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Abstract: Electric vehicles’ (EVs) technology is currently emerging as an alternative of traditional
Internal Combustion Engine (ICE) vehicles. EVs have been treated as an efficient way for decreasing
the production of harmful greenhouse gasses and saving the depleting natural oil reserve. The
modern power system tends to be more sustainable with the support of electric vehicles (EVs).
However, there have been serious concerns about the network’s safe and reliable operation due
to the increasing penetration of EVs into the electric grid. Random or uncoordinated charging
activities cause performance degradations and overloading of the network asset. This paper proposes
an Optimal Charging Starting Time (OCST)-based coordinated charging algorithm for unplanned
EVs’ arrival in a low voltage residential distribution network to minimize the network power
losses. A time-of-use (ToU) tariff scheme is used to make the charging course more cost effective.
The concept of OCST takes the departure time of EVs into account and schedules the overnight
charging event in such a way that minimum network losses are obtained, and EV customers take
more advantages of cost-effective tariff zones of ToU scheme. An optimal solution is obtained by
employing Binary Evolutionary Programming (BEP). The proposed algorithm is tested on IEEE-31
bus distribution system connected to numerous low voltage residential feeders populated with
different EVs’ penetration levels. The results obtained from the coordinated EV charging without
OCST are compared with those employing the concept of OCST. The results verify that incorporation
of OCST can significantly reduce network power losses, improve system voltage profile and can give
more benefits to the EV customers by accommodating them into low-tariff zones.

Keywords: electric vehicle; coordinated charging; low voltage distribution network; optimal charging
starting time; optimization

1. Introduction

Environmental issues, dependency on fossil fuel resources, climate change, and in-
creasing energy costs are all very challenging issues that the world is facing at present.
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There is a significant rise in these issues due to the transportation and energy generation
sectors as they are consuming a considerable portion of fossil fuels [1,2]. To this end,
efforts are being made to minimize the dependency on traditional energy resources by
developing different green energy. Electric vehicle (EV) technology is a developing solution
to cope with environmental and energy efficiency issues. The EVs are the replacement
of the conventional internal combustion engine vehicles and serve as an economically
smart move centered on electrification of the transportation industry [3]. EVs will bring
a reduction in greenhouse gas emissions such as CO2, SO2, and NOx by decreasing the
consumption of fossil fuels, which is one of the main reasons of global warming [4].

The charging of EVs can be done with the home-based plugin system or via a public
charging station. Advancement in EV technology and charging infrastructure enable the
global promotion of EVs. However, the large-scale integration of electric vehicles (EVs) may
lead to an extensive variation of impacts to the power system. From a grid point of view,
it seems these modern vehicles are as an electric load on the system during the charging
period. A frequent and uncontrolled charging strategy can cause negative effects such as
an increase of power losses, voltage deviations, transformers, and line saturations [5–9].
As a result, the distribution grid’s safe and reliable operation may be under high risk.
Furthermore, the power quality issues can be observed on the customer side due to random
charging operation [6,10–12]. This situation can become worse when we see unpredicted
EVs arrivals and their random charging demand. Hence, a well-synchronized charging
coordination between EVs and grid operators is indispensable.

The system operator always tries to uphold network performance whereas the EV
customers are looking to fully charge their vehicles in their desired time. In this context, the
researchers have considered various objectives such as power loss minimization, voltage
profile improvement, charging cost minimization, etc., and these objectives are optimized
by applying different optimization techniques. In the study of [5], the authors aimed to
minimize distribution network power losses by optimally managing charging requests
from the customers. In this work, a typical driving pattern without having any charging
preference was considered. In another work [13], the authors applied a heuristic approach
to reduce network power loss while dealing with network constraints. By employing the
valley filling approach, the authors in [14] proposed a charging scheduling algorithm for
EVs while considering different constraints. Suyono et al. [15] proposed an EV charging
coordination strategy with the objective of minimizing system losses. In this work, tariff
zones have been used and customers’ demand is managed into their desired tariff slots. The
authors have considered a fixed charging priority from the customers; the flexibility in the
preference is not considered. A method to minimize the charging cost of EVs is proposed
in Ref. [16]. The authors have taken the network and battery parameters as optimization
constraints. A price based bi-level optimization strategy is proposed by [17] to maximize
the benefits of aggregator while realizing the dynamic driving pattern. Although the
reported work has exhibited reasonable profit of the EV aggregator, it has failed to capture
network performance. A more realistic model is presented by [18] in which the authors
have optimized the energy cost for EVs’ charging and network operation. Wei Wu et al. [19]
inspected the financial effect of EVs’ integration by considering different charging strate-
gies. However, the customer flexibility towards EV charging along the pricing horizon is
not considered.

By analyzing the literature work reported above, it can be apprehended that the
choice of scheduling objective is of extreme importance. For example, the objectives of
power loss minimization, voltage profile improvement, etc., are network performance
centered. Whereas, the charging cost minimization, profit maximization, etc., are more
towards customer care. The studies cited above, either focused on network performance
or customer benefits. No doubt, the supply network has ample importance all the way.
However, offering the flexibility to the EV customers to charge their vehicle into their
desired periods while maximizing network performance has a more challenging way of
integrating the EVs into the distribution network. This aspect is not previously covered
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in the literature. The charging flexibility refers to the intended desire of an EV owner to
charge his vehicle in the time of his choice with minimum charging cost. The network
should be able to acknowledge this intention without compromising its standard.

By keeping in view the boundaries of the highlighted literature work, we have de-
veloped a coordinated EV charging framework in the low voltage residential distribution
network in which network performance is heightened by minimizing the system losses
while acknowledging the flexibility in charging behavior of EV customers with low cost.
We offer an overnight flexible charging process that should be completed with minimum
charging cost considering the constraint of arrival and departure time along with the time-
of-use tariff. This needs to identify the optimal charging starting time of the individual
vehicle. The organization of the paper is as follows: Section 2 deals with problem formula-
tion; Section 3 discusses the coordinated charging framework. The test system used for
the execution of the proposed method is explained in Section 4, and obtained results are
discussed in Section 5. Finally, the whole work is concluded in Section 6.

2. Problem Formulation
2.1. Optimization Objective

The main objective of this research is to develop a coordinated EV charging schedul-
ing algorithm for network power loss minimization considering the flexible priorities of
users. Moreover, the proposed algorithm determines an optimal charging starting time
for an EV which leads to further improve the system performance by offering a low-cost
charging solution. To make the simulation model more realistic, 15 min time slots have
been used for 24 h. For load flow studies, backward forward sweep method is imple-
mented on a radial distribution test system [20]. Total real power loss of distribution test
system for each time slot is calculated using Equation (1) by considering constraints as
highlighted by Equations (4)–(6). The total network losses for any time slot are computed
by Equations (2) and (3) and gives the real power loss of an individual network branch.

min(FTotal Loss) = min(
T

∑
∆t=1

Ptotal loss
∆t ) (1)

Ptotal loss
∆t =

N−1

∑
i=0

PLoss
∆t,(i,i+1) (2)

PLoss = Ri,i+1 (|Vi+1 −Vi||yi,i+1|) 2 (3)

where Vi and Vi+1 are voltages at nodes i, i + 1 respectively. Ri,i+1 and yi,i+1 represent
the resistance and admittance of the line segment between node i and i + 1 respectively.
PLoss

∆t,(i,i+1) denotes the real power loss between line section i and i + 1 for any time slot ∆t
(15 min), FTotal Loss represents total losses of the system over 24 h period and N is the total
number of nodes.

2.2. Network and Charging Constraints

To execute the coordinated EVs’ charging algorithm, different system constraints are
also obligatory to be considered. These are network voltage limits and maximum demand
level (D∆t,max) of the distribution system at any time slot ∆t:

Vmin ≤ Vi(∆t) ≤ Vmax f or i = 1, . . . Nnode (4)

Ptotal demand
∆t =

N

∑
i=1

(Pload
∆t, i + Pev

∆t, i) ≤ D∆t, max (5)

where Vmin and Vmax are minimum and maximum voltage limits respectively. Vi(∆t) is
the voltage of node i at any time interval ∆t, D∆t, max is maximum demand level without
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EVs at any time interval ∆t and Ptotal demand
∆t represents the total demand at any time

interval ∆t.
Furthermore, the SOC of each EV battery must be within the limits for every time slot

during the simulation as shown in Equation (6). When the maximum SOC is achieved, it
means the charging of EV is complete and it is removed from the EV Queue table (e.g.,
xi = 0).

SOCi,min ≤ SOCi(∆t) ≤ SOCi,max (6)

where SOCi,min and SOCi,max represents the minimum and maximum energy levels of
battery for the ith user whereas SOCi(∆t) shows the energy level of the battery for the ith
user at time ∆t.

3. Coordinated Charging Framework

This research work focuses on the development of coordinated charging algorithm
by determining an optimal starting time for EV charging. In this research, OCST ma-
trix along with BEP technique are used to determine the optimal combination of electric
vehicles (EVs) to minimize the total system power loss and voltage deviation while consid-
ering the customer’s flexible priorities. In this regard, at first, we have defined a matrix
which comprises of information about the suitable charging time within the arrival and
departure constraint. Then, we have applied Binary Evolutionary Programming (BEP) to
optimize the objective function defined in Equation (1) subject to constraints as given in
Equations (4)–(6). In this optimization process, ToU electricity tariff scheme has been
used aiming to minimize the EV charging cost. The algorithmic framework is explained
as follows:

Step I: The program starts with entering the system data including the network and EVs’
information. The network data consists of system parameters and daily load curve
whereas the EVs’ data consists of arrival and departure time and their corresponding
SOC levels and charger efficiency with rating.

Step II: After this, the algorithm will check the maximum demand constraint. Once this
constraint is satisfied, all the available EVs will be provisionally placed in OCST
matrix formulated from the extracted data.

Step III: The number of EVs which can be facilitated in each time slot are determined by
Equation (7). This defines the number of EVs ready to participate in the optimization
process for their charging demand.

Step IV: After finding the number of EVs available at any time slot, the scheduler will
check that either the available slots are greater or less than the required slots.

Step V: If available time slots are less than the required time slots, BEP will be executed to
select the optimal combination of EVs by considering the system constraints. Then
the OCST matrix will be updated with permanent placement of selected EVs.

Step VI: However, if the available time slots are greater than the required time slots, the load
flow program will be executed with all available EVs followed by voltage constraint
satisfaction and an update to OCST matrix. Upon violation of voltage constraint,
BEP will execute to select optimal number of EVs from the set of available EVs for
charging. Otherwise, OCST matrix will be directly updated without performing BEP
optimization process.

Step VII: The above steps will repeat until the maximum time slots for a whole day
are reached.

The detail of complete scheduling activity is illustrated in Figure 1.
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Figure 1. Flowchart of proposed coordinated EVs’ charging technique. Figure 1. Flowchart of proposed coordinated EVs’ charging technique.

3.1. Formation of OCST Matrix

OCST matrix refers to a data set of charging slots of all EVs which are participating
in the scheduling activity. The formation of this matrix is based on the logic which can be
observed in Figure 2.
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Figure 2. General layout of coordinated charging process for an electric vehicle.

Referring to Figure 2, when an EV customer arrives at home and plugs in the vehicle
in the charging outlet, the smart meter extracts the following information: (i) Address
of EV; (ii) Arrival time; (iii) Departure time; (iv) SOC at the arrival, and (v) SOC at the
departure. This information is communicated with the EV aggregator, who is responsible
for hosting all EVs’ data and making a contact with the system operator to initialize the
charging scheduling process. Then the system operator will formulate the OCST matrix by
applying Equations (7) and (8) to determine the total number of EVs that can be facilitated
in any given time slot and the total number of slots required to complete the desired SOC
level respectively.

nev
total,∆t =

Dmax −
n
∑

i=1
Pload

∆t, i

α

 (7)

Tslots, i =

(SOCrequired, i − SOCplugin, i

β.ε

)
× γ (8)

where nev
total,∆t is the total number of EVs which can be connected to the network at a time

slot ∆t, Dmax is the maximum demand level, Pload
∆t,i shows the total domestic load connected

to the system at a time slot ∆t, α is the power rating of charger in kW, Tslots, i is the time
slots required to charge an EV of the ith user to the requested energy state, SOCrequired, i,
SOCplugin, i is the initial energy state of the ith EV, β is the energy delivered by the charger
during any time slot ∆t with efficiency ε, and γ is the battery rating in kWh.

Finally, the OCST matrix will be formed by placing the EVs’ arrival at a given instant
of time into the defined time slots by keeping in view their arrival, departure time, and
network constraints. The OCST matrix will update at each time slot.
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the status (either present or absent) of a particular EV and si,j,k...m is the slot member of set
of slots S.

3.2. Optimization Algorithm

Evolutionary programming (EP) is a stochastic search technique based on the evo-
lutionary biological process. It is very useful for handling nonlinear optimization prob-
lems [21–23]. BEP do not require any initial information about the system to begin the
searching process because they only work with chromosomes, which will optimize ac-
cording to the given objective function and constraints of the system. This algorithm can
search various regions in search space simultaneously. The best individuals are selected
between parents and new generations, making the process more likely to converge to
a global optimum. The basic difference among different types of EP techniques is their
mutation formulation [24]. For the BEP, the mutation is applied by uniformly changing
a variable from one to zero and vice versa. The mutation formulation for binary EP to
generate an offspring xi+m from a parental vector xi is based on the rules as shown in
Equation (9).

xb
i+m,j =


1
0
0
1

i f
i f
i f
i f

xb
i,j = 0

xb
i,j = 0

xb
i,j = 1

xb
i,j = 1

and
and
and
and

r1 ≤ 0.5,
r1 > 0.5,
r1 ≤ 0.5,
r1 > 0.5,

j = 1, 2, . . . . . . n r1 ∼ U(0, 1) (9)

where xb
i,j represents binary jth element in the ith individual, r1 is random number gener-

ated between 0 and 1 and U(0, 1) denotes standard uniform distribution.

4. Radial Distribution Test System

A radial distribution system is simulated to show the effectiveness of the proposed
coordinated charging scheduling algorithm. The test system is a modified form of an
IEEE-31 bus 23 kV distribution system connected with numerous low voltage residential
(415 V) feeders based on actual system data as shown in Figure 3, developed from ref [25].
Each LV feeder comprises 19 nodes representing house loads and selected nodes with
EVs’ connection. These LV residential feeders are getting supply from the high voltage
main buses through 23/0.415 kV, 0.1 MVA distribution transformers. There are a total of
449 nodes in the test system (31 high voltage and 418 low voltage nodes) [25].

For the daily residential load curve, real values (Western Australia) from a distribution
transformer are used, as shown in Figure 4. The average peak demand of each house is
2 kW with a power factor of 0.9. ToU tariff scheme is used, and all the nodes are at different
distances from the distribution transformer, so the line data vary according to their length.
A 10 MVA, 132 kV/23 kV substation transformer is connected between nodes 1 and 2, and
there are 22 distribution transformers (DT-10 to DT-31) to facilitate the household loads.
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Figure 4. Daily residential load curve of LV radial distribution system.

Four EV penetration levels of 16%, 32%, 47%, and 63% are assumed to cover the wide
range of EVs’ charging consequences in near future. Total number of EVs connected to all
the LV residential feeders for each penetration level is shown in Figure 5.

Electric Vehicle Charger and Battery Requirements

For the authentic casting of electric vehicle charging loads, the battery capabilities are
of great importance to determine realistic charging profiles. For this analysis, an 18 kWh
battery capacity per EV is selected. To best utilize the battery life expectancy, deep cycle
batteries with a depth of discharge (DOD) of 80% of the rated battery are assumed [26].
A traditional charger efficiency of 90% is assumed, requiring a total of 16 kWh of energy
from the grid to fully charge a single EV. In this research, only a residential distribution
system is used, so the restrictions of domestic wiring must also be considered. A normal
single-phase 240 V outlet can usually supply a maximum of 2.4 kW. A charger of a 4 kW
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rating is selected because this is generally available in most single-phase domestic houses
without reinforcing the wiring [8].
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5. Results and Discussion

This section deals with the authentication of the proposed coordinated charging
scheduling technique on the radial distribution test system. In this study, random arrivals
and departures of EVs are considered within the given time period. The charging of EVs
can only be facilitated within the predefined period (TS = 18:00–Te = 07:00). Different simu-
lation studies are performed for optimal coordinated charging. Furthermore, an analysis
of reduction in losses and voltage deviation is carried out to support the proposed algo-
rithm. Two different case studies are presented, including uncoordinated and coordinated
charging with and without OCST matrix sub cases.

5.1. Random Uncoordinated Charging

A simulation study is performed for random uncoordinated charging to show its
impacts on different parameters of the radial distribution system. Voltage deviation and
power losses are calculated using Equations (10) and (11) respectively.

∆V = 1−Vi
min (10)

∆loss =

T
∑

∆t=1

N−1
∑

i=1

(
Ploss

∆t,(i,i+1)

)
T
∑

∆t=1

N
∑

i=1

(
Pload

∆t,i + Pev
∆t,i

) (11)

where ∆V is voltage deviation at the worst node, Vi
min represents the minimum voltage

at any node i, ∆loss is ratio of total power losses and total power consumption over 24 h
period which is computed from real power loss between line section i and i + 1 (Ploss

∆t,(i,i+1))

for any time slot ∆t and real power household load of the ith node (Pload
∆t,i ) for any time slot.

Real power load of EV at the ith node for any time slot ∆t and a total number of nodes are
represented by Pev

∆t,i and N respectively.
In this case, a random charging control is given to the customer so that they can charge

their vehicles at any time slot without observing the network constraints. The impacts of
this charging strategy are shown in Figures 6–8. Referring to Figure 6, during peak hours,
the system overloading occurs beyond the maximum demand limit, especially with a 63%
EVs’ penetration level. In this case, the voltage constraint at the worst node violates and
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high network losses recorded that can be experiential from Figures 7 and 8. The maximum
losses are upheld with a 63% EVs’ penetration level since it carries maximum charging
load compared to other levels. The results for this charging strategy are summarized in
Table 1.
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Figure 6. Impact of random uncoordinated EVs’ charging within 18:00–07:00 h on system load.
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Table 1. A comprehensive comparison of results of all the three cases.

Case Algorithm EVs
(%)

∆V
(%)

∆loss
(%)

IDT,MAX
(p.u)

IST,MAX
(p.u)

Increase in
Losses

(%)

0 7.64 2.77 0.44 0.096 -

Uncoordinated
EVs’

charging
None

16 8.06 2.88 0.49 0.115 3.97

32 8.84 2.98 0.55 0.139 7.58

47 14.20 3.37 0.63 0.171 21.66

63 15.72 3.57 0.73 0.199 28.88

Coordinated
EVs’

charging
without

OCST matrix

BEP

16 7.75 2.81 0.47 0.096 1.44

32 7.96 2.86 0.48 0.096 3.25

47 9.92 3.13 0.48 0.096 13.00

63 9.99 3.17 0.48 0.096 14.44

Coordinated
EVs’

charging
considering

OCST matrix

Proposed

16 7.64 2.78 0.44 0.096 0.36

32 7.64 2.80 0.44 0.098 1.08

47 9.99 3.09 0.45 0.098 11.55

63 9.99 3.14 0.53 0.099 13.36

5.2. Coordinated Charging

After performing simulation study of random uncoordinated charging, the proposed
optimal charging technique is implemented to observe its significance. At first, optimal
charging technique without optimal starting time is implemented followed by the optimal
charging technique by considering optimal charging starting time (OCST).

5.2.1. Coordinated Charging without Optimal Starting Time

Since this case does not consider the optimal charging starting time, therefore, with
this strategy, those EVs that have minimum impact on system losses are selected during
high demand period, and those having high losses find the charging slots during low
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demand period. Referring to Figure 9, during peak hours, the system loading is within
maximum demand limit for all the penetration levels.
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Figure 9. Impact of coordinated EVs’ charging on system power consumption.

This case shows that the voltage drops at all the nodes are within the permissible limits
of utility even under high EV penetrations as shown in Figure 10. Referring to Figure 11,
there can be seen a significant reduction in total system power losses as compared to
Figure 8. Overall, this algorithm satisfies all the parameters except the cost-effective one.
In this case, charging has been started from high tariff (red zone) even for low penetration
levels, so the cost of charging is high. For low and medium penetration levels, EVs can be
facilitated in the low-tariff zone (green zone) instead of charging them in high price zone.
To make this algorithm cost effective, the concept of optimal charging starting time (OCST)
is considered.
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Figure 10. Impact of coordinated EVs’ charging on voltage at worst nodes.
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Figure 11. Impact of coordinated EVs’ charging on power loss of system.

5.2.2. Coordinated Charging Considering Optimal Starting Time (OCST) Matrix

To overcome the economic aspect of the proposed algorithm, it is further modified to
consider the concept of optimal charging starting time (OCST). This algorithm will shift
the charging of EVs from a high-tariff zone to a low-tariff zone, considering their departure
time. By doing this, a customer can save charging costs while operating in a low-tariff zone.
The power consumption and optimal starting time of various penetration levels are shown
in Figure 12. The proposed method improves network performance in terms of losses and
voltage variations.
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Figure 12. Impact of coordinated EVs’ charging with optimal starting time on system power consumption.

The simulation results for this case are summarized in Table 1. The results show that
there is a significant improvement in all the parameters, especially for low penetration levels
(e.g., 16% and 32%). For the low penetration, all the EVs have been charged during the
green zone (low-tariff zone), resulting in a minimum possible cost of charging. Furthermore,
it improves the system voltage profile, loading, and minimizes the power losses. To show
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the distinctiveness of the proposed optimal charging algorithm, the recorded results are
compared with uncoordinated and coordinated charging without optimal charging starting
time. For the uncoordinated (random) charging, the increment in total system losses is
very high as compared to the coordinated case with OCST. There are excessive voltage
drops due to uncoordinated EVs’ charging, resulting in poor power quality, especially
for the far-end customers. For coordinated charging with OCST, the voltage deviation is
within utility limits resulting in good power quality and customer satisfaction as shown in
Figure 13. The minimum voltage for the coordinated charging is 0.9 pu which is within
utility standard limits. There is a significant reduction in power system losses due to
coordinated charging of EVs as shown in Figure 14. In coordinated charging without OCST,
the reduction in losses is 11.24% for high penetration level (e.g., PL = 63%). This reduction
is further improved due to coordinated charging with OCST, i.e., 12.13% for the same
penetration level, which results in improved economy and efficiency of the power grid.
Simulation results of the total reduction in power losses are summarized in Table 2.
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Figure 13. Impact of coordinated EVs’ charging with optimal starting time on voltage at worst nodes.
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Table 2. A comprehensive comparison of results of all the three cases.

Evs
(%)

BEP Proposed

Reduction in Losses
(%)

Reduction in Losses
(%)

16 2.43 3.47
32 4.03 6.04
47 7.12 8.31
63 11.24 12.13

6. Conclusions

Large-scale random integration of electric vehicles (EVs) in the distribution network
for charging purpose led to degrading the network performance by increasing power losses,
violating system voltage, and overloading network assets. Therefore, it is very important
to smartly manage this growing charging demand on the supply network. Although there
exist numerous charging strategies in the literature which offer coordinated charging to
manage the charging demand from EV customers. However, within a coordinated charging
framework, the determination of an optimal charging slot for the EVs participating in the
charging process is very important and it is not previously outlined. Therefore, this
work proposed an Optimal Charging Starting Time (OCST)-based coordinated charging
algorithm in a low voltage distribution network to minimize network power losses while
acknowledging network and battery constraints. In addition, the ToU tariff policy was
adopted to make the charging process less expensive. The developed scheme was tested
on IEEE-31 node distribution system linked with low voltage residential ladders. It was
observed that compared to coordinated EV charging only, the inclusion of OCST concept
further reduced the network power losses and improved system voltage profile. Since the
proposed strategy encouraged the customers to charge their vehicle in a low-cost tariff
zone, hence it offered more savings in EVs’ charging cost.

Author Contributions: The concept, methodology, and simulations were conceived together by M.U.
and A.A.; W.U.K.T. performed result validation; M.U., H.A. and I.B., performed result analysis; A.A.,
M.S. (Muhammad Sajid) and A.S. completed investigation and data curation; M.U., M.S. (Mehdi
Seyedmahmoudian) and A.M. have contributed to writing and reviewing of original draft; project
supervision is done by S.M. and funded by A.S. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors would like to thank Ministry of Higher Education, Malaysia, under Large
Research Grant Scheme (LRGS/1/2019/UKM/01/6/3), University of Malaya, Malaysia.

Acknowledgments: The authors would like to thank the Ministry of Higher Education, Malaysia,
for the financial support under the Long-Term Research Grant Scheme (LRGS): LRGS/1/2019/UKM-
UM/01/6/3.

Conflicts of Interest: This research received no external funding.

References
1. Darabi, Z.; Ferdowsi, M. Plug-in hybrid electric vehicles: Charging load profile extraction based on transportation data. In

Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; Institute of Electrical
and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 1–8.

2. Wirasingha, S.G.; Emadi, A. Pihef: Plug-in hybrid electric factor. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion
Conference, Dearborn, MI, USA, 7–10 September 2009; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ,
USA, 2009; pp. 661–668.

3. Rezaee, S.; Farjah, E.; Khorramdel, B. Probabilistic analysis of plug-in electric vehicles impact on electrical grid through homes
and parking lots. IEEE Trans. Sustain. Energy 2013, 4, 1024–1033. [CrossRef]

4. Amin, A.; Tareen, W.U.K.; Usman, M.; Ali, H.; Bari, I.; Horan, B.; Mekhilef, S.; Asif, M.; Ahmed, S.; Mahmood, A.J.S. A review of
optimal charging strategy for electric vehicles under dynamic pricing schemes in the distribution charging network. Sustainability
2020, 12, 160. [CrossRef]

http://doi.org/10.1109/TSTE.2013.2264498
http://doi.org/10.3390/su122310160


Energies 2021, 14, 5336 16 of 16

5. Amin, A.; Tareen, W.U.K.; Usman, M.; Memon, K.A.; Horan, B.; Mahmood, A.; Mekhilef, S. An integrated approach to optimal
charging scheduling of electric vehicles integrated with improved medium-voltage network reconfiguration for power loss
minimization. Sustainability 2020, 12, 9211. [CrossRef]

6. Masoum, A.S.; Deilami, S.; Moses, P.S.; Masoum, M.A.; Abu-Siada, A. Smart load management of plug-in electric vehicles
in distribution and residential networks with charging stations for peak shaving and loss minimisation considering voltage
regulation. IET Gener. Transm. Distrib. 2011, 5, 877–888. [CrossRef]

7. Zhou, C.-B.; Qi, S.-Z.; Zhang, J.-H.; Tang, S.-Y. Potential co-benefit effect analysis of orderly charging and discharging of electric
vehicles in China. Energy 2021, 226, 120352. [CrossRef]

8. Alonso, M.; Amaris, H.; Germain, J.G.; Galan, J.M. Optimal charging scheduling of electric vehicles in smart grids by heuristic
algorithms. Energies 2014, 7, 2449–2475. [CrossRef]

9. Lyu, L.; Yang, X.; Xiang, Y.; Liu, J.; Jawad, S.; Deng, R. Exploring high-penetration electric vehicles impact on urban power grid
based on voltage stability analysis. Energy 2020, 198, 117301. [CrossRef]

10. Clement-Nyns, K.; Haesen, E.; Driesen, J. The impact of vehicle-to-grid on the distribution grid. Electr. Power Syst. Res. 2011, 81,
185–192. [CrossRef]

11. Moghbel, M.; Masoum, M.A.; Shahnia, F.; Moses, P. Distribution transformer loading in unbalanced three-phase residential
networks with random charging of plug-in electric vehicles. In Proceedings of the 22nd Australasian Universities Power
Engineering Conference (AUPEC), Bali, Indonesia, 26–29 September 2012; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA, 2012; pp. 1–6.

12. Jarvis, R.; Moses, P. Smart grid congestion caused by plug-in electric vehicle charging. In Proceedings of the 2019 IEEE Texas
Power and Energy Conference (TPEC), College Station, TX, USA, 7–8 February 2019; Institute of Electrical and Electronics
Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 1–5.

13. Oliveira, D.Q.; de Souza, A.Z.; Delboni, L.F.N. Optimal plug-in hybrid electric vehicles recharge in distribution power systems.
Electr. Power Syst. Res. 2013, 98, 77–85. [CrossRef]

14. Zhou, K.; Cheng, L.; Wen, L.; Lu, X.; Ding, T. A coordinated charging scheduling method for electric vehicles considering different
charging demands. Energy 2020, 213, 118882. [CrossRef]

15. Suyono, H.; Rahman, M.T.; Mokhlis, H.; Othman, M.; Illias, H.A.; Mohamad, H. Optimal scheduling of plug-in electric vehicle
charging including time-of-use tariff to minimize cost and system stress. Energies 2019, 12, 1500. [CrossRef]

16. Ma, Z.; Zou, S.; Ran, L.; Shi, X.; Hiskens, I.A. Efficient decentralized coordination of large-scale plug-in electric vehicle charging.
Automatica 2016, 69, 35–47. [CrossRef]

17. Vuelvas, J.; Ruiz, F.; Gruosso, G. A time-of-use pricing strategy for managing electric vehicle clusters. Sustain. Energy Grids Netw.
2021, 25, 100411. [CrossRef]

18. Srithapon, C.; Ghosh, P.; Siritaratiwat, A.; Chatthaworn, R. Optimization of electric vehicle charging scheduling in urban village
networks considering energy arbitrage and distribution cost. Energies 2020, 13, 349. [CrossRef]

19. Wu, W.; Lin, B. Benefits of electric vehicles integrating into power grid. Energy 2021, 224, 120108. [CrossRef]
20. Chang, G.; Chu, S.; Wang, H.L. An improved backward/forward sweep load flow algorithm for radial distribution systems. IEEE

Trans. Power Syst. 2007, 22, 882–884. [CrossRef]
21. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
22. Sinha, N.; Chakrabarti, R.; Chattopadhyay, P.K. Evolutionary programming techniques for economic load dispatch. IEEE Trans.

Evol. Comput. 2003, 7, 83–94. [CrossRef]
23. Cao, Y.J.; Jiang, L.; Wu, Q.H. An evolutionary programming approach to mixed-variable optimization problems. Appl. Math.

Model. 2000, 24, 931–942. [CrossRef]
24. Dong, H.; He, J.; Huang, H.; Hou, W. Evolutionary programming using a mixed mutation strategy. Inf. Sci. 2007, 177, 312–327.

[CrossRef]
25. Deilami, S.; Masoum, A.S.; Moses, P.S.; Masoum, M.A.S. Real-time coordination of plug-in electric vehicle charging in smart grids

to minimize power losses and improve voltage profile. IEEE Trans. Smart Grid 2011, 2, 456–467. [CrossRef]
26. Divya, K.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79,

511–520. [CrossRef]

http://doi.org/10.3390/su12219211
http://doi.org/10.1049/iet-gtd.2010.0574
http://doi.org/10.1016/j.energy.2021.120352
http://doi.org/10.3390/en7042449
http://doi.org/10.1016/j.energy.2020.117301
http://doi.org/10.1016/j.epsr.2010.08.007
http://doi.org/10.1016/j.epsr.2012.12.012
http://doi.org/10.1016/j.energy.2020.118882
http://doi.org/10.3390/en12081500
http://doi.org/10.1016/j.automatica.2016.01.035
http://doi.org/10.1016/j.segan.2020.100411
http://doi.org/10.3390/en13020349
http://doi.org/10.1016/j.energy.2021.120108
http://doi.org/10.1109/TPWRS.2007.894848
http://doi.org/10.1109/TEVC.2002.806788
http://doi.org/10.1016/S0307-904X(00)00026-3
http://doi.org/10.1016/j.ins.2006.07.014
http://doi.org/10.1109/TSG.2011.2159816
http://doi.org/10.1016/j.epsr.2008.09.017

	Introduction 
	Problem Formulation 
	Optimization Objective 
	Network and Charging Constraints 

	Coordinated Charging Framework 
	Formation of OCST Matrix 
	Optimization Algorithm 

	Radial Distribution Test System 
	Results and Discussion 
	Random Uncoordinated Charging 
	Coordinated Charging 
	Coordinated Charging without Optimal Starting Time 
	Coordinated Charging Considering Optimal Starting Time (OCST) Matrix 


	Conclusions 
	References

