transfer and broad light absorption. The investigations of
porphyrin dyes, both theoretical and experimental [5–8], resulted in an efficiency of 13%
with cobalt (II/III) redox shuttle [9].

Many different metal-free sensitizers that have unique advantages (broad absorption,
low cost, simple synthesis) were also implemented in DSSCs and serve as an effective
alternative to ruthenium complexes. Among them, the triphenylamine dyes, the structure
of which ensures broad photon harvesting range and prevents unfavorable dye aggregation,
led to the DSSC power conversion efficiency (PCE) of about 3.5% [10]. Other metal-free
compounds applied in dye cells include coumarin dyes (providing PCE 6.07% [11] or
4.78% [12]), carbazole dyes (PCE 3.55% [13] or 2.2% [14]), indole dyes or their derivatives
for cosensitization (PCE 9.56% [15]), cyanine dyes (PCE 0.24% [16]) or recently blue dye R6
(PCE 12.6% [17]). The record efficiency of over 14% was delivered by dye cells cosensitized
with alkoxysilyl-anchor dye ADEKA-1 and a carboxy-anchor organic dye LEG4 in which
cobalt-based electrolyte was used [18].

In recent years, natural dyes such as flavonoids, betalains, tannins, chlorophylls and
carotenoids extracted from plants have also been successfully used as light harvesters in
DSSCs [19–22]. Their advantages over synthetic dyes include cost-effectiveness, nontoxicity
and possible biodegradation.

This work focuses on three organic metal-free dyes (see Figure 1), namely phenylfluo-
rone (PF), pyrocatechol violet (PCV) and alizarin (AL), and their application in dye cells as
photosensitizers. Phenylfluorone (9-phenyl-3-fluorone, fluorone black) consists of fluorine
with a phenyl group (Figure 1). Phenylfluorone and its derivatives are widely used as
analytical agents in spectrophotometry and fluorescent spectrometry for the detection of
metal ions [23]. Pyrocatechol violet is a sulfone phthalein dye, which is one of the organic
reagents recommended for the studies of complexation as a ligand with metal ions such
as indium and gallium toward the applications in nuclear medicine as well as in metal
extraction and determination studies [24]. Alizarin (dihydroxyanthraquinone) is extracted
from plant roots but can also be synthesized, and it is usually used as a textile red dye and
staining agent in medicine. The application of alizarin dye and its derivatives in DSSCs
was investigated theoretically [2,25].
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The enediol group of the catechol ring occurring in all the structures of the dyes
studied in this work is known for making a chelating bond with titanium in TiO2, giving
rise to a new absorption band corresponding to the charge transfer mechanism with very
fast electron injection to the TiO2 semiconductor conduction band [2,26–28]. Recently, it
was demonstrated that upon photoexcitation, the presence of a catechol unit enhances the
electron injection to the TiO2 semiconductor [29].

In addition to the investigation of the aforementioned dyes as photosensitizers in
DSSCs, this work presents the influence of the back reflective layer (RL) on the performance
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of the prepared dye cells, with the aim to exploit the transmitted light (crossing the cell). In
this study, barium sulfate (BaSO4) was implemented as the reflective layer on the back side
of the cell, with diffuse reflectance exceeding 95% in the wavelength of 200–1800 nm [30].
This kind of material scatters light so diffuse photons can be trapped inside the solar cell
structure, which is advantageous for the cell operation.

2. Materials and Methods

All chemicals were purchased commercially and used without further purification.
The glass electrodes with fluorine tin oxide (FTO) conductive coverage, the counter elec-
trodes covered with platinum black and the I−/I3

− liquid electrolyte were purchased from
the Greatcell Solar company. The glass FTO electrodes of 2 × 2.5 cm size and 18 Ω/sq sheet
resistance were cleaned in acetone and ethanol, dried in nitrogen gas flow and employed as
substrates for the layer of the titanium dioxide paste. The preparation of paste included sev-
eral steps [31] in which the TiO2 nanoparticles P25 from Degussa were used. The TiO2 paste
was deposited on glass electrodes with doctor blade method and then annealed at 450 ◦C
to sinter the nanoparticles. The electrodes covered with TiO2 were immersed in 2 mM
solutions of phenylfluorone, pyrocatechol violet, and alizarin dyes in absolute ethanol
for 1, 2, 24 or 48 h in darkness at room temperature, and then the sensitized electrodes
were rinsed with absolute ethanol. The TiO2 working electrode and counter electrode
were assembled with Surlyn separator and sealed in a Gestigkeit PZ 28-3T (Inverness, UK)
high-temperature titanium hot plate with a lid. The electrolyte was introduced through the
holes in the Pt-coated electrode. The active area of the cells was 0.8 cm2. Figure 2 shows
the schematic illustration of the dye cell. The cells were examined in a solar light simulator
(Abet Technologies SUN 3000, Sydney, Australia) under 100 mW/cm2 illumination, and
I–V curves were obtained on a Keithley 2440 Source Measure Unit. The measurements
were repeated 3–6 times for a minimum of 3 cells of the same type. The absorption and
reflectance spectra of dyes or electrodes were measured by using a Thermo Scientific
Evolution 220 UV-Vis (Darmstadt, Germany) spectrophotometer equipped with ISA-220
integrating sphere. The morphology of the TiO2 layer was determined by using a Hitachi
SU 3500 scanning electron microscope (SEM).
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In order to investigate the effect of the back reflective layer, the prepared semitrans-
parent cells were placed on a BaSO4 powder layer, and the measurements of I–V curves
were performed under the simulated light.
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3. Results
3.1. Characterization of Photoelectrode

The morphology of the TiO2 nanoparticle layer deposited on the glass electrode and
sintered at high temperature is shown in Figure 3a. The SEM image reveals the mesoporous
structure of the layer, which is essential to ensure penetration of the dye solution and
electrolyte between nanoparticles. The coverage of TiO2 by the adsorbed dye is visible in
Figure 3b. 

  

(a) (b) 

Figure 3. (a) SEM image of mesoporous bare TiO2 layer, (b) SEM image 
of TiO2 layer with the alizarin dye adsorbed after the soaking of the 
electrode in 2 mM ethanol solution for 24 h. 
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Figure 5. Photos of TiO2 photoelectrodes after the immersion in the 
solution of (a) 2 mM PF in ethanol, 2 h soaking time; (b) 2 mM PCV in 
ethanol, 1 h soaking time; and (c) 2 mM AL in ethanol, 2 h soaking time. 

 

Figure 3. (a) SEM image of mesoporous bare TiO2 layer, (b) SEM image of TiO2 layer with the alizarin dye adsorbed after
the soaking of the electrode in 2 mM ethanol solution for 24 h.

The TiO2 layer exhibits the ability to scatter the incident light, which is beneficial for
enhancing the light harvesting. The diffuse reflectance of TiO2 layer shown in Figure 4
achieves over 40% in the range of 400–530 nm.
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Figure 4. Diffuse reflectance of a photoelectrode covered by TiO2.

Immersion of fabricated photoelectrodes in solutions of dyes results in the intensive
tint of the titanium dioxide layer, which is visible in Figure 5. Each electrode shown in
Figure 5 was immersed in a dye solution for the optimal time selected for a given dye,
leading to the best photovoltaic performance (v.i.).
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3.2. Photoelectrical Properties of the Dyes

The sensitizing compound used in a DSSC should absorb light, preferably in a broad
range of the visible spectrum. In order to verify the coverage of the light spectrum by the
investigated dyes, especially after the process of adsorption on TiO2 nanoparticles, the
absorption measurements were performed. The absorption spectra in Figure 6 show that
free PF dye solution in ethanol exhibits only a narrow absorption band around 520 nm;
however, upon adsorption on TiO2 nanostructural coverage of electrodes, a significant
broadening of the absorption range occurs. In consequence, the absorption covers a variety
of wavelengths from around 400 to 600 nm. Below 400 nm, the absorption of bare TiO2
is observed.
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photoelectrode.

The absorption spectrum of PCV in free form in an ethanol solution consists of two
bands: one with a maximum around 450 nm and the second, much weaker, band at 575 nm
(Figure 7). The adsorption of PCV on TiO2 leads to the broadening of the absorption range
that covers the visible spectrum nearly to 700 nm.
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Free alizarin absorbs light up to 500 nm with the maximum at about 440 nm, which is
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the band wing extending to over 600 nm.
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photoelectrode.

The observed broadening of absorption spectrum upon adsorption of the tested dyes
on nanoparticles implies that they may exhibit prominent optical properties as sensitizers
in DSSCs.

Each of the Figures 6–8 presents several curves (colored solid lines) corresponding
to the absorption spectra of the dye/TiO2 complex for different times of soaking the TiO2
electrode in the dye solution. The possible concentration-dependent band shifts determined
for the spectra with increasing dye load did not exceed 3 nm for all three investigated dyes,
which does not exceed the experimental accuracy with these broad bands. No significant
spectral effects occur in the examined electrodes, and thus the aggregation of dye molecules
was not considered.
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3.3. TiO2/Dye/Electrolyte Interface

The electron transfer from the sensitizing dye to TiO2 nanoparticles requires the
LUMO level of the dye to be more reducing than the conduction band of a semiconductor.
Analogously, in the process of the regeneration of dye ground state, the dye cation is
required to be more oxidizing than the I−/I3

− redox couple.
Using the oxidation potential of the PF, PCV and AL molecules [25,32], the HOMO

levels were determined in eV according to the absolute energy scale. The LUMO orbital
(ELUMO) was calculated as a sum of HOMO energy (EHOMO) and transition energy (E0−0)
at the absorption maximum of the dye adsorbed on a TiO2 nanoparticle, according to the
following relation:

ELUMO = EHOMO + E0−0, (1)

Table 1 presents the calculated values of the HOMO and LUMO energy levels.

Table 1. HOMO and LUMO of the dye–TiO2 complexes calculated after the adsorption process.

Dye λ (nm) at
Max Abs. E0−0 (eV) EHOMO

(eV)
ELUMO

(eV) ∆Ginj (eV) ∆Greg (eV)

PF 498 2.49 −5.58 −3.09 1.21 0.78
PCV 511 2.426 −5.5 −3.074 1.23 0.70
AL 500 2.48 −6.23 −3.75 0.55 1.43

Particular energy levels, the positions of which are crucial for the operation of the
dye-sensitized cell, are depicted in Figure 9. The arrangement of the HOMO and LUMO
levels of the investigated dyes in relation to the bottom of the TiO2 conduction band and
redox potential of the electrolyte is suitable for an efficient transfer of electrons in the
working cycle of the dye cell. The differences between the positions of HOMO, LUMO, ECB
and electrolyte redox level Eel enable the determination of the parameters that quantita-
tively describe the electron transfer reactions: free energy driving force ∆Ginj and electron
regeneration driving force ∆Greg (Table 1), according to the following equations [33]:

∆Ginj = ELUMO − ECB, (2)

∆Greg = EHOMO − Eel . (3)
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The photoelectric properties of the studied dyes were also evaluated by the determi-
nation of the chemical reactivity parameters, including chemical potential, global hardness
and electrophilicity (Table 2).

Table 2. Chemical reactivity parameters of the dyes.

Dye µ (eV) ηg (eV) ω (eV)

PF 4.335 1.245 7.545
PCV 4.287 1.213 7.575
AL 4.99 1.24 10.04

Chemical potential µ reflects the escaping tendency of an electron from equilibrium
and is connected with rearrangement of electrons in chemical phenomena [34]:

µ =

(
∂E
∂N

)
ν(
→
r )

, (4)

µ = −χ, where χ is the electronegativity, E is the total energy of an atom or molecule
in the ground state and N is the number of electrons.

Global hardness ηg expresses the resistance to electron transfer (equilibrium of the
system corresponds to maximum hardness) and can be calculated according to the follow-
ing formula:

ηg =
1
2

(
∂2E
∂N2

)
ν(
→
r )

. (5)

The approximation based on Koopman’s theorem, successfully used for different kinds
of organic and inorganic molecules [34,35], leads to the following formulas expressing µ
and ηg, which are related directly to the HOMO and LUMO energies:

µ ≈ 1
2
(ELUMO + EHOMO), (6)

ηg ≈
1
2
(ELUMO − EHOMO). (7)

Electrophilicity index ω is also one of the descriptors of reactivity that corresponds
to the balance energy of a system saturated by electrons; thus, it is a measure of energy
lowering due to transfer of electrons between donor and acceptor [34,36,37]:

ω =
µ2

2ηg
≈ (ELUMO + EHOMO)

2

4(ELUMO − EHOMO)
. (8)

Global hardness is the highest for PF; however, the differences in values for other
compounds are small. The chemical potential values of PF and PCV are around 4.3 eV,
close to TiO2 anatase, which is described further in Section 4.

3.4. Photovoltaic Performance

The performance of the dye-sensitized solar cell is characterized by such electric
parameters as short-circuit current (ISC), open-circuit voltage (VOC), current and voltage
at maximum power (PMP) and fill factor (FF) and efficiency (η) of the cell. The last two
parameters are calculated according to the following formulas [38]:

FF =
PMP

VOC ISC
=

VMP IMP
VOC ISC

(9)

η =
PMP
Pin

=
VMP IMP

Pin
, (10)
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where VMP is voltage at maximum power point, IMP is current at maximum power point
and Pin is the incident light power.

Figures 10–12 present the density of current vs. voltage (J–V) characteristics, including
the measurements performed with the BaSO4 reflective layer (RL) on the back side of
the dye cells. The electric parameters derived from the characteristics of the investigated
photocells are listed in Table 3. The results presented in Table 3 include the parameters
obtained for different times of the photoelectrode immersion in the dye solution. The
optimal time in terms of efficiency was determined for each type of dye and is indicated in
Table 3. The maximum efficiency of the cells with PF and AL is one order of magnitude
greater than that for PCV. The implementation of the back reflective layer provides better
results for all tested cells. In the case of the PF dye, the improvement of even 17.9% in
efficiency (for 2 h dipping time) is observed due to the reflection of light from the BaSO4
layer. The same tendency is visible for the cells with PCV, the efficiency of which is 60%
better (for 1 h dipping time) than in the measurements without reflective layer. For alizarin,
the best parameters of the cells were obtained after 2 h soaking time, and a 21.4% increase
in efficiency was observed with the use of the BaSO4 reflective layer.
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Table 3. Parameters of the DSSCs sensitized with PF, PCV and AL for different dipping times
obtained with or without the reflective layer (RL). The best values obtained for each dye are indicated
in bold.

PF

Dipping
Time (h)

JSC
(mA/cm2) VOC (mV) Efficiency

(%) FF (%)

No RL 1 0.24 389.5 0.038 42.10
With RL 1 0.29 404.5 0.048 41.47
No RL 2 0.53 406.4 0.078 36.6

With RL 2 0.61 414.9 0.092 36.1
No RL 24 0.37 430.8 0.056 35

With RL 24 0.40 437.4 0.062 35.3
No RL 48 0.30 386.7 0.049 42.58

With RL 48 0.37 403.5 0.062 42.17

PCV

Dipping
Time (h) JSC(mA/cm2) VOC(mV) Efficiency

(%) FF(%)

No RL 0.5 0.063 208.9 0.002 18.84
With RL 0.5 0.067 227.0 0.004 25.23
No RL 1 0.069 228.4 0.005 33.44

With RL 1 0.092 266.7 0.008 32.6
No RL 2 0.077 216.4 0.004 27.14

With RL 2 0.089 251.6 0.007 31.12
No RL 24 0.078 182.9 0.003 22.26

With RL 24 0.084 206.4 0.005 26.66
No RL 48 0.087 119.1 0.002 18.64

With RL 48 0.1 151.5 0.003 19.67

AL

Dipping
Time (h) JSC(mA/cm2) VOC(mV) Efficiency

(%) FF(%)

No RL 1 0.076 279.8 0.008 37.24
With RL 1 0.086 289.4 0.009 37.13
No RL 2 0.112 308.2 0.014 39.14

With RL 2 0.138 318.1 0.017 38.79
No RL 24 0.078 284.6 0.008 37.34

With RL 24 0.083 288.1 0.009 37.33
No RL 48 0.105 128.7 0.002 16.31

With RL 48 0.11 130.2 0.003 18

The values of open-circuit voltage are in the range of 387–437 mV for PF, 119–267 mV
for PCV and 128–318 mV for AL. The shape of the curves is properly bent; however, the
internal resistances occurring in the cells lead to an efficiency decrease.

The performance parameters of the investigated cells can be related to the values
reported previously for the cell prepared according to the same methodology based on
the N719 dye [39]. The cell sensitized with N719, which can be recognized in this work
as the reference cell, provided JSC = 12.29 mA/cm2, VOC = 713 mV and the efficiency of
5.03% in the measurements without the reflective BaSO4 layer. The implementation of the
BaSO4 reflective layer in the reference cell based on N719 resulted in the improvement
of the following photovoltaic parameters: JSC = 14.71 mA/cm2, VOC = 722 mV and the
efficiency of 5.82%, which confirmed the beneficial role of the reflective layer also in the
cells with the well-known, efficient sensitizer.

The values of standard deviations of efficiency, determined for the best cells (indicated
in bold in Table 3) are as follows: 0.001466 (PF no RL) and 0.000358 (PF with RL), 0.00046
(PCV no RL) and 0.00024 (PCV with RL), 0.00029 (AL no RL) and 0.00022 (AL with RL).
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In order to compare the performance of the studied dyes, the absorption of light was
analyzed in relation to JSC, which is strongly influenced by the amount of absorbed photons.
Figure 13 presents the dependency of absorbance at the absorption maximum, measured
for the electrodes covered by TiO2 and immersed in dye solution for the optimized time
(2 h in case of PF and AL, 1 h in case of PCV), versus the short-circuit current density
obtained for the cells prepared with these electrodes. The plot in Figure 13 shows that the
higher absorbance is accompanied by the greater photocurrent, and the best-performing
dye, PF, stands out in terms of both parameters.
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Figure 13. Absorbance at the absorption maximum measured for the photoelectrodes immersed in
dye solution for the optimized time (2 h in case of PF and AL, 1 h in case of PCV) vs. the short-circuit
current density for the dye cells with PF, PCV and AL. There are two points for each dye: one
corresponds to the cell without the back reflecting layer, and the other corresponds to the cell with
the reflective layer.

For the cells with optimized immersion time, the parasitic resistances were also
determined. The series resistance is in the range of 542–602 Ω for cells sensitized with PF,
2617–2954 Ω for PCV and 1416–1611 Ω for AL, with RL and without RL. Shunt resistance
value is 1562 Ω for cells sensitized with PF, 6250–6666 Ω for PCV and 5000–6944 Ω for AL.

4. Discussion

The performance of DSSCs depends on numerous factors, including the types of
materials used and the structure of the cells. This work is devoted to the application of
three different sensitizers and the implementation of the back reflective layer, which raises
the chances of absorbing the light that passes through the cell. It is advisable to return the
light back to the cell when the cell absorption is relatively poor and also to use the light out
of the absorption range.

The photoelectrodes used in the investigated DSSCs, prepared by deposition of the
TiO2 paste, exhibited porous structures suitable for adsorption of the dye. The observed
light-scattering ability of the TiO2 layer can enable better capturing of the light. The diffuse
reflectance of the prepared TiO2 layer is relatively high in comparison to a lower value of
25% or narrow reflectance range in the literature [40,41].

The dyes introduced in the dye cells as sensitizers should adsorb on titanium dioxide
nanoparticles making a durable bond. The UV-Vis spectroscopy measurements presented
in this work confirmed the ability of phenylfluorone, pyrocatechol violet and alizarin to
chelate titanium. Similar effects were observed in the studies on the creation of complexes
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with other metal ions. Phenylfluorone was reported to create a complex with antimony,
the features of which were investigated by UV-Vis and Raman spectroscopy, revealing the
possibility of application for detection and quantitative determination of the antimony
content in toxicology [42]. The material functionalized with PF was also used for cadmium
and copper determination in water samples [43]. PCV as a catechol-like compound was
proven to be a good ligand for metal ions; e.g., the ligand-exchange reaction of PCV
coordinated to Zr(IV) has been observed [44]. In this kind of reaction, the yellow color
changes to blue depending on pH, and the absorption is shifted from 440 to 630 nm. Not
only Zr but also Ti was reported to form stable complexes with PCV. The titanium alkoxide
compound allowed simple preparation of HF-sensitive PCV–Ti complex that changes color
upon exposure to the HF vapor [45]. In the literature, the spectra of alizarin–(TiO2)15
complex were modeled, and the ultrafast electron transfer dynamics of alizarin adsorbed
to a colloidal titanium oxide nanocrystallite was investigated theoretically [46].

In order to achieve fast electron injection and regeneration of the oxidized dye, an
efficient sensitizer is supposed to possess the ground state below the redox potential of
the electrolyte and excited state over the edge of TiO2 conduction band. This fundamental
requirement is fulfilled by all three studied dyes (PF, PCV, AL). Moreover, all three dyes bind
to TiO2 in the same bidentate chelating configuration by the enediol ring; this circumstance
provides a similar energy barrier for electron injection in each case and leaves the energetics
of electron transfer as the main determinant of the process.

In general, it is assumed that greater ∆Ginj leads to more effective electron transfer,
contrary to ∆Greg for which lower values are beneficial [47,48]. Taking into account these
rules, ∆Ginj and ∆Greg of PCV and PF have the best values. However, the photovoltaic
performance of PCV is the worst among the studied dyes. The possible aggregation of
PCV molecules, revealed especially for longer dipping times, that results in worsened
photovoltaic parameters, may suppress the effective electron injection process. In the
literature, the ∆Ginj value greater than 0.2 eV is recommended [25]; however, for one of
the most efficient sensitizers, N719, the driving force is equal to 0.15 eV [38]. In terms of
∆Greg, the value of 0.2–0.3 eV is required for electron recombination for ruthenium dyes by
oxidation of iodide/triiodide electrolyte [38].

Nevertheless, the consideration of various literature data and the results of this study
do not provide a clear and strict recipe that determines the best configuration of HOMO and
LUMO positions of dye molecules in DSSCs. Taking into account the driving force values
mentioned above and their connection with the Marcus theory of electron transfer [49],
it can be assumed that an increase in ∆Ginj is beneficial to some upper limit. Further
increase in the difference between the LUMO of the dye and semiconductor bandgap edge
can result in the suppression of the DSSC efficiency according to the Marcus inverted
regime. However, Marcus theory is devoted to proteins and dye molecules taking part in
photosynthesis, and its reference to the dye molecules adsorbed on solid state may not
be straightforward.

The chemical reactivity parameters determined in this work present beneficial values
for PF, since the greater global hardness and the smaller electrophilicity lead to the higher
efficiency of DSSCs [34]. In general, the photosensitizers best suited for titanium dioxide
surface should present good matching of both electronegativity and the global hardness to
the parameters of TiO2 anatase, equaling 4.3 and 1.6 eV, respectively [50], which is achieved
in this work.

The photovoltaic performance of the solar cells sensitized with three tested dyes
exhibits the best values for the PF compound. The value of VOC over 0.4 V achieved in
this work is satisfactory taking into account VOC of 0.33–0.64 V for natural dyes [22] or
0.254–0.691 V for the recently designed ruthenium complexes [51]. The J–V curves of
dye cells with PF and AL exhibit also the proper shape, which is reflected in fill factor
value of up to 39.14% (AL) and over 42% (PF) which is a good result compared to 27–69%
for natural sensitizers [22] or 45–70% achieved for Ru complexes [51]. In general, any
deterioration of the fill factor decreases the output power. The achieved values of VOC and
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FF are satisfactory; however, the current and in consequence efficiency of the investigated
cells deserve improvement. In the literature, ZnO-based DSSCs sensitized with fluorescein,
the molecular structure of which is similar to phenylfluorone, show the efficiency of 6.54%
and 0.55% with fluorinated fluorescein [52,53].

For comparison, the literature study on pyranoflavylium salts possessing a catechol
linker unit in the sensitizer molecule led to 1.15% efficiency in a DSSC with TiO2 and iodine
electrolyte [29]. The trials involving other catecholate-functionalized compounds in DSSCs
resulted in an efficiency of 0.92% [54].

Alizarin was applied in a DSSC before; however, it was a quasi-solid-state DSSC
with a polymer electrolyte. After titanium tetrachloride treatment of the TiO2 layer, which
improved the electron transport and dye molecule anchoring, an enhancement of the
efficiency was achieved from 3.57 to 5.12% [55]. In the literature, the exposition of a
photoanode, prepared by using P25 Degussa TiO2 nanoparticles sensitized with alizarin,
to microwave radiation improved the efficiency of the cells from 0.14 to 0.16% [56]. The
application of natural dyes such as alizarin usually leads to low efficiencies of 0.01–0.6% [57],
0.2–0.18% [58] and recently 0.197–0.878% in the investigation of natural plant extracts rich
in luteolin [22]. The review of natural sensitizers shows the efficiency values of 0.008% for
the ZnO-based cells, 0.0083% and 0.301% for the TiO2-based cells, 0.516% for the cells with
graphene-coated electrodes and 1.5% in the cells sensitized with Rhus fruit extract [59].
The application of the anthocyanin dye provided a PCE of 2.9% [59]. Low efficiency of
0.1–0.14% was also delivered by the cells sensitized with the dye extracted from chokeberry;
however, the reference cell with N719 fabricated in that research provided 5.06% [60]. This
value of efficiency is very close to the efficiency of the N719 reference cell used in this work,
which amounts to 5.03%.

The efficiency of solar energy conversion of the dye cells was enhanced in this study
by applying the back reflective layer of BaSO4. The exhibited high efficacy of the reflected
light may indicate that the electron transfer to the TiO2 nanoparticles located closer to the
electrolyte is more efficient. The reason may be the faster regeneration of dye molecules
that are in good contact with the electrolyte. In deeper parts of the TiO2 layer, near FTO,
the reduction of dye molecules is limited due to the difficulty in electrolyte exchange
by diffusion.

Back reflectors were typically introduced in thin-film silicon or copper gallium dise-
lenide (CIGS) cells in order to improve light trapping in the cell. In thin-film silicon cells,
other materials were also applied as a reflective layer: porous silicon dielectric layer [61],
nanostructured ZnO and Ag [62] and polystyrene microspheres enhancing the short-circuit
current and efficiency by over 30% [63]. Commercial white paint containing TiO2 pigment
also was used on the back side of a thin silicon cell, providing a short-circuit current density
boost of 41% [64]. In ultrathin CIGS solar cells, Ag back mirror improved short-circuit
current density by 20% [65]. In the literature, the use of reflected light in DSSCs is reported
rarely. However, some modifications such as reflecting counter electrode [66], photoanode
including nanostructured light scattering layer [67] and combination of upconversion
nanoparticles and light-reflecting silver particles were introduced [68], resulting in the
enhancement of the electrical parameters of DSSCs.

5. Conclusions

The performance of dye-sensitized solar cells is influenced by numerous factors. This
work addresses two aspects: proper selection of the sensitizing dye and application of a
back reflector that allows harvesting the light transmitted through the semitransparent
dye cell.

In the literature, great effort has been devoted to the development of new effective
sensitizers, natural dyes among them. In the presented work, three organic metal-free
dyes were chosen to serve as sensitizers in dye-sensitized solar cells: phenylfluorone,
pyrocatechol violet and alizarin. The molecules of the investigated dyes possess an enediol
group in their structure, which chelates with titanium and can ensure fast electron transfer
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from the excited sensitizer to the titanium dioxide nanoparticle layer that constitutes the
photoactive coverage of illuminated electrodes in DSSCs. The prepared TiO2 layer showed
porous morphology confirmed by scanning electron microscopy and high reflectance of
30–45% in the range of 400–600 nm, favoring the harvesting of diffused light.

All the investigated dyes exhibited a significant broadening of absorption bands upon
the adsorption on TiO2. The observed improvement of the light-harvesting properties
together with the adequate distribution of the HOMO and LUMO positions qualified
phenyl fluorine, pyrocatechol violet and alizarin for applications in DSSCs. The dye cells
were fabricated, and their performance parameters were determined. Phenylfluorone was
found as the best-performing sensitizer among the tested dyes, which was indicated by
the beneficial values of chemical reactivity parameters. Phenylfluorone also presents the
highest value of the absorbance at the absorption maximum and in consequence the highest
value of the photocurrent. The observed differences in photocurrent obtained with the
studied dyes are significant, which suggests that not only the light absorption but also
the efficiency of electron injection differs among the dyes. However, internal resistances
deteriorate the overall performance of the tested cells. Prospective improvement of the
dye cells should include the reduction in resistance of metal contacts and better control of
defects that contribute to leakage current.

In order to improve the efficiency, the reflective layer made of barium sulfate was
implemented on the back side of the semitransparent cells. It was found that the application
of back reflector is beneficial, and a significant improvement in the efficiency of the cells
was observed. The achieved increase in the efficiency of the cells enriched with reflective
layer was up to 60%.

Although further optimization of dye cells is still necessary to gain better photovoltaic
parameters, the application of the BaSO4 reflective layer is a very promising solution that
can be introduced in all kinds of semitransparent cells.
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